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We present a method for obtaining well-localized Wannier-like functions (WFs) for energy bands
that are attached to or mixed with other bands. The present scheme removes the limitation of the
usual maximally-localized WFs method (N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847
(1997)) that the bands of interest should form an isolated group, separated by gaps from higher and
lower bands everywhere in the Brillouin zone. An energy window encompassing N bands of interest
is specified by the user, and the algorithm then proceeds to disentangle these from the remaining
bands inside the window by filtering out an optimally connected N -dimensional subspace. This
is achieved by minimizing a functional that measures the subspace dispersion across the Brillouin
zone. The maximally-localized WFs for the optimal subspace are then obtained via the algorithm
of Marzari and Vanderbilt. The method, which functions as a postprocessing step using the output
of conventional electronic-structure codes, is applied to the s and d bands of copper, and to the
valence and low-lying conduction bands of silicon. For the low-lying nearly-free-electron bands of
copper we find WFs which are centered at the tetrahedral interstitial sites, suggesting an alternative
tight-binding parametrization.

PACS: 71.15.-m, 71.15.Ap, 71.20.-b

I. INTRODUCTION

When studying electrons in solids, it is often the case
that only a small subset of the available one-electron
states contributes significantly to the properties under
consideration. Moreover, the states of interest typically
lie within a limited energy range. For instance, for mod-
eling electron transport or magnetic properties, only the
partially filled bands close to the Fermi energy EF are
needed. This is the rationale behind the tight-binding
and Hubbard models, in which only a few energy bands
are kept.1,2 Those models rely on the existence of a min-
imal set of spatially localized orbitals spanning the man-
ifold of relevant states.

In recent years there has been growing interest in ex-
plicitly constructing such orbitals from first-principles
density-functional calculations. One potential appli-
cation consists in obtaining the parameters in corre-
lated Hamiltonians by constraining the occupation of
the orbitals to find the energy cost of deviating from
the mean-field solution (“constrained density-functional
theory”3,4). Another arises in the context of the “dy-
namical mean-field theory” which, when combined with
density-functional methods, requires the specification
of localized orbitals describing the narrow bands of
interest.5

Wannier functions6 (WFs) are a very natural type
of localized orbital for extended systems. They play a
central role in formal discussions of the tight-binding1

and Hubbard2 models. Traditionally they have often
been invoked – although rarely calculated explicitly –
as a convenient basis for describing local phenomena,
such as impurities,7 excitons,7 and magnetic properties.8

More recently, WFs have found important applications in

connection with linear-scaling algorithms for electronic
structure calculations.9 Moreover, they play an impor-
tant role in the theory of electronic polarization and
localization in insulators, with the former quantity be-
ing related to the centers of charge of the WFs10,11 and
the latter to their quadratic spreads.12,13 These develop-
ments have also led to generalizations of the concept of
Wannier functions to correlated electron systems.13–15

The main obstacles to the construction of WFs in
practical calculations have been their nonuniqueness (or
“gauge dependence”) and the difficulties in dealing with
degeneracies among the Bloch states. These have been
overcome by the development by Marzari and Vander-
bilt of a general and practical method for extracting
“maximally-localized” WFs from an isolated group of
bands.16 (By “isolated” we mean a group of bands that
may become entangled with one another across the Bril-
louin zone, but is separated from all other bands by fi-
nite gaps throughout the entire Brillouin zone. The set
of valence bands of an insulator constitutes an impor-
tant example.) The method has been successfully used
to describe the dielectric properties of several insulating
systems, such as crystalline16 and amorphous17 semicon-
ductors, ferroelectric perovskites,18 liquid water,19 com-
pressed solid hydrogen,20 and manganese oxide.21 It has
been implemented for plane-wave,16 linear augmented
plane-wave,21 and tight-binding20 basis sets.

However, in many cases the group of bands of interest
is not isolated in the above sense, especially when deal-
ing with metals or with the empty bands of insulators.
For example, the conduction s band of an alkali metal is
attached at points or lines of high symmetry to higher
bands; the d bands of a noble or transition metal are
hybridized with an s band, which in turn is attached to

1



higher bands; the conduction bands of a copper-oxide su-
perconductor emerge from a dense group of bands below;
and the four low-lying antibonding bands of a tetrahedral
semiconductor are connected to higher conduction bands.

A successful technique that has been applied for con-
structing localized orbitals that describe such bands is
the “downfolding” technique22,23 that has been devel-
oped for electronic structure methods based on muffin-tin
orbitals. There have also been previous attempts at con-
structing WFs for non-isolated groups of bands, namely
for noble and transition metals24–27 and for tetrahedral
semiconductors.28,29 These attempts fall into two cate-
gories: (i) the WFs are obtained directly from a vari-
ational principle, as suggested by Kohn,30 or (ii) they
are obtained as Fourier transforms of Bloch functions,
with the help of a model Hamiltonian that reproduces
the band structure in the desired energy range, as sug-
gested by Bross.31

We will describe an alternative Wannier-based ap-
proach that is closer in spirit to the Fourier transform
method of Bross and co-workers, but does not require
the construction of an auxiliary model Hamiltonian. The
method can be regarded as an extension to the case of
attached bands of the maximally-localized WF method
of Marzari and Vanderbilt.16 It has the desirable features
that it can be implemented with any basis set (e.g., plane
waves), and requires minimal user-intervention (the only
“adjustable parameter” being a specification of the en-
ergy range of interest). Like the approach of Ref. 16,
ours is a “postprocessing” method, taking as its input the
Bloch eigenstates and eigenvalues calculated by a stan-
dard electronic-structure code.

