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A magnetoelectric insulator exposed to a dc electric field develops an orbital magnetization, which
in turn generates bound circulating currents at the surfaces. We consider the anomalous Hall part
of this current response at an insulating surface of a slab. In contrast to the quantized anomalous
Hall conductivity of a Chern insulator, which comes entirely from the k-space Berry curvature, we
find that the surface anomalous Hall conductivity is not a purely geometric property of the ground-
state wave functions, having in general a nongeometric part as well. That non-geometric part is the
surface manifestation of an anisotropic bulk response of the crystal, the cross-gap contribution to
the orbital magnetoelectric tensor. The geometric part of the surface anomalous Hall conductivity
can change by multiples of e2/h depending on the surface preparation, but is otherwise isotropic and
fixed by the bulk. We calculate it unambiguously from an expression involving the metric-curvature
tensor (the Berry curvature part is not enough) of the slab wave functions.

I. INTRODUCTION

Certain surface properties of crystals are strongly con-
strained by the bulk, and as a result they are very robust
with respect to local perturbations. An example is the
areal charge density σsurf bound to an insulating surface
of a polar insulator. For an unreconstructed defect-free
surface with outward normal n̂, it is given by [1]

σsurf =

(
P +

eR

Vc

)
· n̂, (1)

where P is the bulk electric polarization, R is a lattice
vector, and Vc is the volume of a unit cell. According
to the Berry-phase theory [2], P is only defined modulo
eR/Vc, since it is possible to change its value by that
amount by adjusting the phases of the Bloch wave func-
tions. Equation (1) assumes that a definite choice of
gauge has been made so that a unique value of P has
been established. (Here the word “gauge” refers to the
freedom to adjust the phases of the Bloch eigenstates or,
more generally, to perform a unitary transformation at
each k among the occupied Bloch states [3].) The second
term in Eq. (1) amounts to an integer number of electrons
per surface unit cell. Its presence is required because it is
in principle possible to prepare the insulating surface in
different ways such that the macroscopic charge per sur-
face cell changes by a multiple of the elementary charge e.
Thus, the quantized part of σsurf depends on the details
at the surface but the unquantized part does not (it is a
bulk property).

In this work, we consider a similar situation that arises
in insulating crystals that display the linear magnetoelec-
tric (ME) effect, whereby an applied magnetic field B
induces an electric polarization P , and conversely an ap-
plied electric field E induces a magnetization M [4, 5].

The linear ME tensor is defined as

αab =
∂Pa
∂Bb

∣∣∣∣
E=0

=
∂Mb

∂Ea

∣∣∣∣
B=0

. (2)

The full ME response contains both frozen-ion and
lattice-mediated contributions, and each can be further
decomposed into spin and orbital parts. In the following,
we focus exclusively on the frozen-ion orbital response.

The bulk magnetization induced by an electric field
generates bound surface currents

K = M × n̂. (3)

For an insulating surface this is the full current response,
which can be described by a 2 × 3 surface conductivity
tensor σsurf

ab . The surface anomalous Hall conductivity
(AHC) is then defined as the antisymmetric part of the
2× 2 block that accounts for the surface current induced
by an in-plane electric field. Writing that part in vector
form as σAH

surf n̂ where

σAH
surf = −1

2
εcdbσ

surf
cd nb, (4)

the surface anomalous Hall current density becomes

KAH = σAH
surf n̂× E. (5)

From Eqs. (2) and (3) we find

σsurf
cd =

∂Kc

∂Ed
=

∂

∂Ed
εceaMena = εceaαdena, (6)

which plugged into Eq. (4) leads to

σAH
surf = −1

2
Tr(α) +

1

2
αabnanb. (7)

Note that the antisymmetric part of the ME tensor
does not contribute to Eq. (7). Separating αab into an
isotropic trace piece and a traceless part,

αab = αisoδab + α̃ab, (8)
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we arrive at the relation

σAH
surf = −αiso +

1

2
α̃abn̂an̂b. (9)

Whenever the symmetric anisotropic (quadrupole) part
of the bulk ME tensor is nonzero, the surface AHC de-
pends on the surface orientation via the second term.