Strictly speaking, the resulting orbitals are not WFs
(or even “generalized WFs”16) in the usual sense. They
are nevertheless Wannier-like in the fundamental sense
that they are obtained via an integral over the Brillouin
zone of Bloch-like functions. As such they form an or-
thonormal, localized basis of the same Bloch subspace
from which they were constructed.

The power of the present approach is illustrated by one
particularly striking result that emerged from the work.
In Sec. IV B 3 we find that a rather natural representa-
tion of the low-lying bands of an fcc metal like copper can
be made in terms of a set of five Cu d-like WFs and two
additional WFs centered at the tetrahedral interstitial lo-
cations. This provides a basis for a concise tight-binding
representation of copper that has not, to our knowledge,
previously been considered.

The paper is organized as follows. In Sec. II we review
the method of Marzari and Vanderbilt for obtaining well-
localized WFs for an isolated group of bands. In Sec. III
we describe our procedure for dealing with attached en-
ergy bands, and in Sec. IV we illustrate it with a set of
applications. Finally, in Sec. V we present a summary
and conclusions.

II. MAXIMALLY-LOCALIZED WANNIER
FUNCTIONS FOR AN ISOLATED GROUP OF

BANDS

A set of WFs wnR(r) = wn(r − R) labeled by Bra-
vais lattice vectors R can be constructed from the Bloch
eigenstates ψnk of band n using the unitary transforma-
tion

wnR(r) =
v

8π3

∫

BZ

e−ik·R ψnk dk, (1)

where v is the volume of the unit cell of the crystal and
the integral is over the Brillouin zone. Except for the con-
straint ψn,k+G = ψnk for all reciprocal lattice vectors G,
the overall phases of the Bloch functions ψnk = eik·runk

are at our disposal. However, a different choice of phases
(or “gauge”),

unk→ eiϕn(k) unk, (2)

does not translate into a simple change of the overall
phases of the WFs; their shape and spatial extent will in
general be affected. If the band is isolated, Eq. (2) is the
only allowed type of gauge transformation for changing
the set of WFs wn(r−R) associated with that band. In
the case of an isolated group of N bands, the allowed
transformations are of the more general form

unk→
N∑

m=1

U (k)
mn umk, (3)

where U (k) is a unitary matrix that mixes the bands at
wave vector k. The resulting orbitals are called “gener-
alized Wannier functions”.16

Once a measure of localization has been chosen and an
isolated group of bands specified, the search for the cor-
responding set of “maximally-localized” WFs becomes a
problem of functional minimization in the space of the
matrices U (k). The strategy of Ref. 16 consists in mini-
mizing the sum of the quadratic spreads of the Wannier
probability distributions |wn(r)|2,

Ω =

N∑

n=1

(〈
r2
〉
n
− 〈r〉2n

)
, (4)

where the sum is over the chosen group of bands and
〈r〉n =

∫
r |wn(r)|2 dr, etc. Interestingly, the resulting

“maximally-localized” (or “maxloc”) WFs turn out to
be real, apart from an arbitrary overall phase factor.

In numerical calculations the Bloch states ψnk are com-
puted on a regular mesh of k-points in the Brillouin zone;
the integral in Eq. (1) is then replaced by a sum over the
points in the mesh. In Ref. 16 an expression was derived
for the gradient of the spread functional Ω with respect
to an infinitesimal rotation δU (k) of the set of Bloch or-
bitals. The only information needed for calculating the
gradient are the overlaps
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M (k,b)
mn = 〈umk|un,k+b〉 , (5)

where b are vectors connecting a mesh point to its near
neighbors. Once the gradient is computed, the mini-
mization can proceed via a steepest-descent or conjugate-
gradients algorithm.

In Ref. 16 the spread Ω was decomposed into two
terms,

Ω = ΩI + Ω̃, (6)

both of them non-negative. The first measures the k-
space dispersion of the band projection operator, while
the second reflects the extent to which the Wannier func-
tions fail to be eigenfunctions of the band-projected po-
sition operators. ΩI will play a central role in the present
work. For an isolated group of bands it is invariant un-
der any gauge transformation (3), so that minimizing Ω

amounts to minimizing Ω̃. When using a regular mesh of
k-points, ΩI is given by

ΩI =
1

Nkp

∑

k,b

wb

N∑

m=1

[
1−

N∑

n=1

∣∣M (k,b)
mn

∣∣2
]
, (7)

where Nkp is the total number of k-points, N is the num-
ber of bands in the group, and wb is a weight that arises
from the discretization procedure by which derivatives
with respect to k are approximated by finite differences.16

The corresponding expression for Ω̃ can be found in
Ref. 16.

III. MAXIMALLY-LOCALIZED WANNIER
FUNCTIONS FOR ATTACHED BANDS

A. Description of the method

For definiteness let us suppose we want to “disentan-
gle” the five d bands of copper from the s band which
crosses them (see Fig. 1) and construct a set of well-
localized WFs associated with the resulting d bands.
Heuristically the d bands are the five narrow bands and
the s band is the wide band. The difficulty arises because
there are regions of k-space where all six bands are close
together, so that as a result of hybridization “the distinc-
tion between d-band and s-band levels is not meaningful”
(Ref. 1, p. 288).

Let us now outline our strategy, which can be divided
in two steps. First we cut out an energy window that en-
compasses the N bands of interest (N = 5 in our exam-
ple). Figs. 1(a) and 1(b) correspond to different choices
for this energy window. At each k-point the number Nk

of bands that fall inside the window is equal to or larger
than the target number of bands N . This procedure de-
fines an Nk-dimensional Hilbert space F(k) spanned by
the states unk within the window. If at some k Nk = N ,
there is nothing to do there; if Nk > N our aim is to find
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FIG. 1. Solid line: Calculated band structure of cop-
per. Dotted line: Interpolated bands obtained from the five
d-like Wannier functions. (a) and (b) differ in the choice of
the energy window used to compute the Wannier functions
([−9.59,−0.29] eV in (a) and [−9.59, 7.21] eV in (b)). The
zero of the energy scale is at the Fermi energy.

the N -dimensional subspace S(k) ⊆ F(k) that, among
all possible N -dimensional subspaces of F(k), leads to
the smallest ΩI (Eq. (7)). (Recall that for an isolated
group of bands ΩI is gauge-invariant, since it is an intrin-
sic property of the manifold of states. Thus ΩI can be
regarded as a functional of S(k).) In the second step we
work within the optimal N -dimensional subspaces S(k)

selected in the first step, and minimize Ω̃ using the al-
gorithm of Marzari and Vanderbilt16 summarized in the
previous section. The end result is a set of N maximally
localized WFs and the corresponding N energy bands.
We emphasize that it is the first step (minimization of
ΩI) that is new with respect to Ref. 16.

B. Physical interpretation of ΩI

Why is minimizing ΩI a sensible strategy for picking
out the d-bands? This can be understood by noting that
heuristically ΩI measures the “change of character” of the
states across the Brillouin zone.16 Indeed, Eqs. (5) and

(7) show that ΩI is small whenever | 〈unk|um,k+b〉 |2, the
square of the magnitude of the overlap between states
at nearby k-points, is large. Thus by minimizing ΩI

we are choosing self-consistently at every k the subspace
S(k) that has minimum “spillage” or mismatch (see be-
low) as k is varied. In the present example this optimal
“global smoothness of connection” will be achieved by

3



keeping the five well-localized d-like states and exclud-
ing the more delocalized s-like state. We will gain more
intuition about the meaning of minimizing ΩI while dis-
cussing specific examples in Sec. IV.

What is meant by “spillage”16,32 becomes clear once
we rewrite Eq. (7) as

ΩI =
1

Nkp

∑

k,b

wb Tk,b (8)

with

Tk,b = N −
∑

m,n

|M (k,b)
mn |

2
= tr[P̂k Q̂k+b], (9)

where P̂k =
∑

n |unk〉〈unk| is the projector onto S(k),

Q̂k = 1−P̂k, and the band indices m,n run over 1, . . . , N .
Tk,b is called the “spillage” between the spaces S(k) and
S(k + b) because it measures the degree of mismatch
between them, vanishing when they are identical.

Further discussion of the geometrical and physical in-
terpretation of ΩI can be found in Refs. 13 and 16. In
particular, it has been shown that the value of ΩI asso-
ciated with the valence bands of an insulator is the ex-
perimentally measurable mean-square quantum fluctua-
tion of the ground state macroscopic polarization.13 This
can be interpreted as the quadratic spread of an appro-
priately defined collective center-of-mass distribution for
the electrons, and can be recast as an electronic localiza-
tion length squared. Hence our procedure of minimizing
ΩI selects the N -dimensional subspaces S(k) where the
electrons are most localized in the above sense (assum-
ing for the purpose of this argument that all the electron
states in those subspaces are occupied).

Finally we note in passing that our two-step procedure

of minimizing first ΩI and then Ω̃ is in principle different
from directly minimizing their sum Ω. In view of the dis-
cussion presented above, we believe that the procedure
adopted here is conceptually the more natural of the two,
although we would expect them to yield similar results
in practice. Also, as we will now show, the separate min-
imization of ΩI turns out to be a particularly simple and
robust procedure.

C. Iterative minimization of ΩI

Since the functional (7) that we wish to minimize cou-
ples states at different k-points, the problem has to be
solved self-consistently throughout the Brillouin zone.
Our strategy is to proceed iteratively until the optimal
“global smoothness of connection” is achieved. On the i-
th iteration we go through all the k-points in the grid, and

for each of them we find N orthonormal states u
(i)
nk, defin-

ing a subspace S(i)(k) ⊆ F(k) such that the “spillage”
over the neighboring subspaces S(i−1)(k + b) from the
previous iteration is as small as possible (Fig. 2).

(k+b )S
(i-1)

(k+b )S
(i-1)

kx

ky

S
(i-1)

(k+b )2

(k+b )S
(i-1)

4

S (k)
(i)

13

FIG. 2. Schematic representation of the subspaces of
Bloch-like states on a grid of k-points. Our procedure consists
of iteratively minimizing the “spillage”, or degree of mismatch
(see text), between the subspaces at neighboring k-points.