A key observation is that αiso, like P , carries a quan-
tum of indeterminacy: certain gauge transformations
among the Bloch wave functions change its value by inte-
ger multiples of the quantum of conductance e2/h [6, 7].
Because of this ambiguity, Eq. (9) needs to be sharpened;
once a definite gauge choice has been made leading to a
unique value of αiso, Eq. (9) should be upgraded to

σAH
surf = −αiso +m

e2

h
+

1

2
α̃abn̂an̂b. (10)

The added term reflects the possibility of modifying the
insulating surface in such a way that the surface AHC
changes by a multiple of the quantum of conductance.1

This can be done, in principle, by stiching a Chern insu-
lating layer to the surface [7, 8] or otherwise changing the
surface Hamiltonian, or by means of an adiabatic pump-
ing cycle [10, 11]. As a result only the nonquantized part
of the surface AHC is a bulk property, in close analogy
with Eq. (1) for the surface charge. (One difference with
respect to Eq. (1) is that since the quantum of conduc-
tance in Eq. (10) is unit-cell-independent, its value does
not get reduced in the presence of surface reconstruction.)

We are now ready to formulate the main question be-
hind the present work. Suppose we have a ME insulator
(it should break both inversion and time reversal sym-
metry [4]), and we consider a specific insulating surface
with orientation n̂. How can we calculate the surface
AHC, not just up to a quantum, but exactly? Since we
are given a definite surface Hamiltonian, there should be
a definite answer without any quantum of ambiguity.

We shall answer this question by first calculating
the local conductivity from its definition as the linear
current-density response to a homogeneous electric field,

σab(r) =
∂ja(r)

∂Eb

∣∣∣∣
E=0

, (11)

and then obtaining the surface AHC of a slab as an in-
tegral of its antisymmetric part. The integral spans a
surface unit cell in the in-plane directions, and in the
surface-normal direction it extends from the bulklike in-
terior region of the slab up the surface. As a numerical

1 There are two scenarios compatible with Eq. (10). If the integer
m is the same for all crystal facets, the entire surface is insulating
and the term me2/h gives an isotropic contribution to the sur-
face AHC [8]. Otherwise the contribution me2/h is anisotropic,
and there are chiral conducting channels along the lines of inter-
section between adjacent facets with different m values [9].

check of the resulting expression for σAH
surf , we have eval-

uated it for tight-binding models, finding consistent re-
sults, via Eq. (10), with the bulk ME tensor calculated
as in Refs. 12 and 13.

The manuscript is organized as follows. The local AHC
is discussed in Sec. II, where we first derive a quantum-
mechanical expression from linear response, and then
identify a geometric contribution. Those expressions are
used in Sec. III to calculate the surface AHC of a slab,
which we again separate into geometric and nongeomet-
ric parts. In Sec. IV the resulting formalism is used to
study numerically the surface AHC of two different tight-
binding (TB) models. We conclude with a Summary, and
in the Appendix we review the relation between surface
AHC and the phenomenology of axion electrodynamics.

II. LOCAL ANOMALOUS HALL
CONDUCTIVITY

A. Linear-response calculation

Consider a bounded electron system at zero temper-
ature described a single-particle Hamiltonian Ĥ. The
current-density operator reads

ĵ(r) = −e
2

[n̂(r)v̂ + v̂n̂(r)] , (12)

where n̂(r) = |r〉〈r|, v̂ = (1/i~)[r̂, Ĥ] is the velocity op-
erator, and e > 0 is the elementary charge. The current
density at a point r is given by

j(r) = Tr
[
P̂ ĵ(r)

]
= −eRe 〈r|v̂P̂ |r〉, (13)

where P̂ denotes the projection operator onto the occu-
pied states. To evaluate the local conductivity (11) we

let Ĥ = Ĥ0 + eE · r̂, and note that since [r̂a, r̂b] = 0

we have v̂ = (1/i~)[r, Ĥ0], so that Eq. (13) depends

on E through P̂ only.2 We immediately find σab(r) =

(−e)Re 〈r|v̂a∂Eb P̂ |r〉, where (∂P̂ /∂E)E=0 has been writ-

ten as ∂E P̂ . Expressing the local AHC in vector form as
done in Eq. (4) for the surface AHC,

σAH
c (r) = −1

2
εabcσab(r), (14)

we obtain

jAH(r) = σAH(r)× E (15)

for the AH current density, with the local AHC given by

σAH(r) =
e

2
Re 〈r|v̂ × ∂E P̂ |r〉. (16)

2 We are ignoring local-field corrections, which introduce a depen-
dence of Ĥ0 on E through the self-consistent charge density. Such
terms are not difficult to derive, but they are absent from our
non-self-consistent TB calculations.
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The operator ∂E P̂ can be evaluated by expanding the
ground-state projector P̂0 = P̂ (E = 0) as

∑
v |v〉〈v|,

where |v〉 denotes an occupied energy eigenstate. From
first-order perturbation theory we get

∂E P̂ = −e
∑
v,c

(
|c〉 〈c|r̂|v〉

Ecv
〈v|+ |v〉 〈v|r̂|c〉

Ecv
〈c|
)
, (17)

where |c〉 is an empty eigenstate and Ecv = Ec − Ev.
Although Eq. (17) contains matrix elements of the non-

periodic position operator r̂, they remain well-defined
under periodic boundary conditions thanks to the iden-
tity 〈v|r̂|c〉 = i~〈v|v̂|c〉/Ecv, valid for off-diagonal matrix
elements. Equation (16) is therefore a suitable starting
point for the calculation of the surface AHC of a slab to
be carried out in Sec. III.

B. Geometric (Chern-Simons) contribution

Consider a bounded sample whose microscopic AHC is
given by σAH(r) at every point in space. The sample as
a whole has an isotropic ME response given by

aiso =
1

3

∑
a

∂ma

∂Ea
, (18)

where m is the orbital moment

m =
1

2

∫
r × j(r) d3r. (19)

If the sample has a macroscopic volume V and is globally
insulating (both in the interior region and in the entire
surface region), then the extensive coefficient aiso is re-
lated to the bulk coefficient αiso by [8]

aiso
V

= αiso −
me2

h
, (20)

where the value of m depends on the choice of branch
for αiso. (Note that the right-hand-side is equal to mi-
nus the first two terms in Eq. (10) for the surface AHC.
As discussed in Appendix A, those terms are described
by the phenomenology of axion electrodynamics [6, 14].)
Plugging Eq. (19) into Eq. (18) and then comparing with
Eq. (14) for σAH, we find

aiso = − 1

3

∫
r · σAH(r) d3r. (21)

This relation will help us identify a geometric contribu-
tion to the local AHC, but first we need some results
from the microscopic theory of the orbital ME response.

The quantum-mechanical expression for the bulk ME
tensor αab comprises an isotropic geometric term known
as the Chern-Simons (CS) term, and a nongeometric term
known as the Kubo or cross-gap (cg) term that has both

isotropic and anisotropic parts [12, 13]. The relation be-
tween those two terms and the decomposition in Eq. (8)
can be summarized as follows,

αab =

αcg
ab︷ ︸︸ ︷(

αCS + αcg
iso

)
δab + α̃ab︸ ︷︷ ︸

αiso

. (22)

The expressions for αCS and αcg
ab are given in Refs. 12

and 13. αCS takes the form of a Brillouin zone (BZ)
integral of the Chern-Simons three-form of the valence
states, which is only well-defined modulo e2/h [6, 7]. αcg

ab
is given by a more conventional-looking linear-response
expression, and carries no quantum of ambiguity. Be-
sides the unperturbed cell-periodic valence states |ukv〉
and their first k-derivatives (the quantities entering αCS),

the expression for αcg
ab involves |∂̃Eukv〉 given by Eq. (33)

below, and some additional velocity matrix elements.

For a (globally insulating) bounded sample, the ME
tensor aab = (∂mb/∂Ea)B=0 can also be decomposed in
the manner of Eq. (22). In this case the isotropic CS
contribution carries no quantum of ambiguity, and takes
the form [12]

aCS = −2πe2

3h
εabcIm Tr

[
P̂0r̂aP̂0r̂bP̂0r̂c

]
=

2πe2

3h
εabc

∫
rc Im 〈r|P̂0r̂aQ̂0r̂bP̂0|r〉 d3r, (23)

where Q̂0 = 1̂− P̂0. Comparing with Eq. (21), we are led
to identify a CS contribution to the local AHC given by

σAH
CS (r) =

e2

h
C(r), (24a)

C(r) = −2πIm 〈r|P̂0r̂Q̂0 × Q̂0r̂P̂0|r〉. (24b)

The quantity C(r) has units of inverse length in three
dimensions. Its integral over a bounded sample vanishes
identically [15], but C(r) can be locally nonzero in sys-
tems that break time-reversal symmetry [16].

In view of Eq. (24), we decompose the net local AHC
of Eq. (16) as

σAH(r) = σAH
CS (r) +

σAH
cg (r)︷ ︸︸ ︷

σAH(r)− σAH
CS (r) . (25)

The second term, denoted the cross-gap term by analogy
with the “upper” decomposition of αab in Eq. (22), was
overlooked in a recent study of the local AHC [17], where
only the CS term was considered.