Using Lagrange multipliers to enforce orthonormality,
the stationarity condition at the i-th iteration reads

δΩ
(i)
I

δu
(i)∗
mk

+

N∑

n=1

Λ
(i)
nm,k

δ

δu
(i)∗
mk

[〈
u

(i)
mk

∣∣∣u(i)
nk

〉
− δm,n

]
= 0,

(10)

where Λ
(i)
k is an N ×N matrix. Let

Ω
(i)
I =

1

Nkp

Nkp∑

k=1

ω
(i)
I (k) (11)

where, according to Eq. (8),

ω
(i)
I (k) =

∑

b

wb T
(i)
k,b

=
∑

b

wb

N∑

m=1

[
1−

N∑

n=1

∣∣∣
〈
u

(i)
mk

∣∣∣u(i−1)
n,k+b

〉∣∣∣
2]
. (12)

The first term in Eq. (10) now becomes

δΩ
(i)
I

δu
(i)∗
mk

=
1

Nkp

{
δω

(i)
I (k)

δu
(i)∗
mk

+
∑

b

δω
(i)
I (k + b)

δu
(i)∗
mk

}
. (13)

From Eq. (12) we find

δω
(i)
I (k)

δu
(i)∗
mk

= −
∑

b

wb P̂
(i−1)
k+b

∣∣∣u(i)
mk

〉
, (14)

where P̂
(i−1)
k+b is the projector onto S(i−1)(k + b). Like-

wise, one easily obtains

δω
(i)
I (k + b)

δu
(i)∗
mk

= −wb P̂ (i−1)
k+b

∣∣∣u(i)
mk

〉
. (15)
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Combining the previous equations, the stationarity con-
dition (10) becomes

[∑

b

wb P̂
(i−1)
k+b

] ∣∣∣u(i)
mk

〉
=

N∑

n=1

Λ̃
(i)
nm,k

∣∣∣u(i)
nk

〉
, (16)

where Λ̃
(i)
nm,k = (Nkp/2)Λ

(i)
nm,k. By choosing a unitary

transformation that diagonalizes Λ̃
(i)
k , this can be recast

as an eigenvalue equation:
[∑

b

wb P̂
(i−1)
k+b

] ∣∣∣u(i)
mk

〉
= λ

(i)
mk

∣∣∣u(i)
mk

〉
. (17)

The eigenvalues of the above equation obey 0 ≤ λ
(i)
mk ≤∑

b wb; in particular, λ
(i)
mk <

∑
b wb whenever the eigen-

state u
(i)
mk does not lie completely within all of the nearby

subspaces S(i−1)(k + b). Combining Eqs. (12) and (17),
we find

ω
(i)
I (k) = N

∑

b

wb −
N∑

m=1

λ
(i)
mk. (18)

It is clear from Eqs. (11) and (18) that when construct-
ing S(i)(k) one should pick the N eigenvectors of Eq. (17)
with largest eigenvalues, so as to ensure that the station-

ary point corresponds to the absolute minimum of Ω
(i)
I .

Self-consistency is achieved when S(i)(k) = S(i−1)(k)
at all the grid points. We have encountered cases where
the iterative procedure outlined above was not stable.
In those cases, the problem was solved by using as the
input for the present step a linear mixing of the input and
output subspaces from the previous step. More precisely,
the eigenvalue equation (17) was replaced by

{∑

b

wb

[
P̂(i)

k+b

]
in

} ∣∣∣u(i)
mk

〉
= λ

(i)
mk

∣∣∣u(i)
mk

〉
, (19)

where[
P̂(i)

k+b

]
in

= αP̂
(i−1)
k+b + (1 − α)

[
P̂(i−1)

k+b

]
in

(20)

with 0 < α ≤ 1.33 A typical value is α=0.5.
In practice we solve Eq. (19) in the basis of the origi-

nal Nk Bloch eigenstates unk inside the energy window.
Each iteration then amounts to diagonalizing the follow-
ing Nk ×Nk Hermitian matrix at every k:

Z(i)
mn(k) =

〈
umk

∣∣∣
∑

b

wb

[
P̂(i)

k+b

]
in

∣∣∣unk

〉
. (21)

Since these are small matrices, each step of the itera-
tive procedure is computationally cheap. In particular,
the time-consuming computation of the overlap matri-
ces M (k,b) of Eq. (5) can be done once and for all at
the beginning, using the original Bloch eigenstates in-
side the energy window; their subsequent update during
the iterative minimization is very inexpensive. An anal-
ogous situation occurs when updating the matrices U (k)

in Eq. (3) during the minimization of Ω̃ to obtain the
“maxloc” WFs.16

D. Initial guess for the subspaces

In order to start the iterative minimization of ΩI, the
user should provide an initial guess for the subspaces
S(k). We have found that the minimization procedure is
quite robust, in the sense that it is able to arrive at the
global minimum starting from a very rough initial guess.
In practice we usually select the initial subspaces follow-
ing a strategy very similar to the one outlined in Ref. 16

for starting the minimization of Ω̃.
A set of N localized trial orbitals gn(r) is chosen cor-

responding to some rough initial guess at the WFs, and
these are then projected onto the Nk Bloch eigenstates
inside the energy window,

|φnk〉 =

Nk∑

m=1

Amn |ψmk〉 , (22)

where Amn = 〈ψmk |gn 〉 is an Nk × N matrix. The re-
sulting N orbitals are then orthonormalized via Löwdin’s
symmetric orthogonalization procedure,34 i.e.,