Equations (16), (24), and (25) are the main results of
this section, and in the next section we will use them to
calculate and analyze the AHC of an insulating surface.
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III. SURFACE ANOMALOUS HALL
CONDUCTIVITY

A. Evaluation in a slab geometry

Consider a thick insulating slab with the outward nor-
mal n̂ = ẑ of the top surface pointing along a bulk
reciprocal-lattice vector b3. We assume a defect-free sur-
face, and introduce a z-resolved AHC for the slab by
averaging the z component of the local AHC (16) over a
surface unit cell at fixed z,

σAH
slab(z) =

1

Ac

∫
Ac

σAH
z (x, y, z) dxdy. (26)

The macroscopic AHC of the entire slab is obtained by
integrating over all z,

σAH
slab =

∫ +∞

−∞
σAH
slab(z) dz, (27)

and because the slab is insulating the result is necessarily
quantized in units of e2/h [18],

σAH
slab =

e2

h
Cslab. (28)

The integer Chern number Cslab is defined in Eq. (36)
below, and systems with Cslab 6= 0 are known as quantum
anomalous Hall insulators (or Chern insulators).

To ensure that the surfaces can be made insulating
and that they have well-defined AHCs, the three bulk
Chern indices Cx, Cy, and Cz must vanish. The surface
AHC can then be calculated as follows. First we filter
out the atomic-scale oscillations in σAH

slab(z) by perform-
ing a “sliding-window average” over one vertical lattice
constant c = 2π/|b3|,

σAH
slab(z) =

1

c

∫ z+c/2

z−c/2
σAH
slab(z′) dz′. (29)

Because Cz = 0, there can be no macroscopic AH cur-
rent flowing in-plane in the bulklike interior region of the

slab. Equation (29) must therefore give a vanishing re-
sult when z lies deep below the surface, and the result
can only become nonzero near the surfaces. The AHC of
the top surface is obtained by integrating from the mid-
dle of the slab at z = 0 (or from any other bulklike point)
up to the vaccum region above the slab,3

σAH
surf =

∫ +∞

0

σAH
slab(z) dz, (30)

and at the bottom surface the AHC is Cslabe
2/h− σAH

surf .

B. Total surface anomalous Hall conductivity

To evaluate the net AHC at a given surface, we need
an expression for the z-resolved slab AHC defined by
Eq. (26). We begin by expanding the projection oper-

ator P̂ in terms of the valence eigenstates of the slab,
which are Bloch-like along x and y,

P̂ =
1

N

∑
kv

|ψkv〉〈ψkv|

= eik·r̂

(
1

N

∑
kv

|ukv〉〈ukv|
)
e−ik·r̂, (31)

where the summation in k = (kx, ky) is over a uni-
form mesh of N points covering the surface Brillouin
zone (SBZ). The linear change in P̂ induced by an in-
plane electric field is given by (compare with Eq. (17) for
bounded samples)

∂E P̂ =
1

N

∑
kv

eik·r̂
(
|∂̃Eukv〉〈ukv|+ |ukv〉〈∂̃ukv|

)
e−ik·r̂,

(32)
where

|∂̃Eukv〉 = ie
∑
c

|ukc〉
~vkcv
E2
kcv

(33)

is the projection of |∂Eukv〉 onto the conduction bands,
and vkcv = 〈ukc|v̂k|ukv〉 with v̂k = e−ik·r̂v̂eik·r̂. Insert-
ing Eq. (32) in Eq. (16) for σAH(r), plugging the result
in Eq. (26), and letting N →∞, we obtain

σAH
slab(z) =

e

4πh

∫
SBZ

d2k

∫
Ac

dxdy
∑
v

Re
[
〈r|~v̂k ×

(
|∂̃Eukv〉〈ukv|r〉+ |ukv〉〈∂̃Eukv|r〉

)]
z
. (34)

3 The same strategy can be used to calculate the macroscopic
surface charge density σsurf from the volume density ρ(r): see
Eq. (43) in Ref. 1.

As a first application of the above expression, let us
integrate it over all z to obtain the macroscopic AHC (27)
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of the entire slab. The result is

σAH
slab = − e2

2πh

∫
d2k Im

∑
vc

~2vxvcvycv
E2
cv

− (x↔ y), (35)

where the subscript k has been dropped for brevity. The
energy denominator can be removed using the identity
vvc = −iEcvAcv, where Anm = 〈un|∂kum〉 is the Berry
connection matrix. Since Im

∑
vv′ A

x
vv′A

y
v′v = 0, the sum

over conduction bands c can be replaced by a sum over
all bands n (the term n = v vanishes), and comparing
with the Berry curvature Ωxyv = −2Im

∑
n 6=v A

x
vnA

y
nv

we recover Eq. (28) for the slab AHC, with

Cslab =
1

2π

∫
SBZ

d2k
∑
v

Ωxyv (36)

the Chern number of the slab [18].
The surface AHC of a slab is calculated in a similar

manner, by first inserting Eq. (34) in Eq. (29), and then
inserting the latter in Eq. (30).

C. Geometric (Chern-Simons) contribution

To find the geometric part of the surface AHC, we
repeat the steps in the previous subsection but replacing
the full local AHC (16) with the CS contribution (24).

Inserting Eq. (31) for P̂0 in Eq. (24b), we get

Cz(r) = − 4π

N2
Im
∑
kk′

∑
vv′

ψ∗kv(r)ψk′v′(r)〈ψkv′ |x̂Q̂0ŷ|ψkv〉.

(37)

Now write Q̂0 as (1/N)
∑
kc |ψkc〉〈ψkc| and use [19]

〈ψkv|r̂j |ψk′c〉 = iN〈ukv|∂kjukc〉δkk′ (38)

to obtain

Cz(r) = −4π

N
Im
∑
k

u∗kv(r)ukv′(r)Fxykv′v, (39)

where we have introduced the metric-curvature tensor for
the valence states of the slab,

Fxykv′v =
∑
c

〈∂kxukv′ |ukc〉〈ukc|∂kyukv〉, (40)

whose real and imaginary parts give the quantum met-
ric and the non-Abelian Berry-curvature matrix, respec-
tively [3]. Inserting Eq. (39) in Eq. (24a) for σAH

CS (r) and
plugging the result in Eq. (26) yields

σAH
slab,CS(z) = − e

2

πh

∫
SBZ

d2k Im
∑
vv′

Ovv′(z)Fxyv′v, (41)

with

Ovv′(z) =

∫
Ac

u∗v(x, y, z)uv′(x, y, z) dxdy (42)

the overlap integral between valence states over a surface
unit cell at fixed z.

Integration of Eq. (41) over all z yields the CS con-
tribution to the slab AHC. Actually this is the total
slab AHC, since using the identities

∫
Ovv′(z) dz = δvv′

and −2
∑
v ImFxyvv =

∑
v Ωxyv and then comparing with

Eq. (36), we find4

σAH
slab,CS =

e2

h
Cslab, (43)

which is the same as Eq. (28) for the total AHC of the
slab, obtained earlier by integrating Eq. (34) over all z.
We conclude that the difference

σAH
slab,cg(z) = σAH

slab(z)− σAH
slab,CS(z) (44)

between Eqs. (34) and (41) must integrate to zero across
the entire slab, ∫ +∞

−∞
σAH
slab,cg(z) dz = 0. (45)

Following the notation in Eq. (25) for the local AHC, we
refer to that difference as the cross-gap (or nongeometric)
contribution to the z-resolved slab AHC.

Turning now to the surface AHC, we note that Eq. (44)
does not have to integrate to zero across one half of
the slab, so that a nongeometric contribution is gener-
ally present in the surface AHC. We also note that since∫∞
0
Ovv′(z) dz, in contrast to

∫ +∞
−∞ Ovv′(z) dz, can have

an imaginary part, the quantum metric contributes to the
geometric part of the surface AHC along with the Berry
curvature. These two properties distinguish the surface
AHC from the intrinsic bulk AHC, which is governed by
the Berry curvature alone.

Finally, suppose that a Chern-insulator layer is de-
posited on the top surface without closing the energy gap.
This will change the surface AHC by Clayere

2/h, and it is
clear from the preceeding analysis that the added amount
will go into the CS term, which therefore contains the
quantized part me2/h of Eq. (10) for the surface AHC.

This concludes the formalism part of the paper. To
review, the surface AHC is calculated from Eqs. (29)
and (30), where we insert either Eq. (34) to obtain the
grand total, or Eq. (41) to obtain the CS contribution.
The difference between the two defines the cross-gap con-
tribution to the surface AHC.

IV. NUMERICAL RESULTS

In the following, we present the results of our numeri-
cal calculations of the surface AHC for two different TB

4 Defining C(x, y) as the integral over all z of Cz(x, y, z) given by
Eq. (24b), Eq. (43) becomes Cslab = (1/Ac)

∫
Ac

C(x, y) dxdy.