∣∣∣ψ(0)
nk

〉
=

N∑

m=1

(S−1/2)mn |φmk〉

=

Nk∑

m=1

(AS−1/2)mn |ψmk〉 , (23)

where Smn = 〈φmk |φnk 〉 = (A†A)mn. Finally these
Bloch-like functions are converted to cell-periodic func-

tions u
(0)
nk = e−ik·rψ(0)

nk . The matrix AS−1/2 can easily
be computed by performing the singular-value decompo-
sition A = ZDV ,35 where Z and V are Nk × Nk and
N × N unitary matrices respectively, and D is Nk × N
and diagonal. This leads to AS−1/2 = Z1V , where 1 is
the Nk ×N identity matrix.

E. Minimization of Ω̃

At the end of the first step of our procedure (mini-
mization of ΩI) we are left at each k-point with an N -
dimensional subspace S(k), and for definiteness we diag-
onalize the Hamiltonian inside this subspace to obtain N

Bloch-like eigenfunctions ψ̃nk = eik·rũnk and eigenvalues
ε̃nk. The second step is to find the N × N unitary ma-

trices U (k) (Eq. (3)) that, applied to the ψ̃nk, produce
the rotated set of Bloch-like states that is transformed
via (1) into the maximally-localized WFs wnR. This is
done using the method of Marzari and Vanderbilt16 for

minimizing Ω̃, briefly discussed in Sec. II. An initial guess
for the unitary matrices U (k) is obtained by projecting a

set of N localized orbitals onto the states ψ̃nk. Typically
the same set of orbitals is used as in the initialization step
for the minimization of ΩI. (In our experience, when a
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particularly bad choice of trial orbitals is made, the min-
imization of ΩI is less likely to become trapped in local

minima than the minimization of Ω̃.)

F. Interpolated band structure

Starting from the “maxloc” WFs, the corresponding
energy bands can be computed at arbitrary points in
the Brillouin zone using a Slater-Koster interpolation
scheme.27,31,36 Of course, the interpolation could proceed
directly from the non-rotated states ũnk; however, use of
the optimally rotated ones ensures that the interpolated
band structure is as smooth as possible.37

The interpolation procedure involves first calculating
the Hamiltonian matrix for the rotated states,

H(rot)(k) = (U (k))
†
H̃(k)U (k), (24)

where H̃mn(k) = ε̃mkδm,n. Next we Fourier transform

H(rot)(k) into a set of Nkp Bravais lattice vectors R
within a Wigner-Seitz supercell centered around R = 0:

H(rot)
mn (R) =

(∑

k

e−ik·RH(rot)
mn (k)

)
/Nkp

=
〈
wm0

∣∣Ĥ
∣∣wnR

〉
, (25)

where Ĥ is the effective one-particle Hamiltonian. Fi-
nally we Fourier transform back to an arbitrary k-point,

H(rot)
mn (k′) =

∑

R

eik
′ ·RHmn(R), (26)

and diagonalize the resulting matrix to find the interpo-
lated energy eigenvalues.

G. Inner energy window

In some situations one wants to construct orbitals that
describe the original bands exactly only in a limited en-
ergy range. This can occur when studying transport
properties for which only the states within some small
energy range of the Fermi level (say, ±1 eV) are relevant.
The challenge is to construct orbitals that achieve that
goal while remaining as localized as possible. What the
resulting interpolated bands look like outside the energy
range of interest is largely immaterial, since it will not af-
fect the low-energy physics. (Typically they will tend to
remain close in energy to the target range of interest.23)

A simple extension of the formalism described in the
previous sections can produce such orbitals. The idea is
to introduce a second (“inner”) energy window – con-
tained within our original (“outer”) window – inside
which the original bands are to be described exactly. Let
Mk be the number of bands that fall within the inner win-
dow at k, so that Mk ≤ N ≤ Nk. Then we have to mini-
mize ΩI under the constraint that the Mk original Bloch

states inside the inner window must be included in the
subspace S(k). We are therefore only free to choose the
remaining N−Mk states when constructing S(k). Those
will have to be extracted from the subspace spanned by
the Nk − Mk original Bloch eigenstates that are inside
the outer window but outside the inner window. That
can be achieved by a straightforward modification of the
iterative procedure described in Sec. III C: The matrix
Z(i)(k) in Eq. (21) becomes an (Nk −Mk)× (Nk −Mk)
matrix, and we pick the N −Mk leading eigenvectors.