The dimensionless quantity C(x, y) is local in two dimensions,
and it has been named the “local Chern marker” [16].
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models. The results are compared, via Eq. (10), with the
bulk ME tensor calculated as in Ref. 12. First, let us
briefly describe how to implement in TB the expressions
for the surface AHC obtained in the previous section.

A. Tight-binding formulation of the surface
anomalous Hall conductivity

In the TB context the integration over z in Eq. (30)
for the surface AHC gets replaced by a summation over
a layer index l, and Eq. (29) becomes a coarse-grained
layer-resolved AHC. For models with two layers per cell,
such as the ones considered below, it reads

σAH
slab(l + 1/2) =

1

2

[
σAH
slab(l) + σAH

slab(l + 1)
]
, (46)

where σAH
slab(l) is obtained from Eq. (34) by replacing |r〉

with |i〉 representing a TB basis orbital φi(r) = 〈r|i〉.
In the calculations reported below we make the diagonal
approximation 〈i|r̂|j〉 = τiδij for the position operator in

the TB basis, and the velocity operator v̂ = (1/i~)[r̂, Ĥ]
is evaluated accordingly [20].

As for the CS contribution to the surface AHC,
Eq. (40) for the metric-curvature tensor remains un-
changed while Ovv′(z) in Eq. (41) gets replaced by
Ovv′(l) =

∑
i∈l u

∗
v(i)uv′(i), where the summation runs

over the orbitals within one surface unit cell in layer l.

B. Anisotropic cubic-lattice model

As our first test case, we consider a model of a ME in-
sulator with no symmetry. This provides the most chal-
lenging case for the theory, since all nine components
of the ME tensor are nonzero and different from one an-
other. The resulting surface AHC depends on the surface
orientation, and it has both CS and cross-gap contribu-
tions.

We choose the TB model described in Appendix A
of Ref. 12. This is a spinless model defined on a cu-
bic lattice, with one orbital per site and eight sites per
cell, where inversion and time-reversal symmetry are bro-
ken by assigning random on-site energies and complex
first-neighbor hoppings of fixed magnitude. We take the
model parameters listed in Table A.1 of Ref. 12, and
choose the two lowest bands to be the valence bands. As
in that work, all parameters are kept fixed except for one
hopping phase ϕ which is scanned from 0 to 2π, and the
results are plotted as a function of this phase ϕ.

This model is intended as a model for a conventional
ME insulator, in which the isotropic response aiso/V
of an insulating crystallite cut from the bulk crystal
is very small relative to the quantum e2/h. That re-
sponse is most naturally described by choosing αiso ∈
[−e2/2h, e2/2h] and m = 0 in Eq. (20), so that Eq. (10)
for the surface AHC reduces to Eq. (9). (In the next
subsection, we will consider a model with the opposite

0 2 4 5 6 10 12 14
layer l

-0.4

-0.2

0.0

0.2

0.4

σ
A

H
sl

ab
(×

10
−

3
e2 h

)

total

CS

FIG. 1. Coarse-grained layer-resolved AHC [Eq. (46)] for a
sixteen-atom-thick slab of the cubic-lattice model with ϕ = π.

characteristics, i.e., with a large isotropic ME response
of the order of e2/h.)

We calculate the surface AHC for a slab with a thick-
ness of sixteen atomic layers (eight lattice constants)
along z. The layer-resolved AHC displays strong oscil-
lations from one layer to the next, which we filter out
using Eq. (46). The resulting smooth curve is plotted as
the solid line in Fig. 1 for ϕ = π, and the dashed line
shows the CS contribution. Both quantities are nonzero
in the surface regions only, quickly dropping to almost
zero within four subsurface layers, and they have oppo-
site signs on the two surfaces, as expected since Cslab = 0.
On a given surface, the CS part of the AHC has the op-
posite sign compared to the total. This implies that the
surface AHC is dominated by the cross-gap contribution,
as tends to be the case in ordinary ME insulators [8].

The net AHC of the top surface is obtained by sum-
ming Eq. (46) over the layers in the upper half of the slab.
The result is plotted versus ϕ as the solid line in the top
panel of Fig. 2, where the CS contribution is again shown
as a dashed line. For comparison, we plot as filled (total)
and empty (CS) circles the quantity appearing on the
right-hand-side of Eq. (9), with the bulk ME tensor cal-
culated under periodic boundary conditions as described
in Ref. 12. The excellent numerical agreement between
the independently-calculated left- and right-hand sides of
Eq. (9) validates our expressions for the surface AHC.