The only remaining issue is how to modify the initial-
ization procedure of Sec. III D in order to accommodate
the inner window. Since the first Mk basis vectors of
the trial subspaces S(k) are predetermined, we want the
modified procedure to provide the remaining N−Mk vec-
tors. Let G(k) be an N -dimensional space obtained by
projecting the N trial orbitals onto the Nk states inside
the outer window, as described in Sec. III D. Let PG(k)
be the Nk × Nk matrix that is the projection operator
onto G(k) as expressed in the space F(k). Similarly,
define Pinner(k) as the Nk × Nk projection matrix onto
the inner window states, and Qinner(k) = 1 − Pinner(k).
Then choose the remaining N −Mk basis vectors to be
the eigenvectors corresponding to the N − Mk largest
eigenvalues of

Qinner(k)PG(k)Qinner(k)|v〉 = λ|v〉. (27)

Such vectors have the desired properties: (i) They are
orthogonal to the states inside the inner window, and
(ii) because λ = 〈v|PG(k)|v〉, it is clear that by choosing
the eigenvectors with the largest eigenvalues we guaran-
tee that their overlap with the space G(k) is as large as
possible, while satisfying the constraint (i).

Other kinds of constraints on the minimization of ΩI

may also be useful. For instance, one might want to “pin
down” the desired bands at high-symmetry k-points to
ensure that the interpolated bands coincide with them at
those points.

IV. RESULTS

A. Computational details

The calculations were performed within the local-
density approximation to density-functional theory, us-
ing a plane-wave basis set and Troullier-Martins norm-
conserving pseudopotentials38 in the Kleinman-Bylander
representation. The energy cutoff was set to 75 Ry for
copper and 35 Ry for silicon, and the lattice constants
were 6.822 bohr and 10.260 bohr respectively. The com-
puted self-consistent Bloch eigenfunctions and eigenval-
ues that fell inside the prescribed energy window were
stored to disk. They were used as the input for the min-
imization of ΩI, which was carried out as a separate,
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FIG. 3. Contour-surface plots of the two eg Wannier func-
tions associated with the “disentangled” d bands of copper
shown in Fig. 1(b). The amplitudes are +0.5/

√
v (light gray)

and −0.5/
√
v (dark gray), where v is the volume of the prim-

itive cell.

postprocessing operation. This produced an optimal sub-
space characterized by a new set of N Bloch eigenfunc-
tions and eigenvalues per k-point, which were taken as
the input for constructing the “maxloc” WFs and the
interpolated bands. In all the cases we have found the
“maxloc” WFs to be real (apart from an overall phase
factor), as was already the case when dealing with iso-
lated groups of bands.16 The self-consistent calculations
were performed on a 10× 10× 10 Monkhorst-Pack mesh
of k-points for copper, and 6 × 6× 6 for silicon. During

the minimization of ΩI and Ω̃ a 10 × 10 × 10 uniform
grid was used for both copper and silicon. This grid was
shifted in order to include the Γ point (k = 0), so as
to ensure that the “maxloc” WFs have the desired sym-
metry properties among themselves. (For instance, if a
grid is used for silicon that does not include Γ, the four
antibonding WFs in a unit cell do not all have the same
spread.) The mixing parameter α in Eq. (20) was set to
0.5.

B. Copper

Wannier functions for noble and transition metals have
previously been computed using various approaches.24–27

Below, taking copper as an example, we show how the
present scheme can be used to “disentangle” the narrow
d bands from the nearly-free-electron bands, allowing us
to treat each group of WFs separately. Alternatively,
one can also treat the narrow and the nearly-free-electron
bands as a single group.

1. Narrow d bands

First, an energy window was chosen such that at each
k-point in the grid it contained six or seven energy eigen-
values. As indicated in Fig. 1, the precise range of the
window is largely at our disposal; unless explicitly stated
otherwise, the numbers given below pertain to Fig. 1(b).
In order to extract the five d bands, we set N = 5 and

initialized the minimization of both ΩI and Ω̃ from five
trial Gaussians of r.m.s. width 1 bohr, each modulated
by a different l = 2 angular eigenfunction. After ∼ 50
iterative steps ΩI was fully converged, having decreased
from an initial value of 9.957 bohr2 to 8.483 bohr2. Dur-
ing the subsequent minimization of Ω̃ the total Wannier
spread Ω decreased only slightly, from 8.563 bohr2 to
8.556 bohr2. In agreement with previous experience on
isolated groups of bands,16 we found for the d bands that

at the minimum ΩI � Ω̃.
The bands obtained by interpolation using the five

“maxloc” WFs are shown as dotted lines in Fig. 1, to-
gether with the original band structure. As expected,
whenever the dispersive s-like band is far from the narrow
d bands, so that they retain their separate identities, the
interpolated bands are very close to the narrow bands.
However, whenever the six bands are close together, and
thus strongly hybridized, the interpolated bands remain
narrow, which suggests that they are mainly d-like in
character. (Heuristically they can be viewed as the bands
obtained by artificially “switching off” the Hamiltonian
matrix elements between s and d WFs, i.e., by remov-
ing the hybridization.) The d character is confirmed by
inspection of the contour-surface plots of the “maxloc”
WFs, two of which are shown in Fig. 3. The quadratic
spreads of the five WFs are not exactly equal, because
of the eg − t2g splitting of the d-states; those shown in
Fig. 3 (eg orbitals) have a spread of 1.700 bohr2 each,
whereas the remaining three (t2g orbitals) each have a
spread of 1.718 bohr2. These numbers are only slightly

TABLE I. Variation of the optimal Wannier spread Ω and
its gauge-invariant part ΩI (in bohr2) with the choice of en-
ergy window range (in eV), for the d bands of copper.