In the lower panel of Fig. 2 we show results for a slab
cut along x. The total surface AHC is different from that
on the upper panel, as generally expected from Eq. (9) for
an anisotropic model. The CS part is however the same
in both panels, confirming that the (nonquantized) CS
surface AHC does not depend on the surface orientation.



7

-0.9

-0.6

-0.3

0.0

0.3

n̂ = ẑ
σ

A
H

su
rf

(×
10
−

3
e2 h

)

0
π
2 π 3π

2 2π

ϕ

-0.9

-0.6

-0.3

0.0

0.3

n̂ = x̂

FIG. 2. AHC of the top surface (upper panel) and of the right
surface (lower panel) of sixteen-layer slabs of the cubic-lattice
model cut along z and x respectively, as a function of the
cyclic parameter ϕ. The solid (dashed) lines denote the total
(CS) surface AHC. Circles represent the quantity appearing
on the right-hand-side of Eq. (9), with filled and empty circles
denoting the total and the CS piece, respectively.

C. Layered Haldane model

We now turn to a model for which αiso, when chosen in
the range [−e2/2h, e2/2h], is not always small compared
to the quantum e2/h, so that the choice of branch be-
comes ambiguous. We choose the TB model introduced
in Ref. 11. This is a layered model on a hexagonal lat-
tice, with four orbitals per cell. It can be obtained by
stacking Haldane-model [21] layers with alternating pa-
rameters, and then coupling them via interlayer hopping
terms. The model acts as a quantum pump of axion
ME coupling: a slow periodic variation in its parame-
ters can gradually change the isotropic ME coupling by
e2/h over one cycle. This pumping behavior of the model
was demonstrated in Ref. 11, and here we consider the
implications for the surface AHC.

We begin by noting that the cross-gap contribution to
the ME tensor vanishes identically for this model. The
reason can be found in Ref. 13, where a set of conditions

0
π
2 π 3π

2 2π

φ

0.0

-0.5

-1.0

σ
A

H
su

rf
(e

2 h
)

FIG. 3. Cyclic evolution of the Hamiltonian of a ten-layer
slab of the layered Haldane model, during which the isotropic
ME coupling αCS of the bulk crystal changes by e2/h. The
AHC of the top surface is plotted as a solid line, and the black
and grey circles denote two different branches of −αCS. For
a given choice of branch, Eq. (47) is satisfied throughout out
the cycle with the value of m increasing by one at φc = 3π/2.

were derived under which αcg
ab vanishes in certain four-

band models having some kind of particle-hole symme-
try. Those conditions hold for several models proposed in
the literature, including the present one. Since αcg

ab = 0,
Eq. (22) reduces to αab = αCSδab and Eq. (10) becomes

σAH
surf = −αCS +m

e2

h
. (47)

We construct a slab containing ten hexagonal lay-
ers stacked along z, and monitor the evolution of the
surface AHC during one pumping cycle. The cycle is
parametrized by an angle φ that modulates the model
parameters according to Eqs. (57c) and (61) in Ref. 11.
As in Sec. III.D of that work, the entire slab, including
the surfaces, returns to its initial state at the end of the
cycle, so that the slab Hamiltonian is itself cyclic,

Ĥslab(φ = 2π) = Ĥslab(φ = 0). (48)

The quantities σAH
surf(φ) and −αCS(φ) are plotted in

Fig. 3 as solid lines and filled circles, respectively; −αCS

is a multivalued bulk quantity, and two different branches
are shown as black and grey circles. Equation (47) as-
sumes that a specific branch has been selected, and we
choose the one represented by the black circles. With
that choice, Eq. (47) is satisfied with m = 0 for 0 < φ <
3π/2 and with m = 1 for 3π/2 < φ < 2π.

The actual value of m at each φ depends on the choice
of bulk gauge, but we stress that that it would not have
been possible to satisfy Eq. (47) keeping m fixed for all
φ. Equation (48) implies

σAH
surf(φ = 2π) = σAH

surf(φ = 0), (49)
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FIG. 4. The same quantities as in Fig. 3, but now for a
cyclic evolution of the Hamiltonian of the surface layers only,
keeping the Hamiltonian of the rest of the slab fixed.

and the only way this can be reconciled with the pumping
behavior in the bulk region,

αCS(φ = 2π) = αCS(φ = 0) +
e2

h
, (50)

is if the integer m in Eq. (47) increases by one during the
cycle. This change in the quantized part of the surface
AHC is caused by a topological phase transition at the
surface: the energy gap of the surface bands closes at
φc = 3π/2, forming a Weyl point in (kx, ky, φ)-space that
transfers a quantum of Berry-curvature flux between the
valence and conduction bands as φ crosses φc [11].

As mentioned in the Introduction, it is also possible to
change the quantized part of the surface AHC by modi-
fying the surface Hamiltonian only. This is illustrated in
Fig. 4, where we held the Hamiltonian of all subsurface
layers fixed at φ = 0, but modulated the onsite energy of
the top and bottom layers by φ according to Eq. (57c) in
Ref. 11. Now the bulk ME coupling αCS is held at zero
for all φ, as indicated by the black circles. The surface
AHC vanishes during half of the cycle leading to m = 0
in Eq. (47), and it becomes −e2/h during the other half
where m = −1. At the critical points φc = π/2 and 3π/2,
the surface states become gapless.

V. SUMMARY

In this work we have derived practical expressions for
calculating the surface AHC of an insulating slab, in-
cluding the quantized part that depends on the surface
preparation. That quantized part resides in a geomet-
ric term that involves both the Berry curvature and the
quantum metric of the slab wave functions.

We also found an additional contribution, of a nongeo-
metric nature, to the surface AHC. Like the nonquantized
part of the geometric term, this “cross-gap” contribution

is only apparently a surface property, but is in fact fully
determined by the cross-gap contribution to the bulk ME
tensor [12, 13]. Because it does not contribute to the bulk
AHC [or to the net AHC of a slab, see Eq. (45)], this
nongeometric term was missed in previous works [7, 17]
where the spatially-resolved AHC was formulated using a
local version of the Berry-curvature formula for the bulk
AHC.

As a numerical check we have carried out simulations
on TB models, confirming that the phenomenological re-
lation in Eq. (10) between the surface AHC and the bulk
ME tensor is satisfied by our expressions. The simu-
lations on the layered Haldane model illustrate different
ways of inducing topological phase transitions at the sur-
faces that change the surface AHC by quantized amounts.

An alternative strategy, based on“hybrid Wannier
functions,” for determining the quantized part of the sur-
face AHC was proposed in Ref. 11. We find the present
approach to be simpler to implement and use, because it
only involves gauge-invariant quantities derived from the
induced current density at linear order in E. Moreover, it
is formulated directly in terms of the energy eigenstates,
without having to transform to a gauge where the hybrid
Wannier functions are maximally-localized. The present
formulation is also more complete as it provides the full
surface AHC (not just the geometric part), which we cal-
culate from its fundamental definition in Eq. (30).

ACKNOWLEDGMENTS

This work was supported by the Forschungsstipendium
RA 3025/1-1 from the Deutsche Forschungsgemeinschaft
(T. R.), by Grant No. FIS2016-77188-P from the Span-
ish Ministerio de Economı́a y Competitividad (T. R. and
I. S.), and by NSF Grant DMR-1629059 (D. V.).

Appendix A: Surface anomalous Hall conductivity
and axion electrodynamics

In the phenomenology of axion electrodynamics [6, 14],
the isotropic ME response αiso of the medium is promoted
to a macroscopic field αiso(r, t), where r is a coarse-
grained variable that ignores microscopic variations oc-
curring on the atomic scale. One can then show that only
the spatial and temporal gradients of the axion field enter
Maxwell’s equations [14]. In particular, in spatially inho-
mogeneous regions such as surfaces and interfaces there
is a contribution ∇αiso(r) × E to the local current den-
sity. According to Eq. (15) ∇αiso(r) amounts to a local
AHC, which we will refer to as the axion piece σAH

axion(r).
In a defect-free surface region of a slab the axion field

only depends on surface-normal coordinate z, and the
z-resolved axion AHC of the slab becomes

σAH
slab,axion(z) =

d

dz
αiso(z). (A1)
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Plugging this in Eq. (30) and then setting αiso(z) = 0
above the slab we find

σAH
surf,axion = −αiso(z = 0), (A2)

where αiso(z = 0) denotes the constant value of the axion
field in the bulklike region far below the surface. When
viewed as a purely bulk quantity, αiso(z = 0) is only
defined modulo e2/h. But when it is calculated by in-

tegrating dαiso(z)/dz across a specific surface, a unique
value is obtained [9]. We write that unique value as

σAH
surf,axion = −αiso +m

e2

h
, (A3)

where the integer m depends on the details at the surface
and on the branch choice for the bulk αiso. In conclusion,
the axion surface AHC comprises the first two terms in
Eq. (10) for the full surface AHC.
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