Window range Total spread
Min Max ΩI Ω

−9.59 −0.29 15.373 16.489
−9.59 2.21 10.404 10.621
−9.59 7.21 8.483 8.556
−9.59 12.21 7.634 7.667
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FIG. 4. (a) Dotted lines: the s-d bands of copper obtained
by extracting the optimal six-dimensional subspace S6(k) in-
side the window. (b) Dotted lines: d bands associated with
optimal five-dimensional subspace S5(k) ⊂ S6(k). Dashed
line: s band S1(k) isolated by taking the complement of
S5(k).

larger than the ones reported in Table III of Ref. 27, ob-
tained using a different method and a sparser sampling
of the Brillouin zone.

In our procedure there is one adjustable parameter,
namely the range of the energy window. This range
should be wide enough that it encompasses the bands
of interest, but not be so wide that it also includes other
bands of similar character (e.g., higher d bands). In the
limit of a very wide window the spaces F(k) would con-
tain a complete set of states, so that by mixing in states
far away from the energy range of interest but of similar
character, the spread of the WFs could be made arbi-
trarily small (and the corresponding bands would become
flat). Table I shows how the optimal Wannier spreads are
affected by varying the window range within reasonable
bounds. As anticipated, the spread decreases with in-
creasing energy range.39 The change in the interpolated
energy bands is less pronounced, although they do be-
come somewhat narrower (compare Figs. 1(a) and 1(b)).
In particular, the upward shift of the lowest interpolated
band at L is caused by mixing with the seventh band,
which has the same symmetry label (L1).40

2. Nearly-free-electron band

The unconstrained minimization of ΩI usually pro-
duces narrow bands, since the character of the Bloch
states in such bands tends to have only a small vari-
ation across the Brillouin zone, corresponding to well-

TABLE II. Spreads of the “maxloc” WFs for the separate
d-band and s-band subspaces (S5 and S1), and for the com-
bined s-d subspace S6. The numbers in parentheses are the
ΩI values, and t stands for tetrahedral-interstitial-centered
orbital. The corresponding bands are displayed in Fig. 4.

Two separate subspaces One combined subspace

deg 1.710 deg 1.731
deg 1.710 deg 1.731
dt2g 1.808 dt2g 2.328
dt2g 1.808 dt2g 2.328
dt2g 1.808 dt2g 2.254

Ωmin[S5] 8.844 (8.745)
t 12.929 t 10.263

Ωmin[S1] 12.929 (10.826) Ωmin[S6] 20.634 (16.506)

localized electrons (this may not be the case in the pres-
ence of avoided crossings). The method is therefore ide-
ally suited for directly extracting the narrow d bands
from the s-d complex. If instead one is interested in iso-
lating the wider, nearly-free-electron s band, direct min-
imization of ΩI for one-dimensional subspaces is not the
appropriate strategy. Instead one can proceed as follows.
First choose an energy window that includes the s-d band
complex (we used the one indicated in Fig. 1(b)). Then
minimize ΩI with N = 6; this produces a six-dimensional
subspace S6(k) throughout the Brillouin zone that con-
sists of the s–d band complex. Next extract the five d
bands by minimizing ΩI within S6(k) choosing N = 5;
this yields a space S5(k) ⊂ S6(k). The difference between
the two is a one-dimensional space S1(k) containing the
desired band. Fig. 4(a) shows the bands associated with
S6(k), and Fig. 4(b) shows the bands corresponding to
S5(k) and S1(k).

In Table II are presented the optimal Wannier spreads
for the different subspaces. We find that the spread of the
s-like WF is considerably smaller than the ∼45 bohr2 re-
ported in Table III of Ref. 27. Moreover, contrary to what
one might have expected, that WF is centered not on an
atom, but on a tetrahedral interstitial site, as shown in
Fig. 5(a). Since there are two such sites per atom, a
breaking of symmetry must have occurred when select-
ing the subspace S6(k). Indeed there are two degenerate
minima of ΩI with N = 6, one for each of the interstitial
sites. If the minimization is initialized by projecting five
d-like orbitals plus one s-like orbital, all atom-centered,
the breaking of symmetry occurs spontaneously during
the iterative procedure (the minimization of ΩI reaches
a plateau, presumably a saddle point, and eventually the
algorithm finds its way towards one of the two minima).
If instead the s trial orbital is centered around one of
the tetrahedral interstitial sites, the minimization starts
inside the basin of attraction of the corresponding mini-
mum.

Finally, as a simple illustration of the “inner window”
idea of Sec. III G, we show in Fig. 6 the single band
(N=1) that results when an inner window is selected in
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FIG. 5. Contour-surface plots of interstitial-centered
“maxloc” WFs. (a) t-like WF associated with the subspace
S6(k) of Fig. 4 and Table II; (b) WF associated with the band
in Fig. 6; (c) t-like WF associated with the subspace S7(k) in
Fig. 7(a) and Table III. The amplitudes are +0.5/

√
v (light

gray) and −0.17/
√
v, −0.3/

√
v, and −0.25/

√
v (dark gray) in

(a), (b), and (c) respectively.
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FIG. 6. Dashed line: Band obtained using both an inner
and an outer energy window.
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FIG. 7. (a) Dotted lines: Interpolated bands associated
with the optimal subspace S7(k) containing five d-like WFs
and two tetrahedral-interstitial-centered WFs. (b) Dark dot-
ted lines: d bands associated with optimal five-dimensional
subspace S ′5(k) ⊂ S7(k). Light dotted lines: dispersive bands

S2(k) isolated by taking the complement of S ′5(k).

the energy range below the d bands. As expected, the
interpolated band is identical to the original one inside
that window. Moreover, it remains quite narrow outside,
where it acquires a pronounced d character. (This means
that the cost in ΩI of changing from s to d character is
more than compensated by the smaller dispersion – and
hence smaller ΩI – of the more localized d-like states.)
Accordingly, the “maxloc” WF, shown in Fig. 5(b), is
again centered at a tetrahedral interstitial site, like the
WF of Fig. 5(a), but now it has a substantial admixture
of d-like satellites and a smaller spread, Ω = 7.323 bohr2

(ΩI = 7.306 bohr2).
The results of this Section indicate that the occurrence

of a symmetry breaking in the minimization of ΩI with
a “maxloc” WF centered at a tetrahedral interstitial site
appears to be a rather robust result.

3. Symmetric two-WF description of dispersive bands

Remarkably, we find that the symmetry can be re-
stored, and a more faithful overall description of the
bands can be achieved, by bringing in just one more dis-
persive band and working with a set of seven WFs. More
precisely, we choose an energy window such as the one in-
dicated in Fig. 7(a), containing seven or more bands, and
minimize ΩI with N = 7. (To ensure that the low-energy
part of the band complex is well described, we freeze it
inside an inner window.) After applying the localiza-
tion procedure we obtain, besides the five d orbitals, two
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TABLE III. Spreads of the “maxloc” WFs for the sep-
arate d-band and low-lying dispersive bands subspaces (S ′5
and S2), and for the combined subspace S7. The numbers
in parentheses are the ΩI values, and t stands for tetrahe-
dral-interstitial-centered orbital. The corresponding bands
are displayed in Fig. 7.

Two separate subspaces One combined subspace

deg 1.687 deg 1.687
deg 1.686 deg 1.687
dt2g 1.472 dt2g 1.737
dt2g 1.472 dt2g 1.737
dt2g 1.472 dt2g 1.737

Ωmin[S ′5] 7.788 (7.751)
t 8.568 t 7.812
t 8.568 t 7.812

Ωmin[S2] 17.136 (16.822) Ωmin[S7] 24.209 (22.034)

equivalent WFs, each centered at one of the two tetra-
hedral interstitial sites. One of the latter is shown in
Fig. 5(c). The optimal Wannier spreads are given in Ta-
ble III; it can be seen that the spread of each of the two
interstitial WFs is considerably smaller than that of the
single interstitial WF in Table II and Fig. 5(a).

Fig. 7(b) shows the d-like bands associated with the op-

timal five-dimensional subspace S ′5(k) ⊂ S7(k), as well as
the dispersive bands associated with S2(k), the comple-

ment of S ′5(k) inside S7(k). There is an upward shift in
energy of the states X3, W3, and L1 in the narrow bands,
due to mixing with the states of the same symmetry in
the dispersive bands, which suffer a downward shift of
the same magnitude.

The fact that our procedure naturally generates a pair
of WFs centered at the tetrahedral interstitial sites can
be rationalized in terms of a tight-binding description of
the nearly-free electron states. The tetrahedral intersti-
tial sites form a simple cubic lattice, so that in view of
Fig. 5(c) one might imagine that the electronic states
of these WFs would be roughly analogous to those of a
nearest-neighbor tight-binding model of s orbitals on the
sites of a simple cubic lattice. Indeed we have checked
that the main qualitative features of the interpolated
bands associated with the two interstitial-centered WFs
(light dotted lines in Fig. 7(b)) are captured by such a
tight-binding model, but folded back into the fcc Bril-
louin zone to give two bands instead of one.

The quality of the interpolated bands in Fig. 7(a)
suggests that the two tetrahedral-interstitial-centered or-
bitals (which we denote as t orbitals) complement the five
atom-based d orbitals nicely to form a basis (t2d5) for a
tight-binding parametrization of the copper bands. This
requires only one more basis function than the traditional
“minimal basis”41 sd5 (five d plus one s atomic orbitals),
while still remaining more economical than the sp3d5

basis.42 The three bases are compared in Table IV. At
each high-symmetry k-point we list, in order of increasing
energy, the symmetry labels of the states that occur in

TABLE IV. A list, in order of increasing energy, of the
symmetry labels of selected states in the band structure of
copper (taken from Ref. 40), and whether or not they are
captured by each of the tight-binding bases discussed in the
text. An asterisk (∗) indicates that the state is occupied.

Degeneracy sd5 t2d5 sp3d5

Γ1 1∗ yes yes yes
Γ25′ 3∗ yes yes yes
Γ12 2∗ yes yes yes
Γ2′ 1 – yes –
Γ15 3 – – yes

X1 1∗ yes yes yes
X3 1∗ yes yes yes
X2 1∗ yes yes yes
X5 2∗ yes yes yes
X4′ 1 – yes yes
X1 1 yes – yes
X5′ 2 – – yes
X3 1 – yes –

L1 1∗ yes yes yes
L3 2∗ yes yes yes
L3 2∗ yes yes yes
L2′ 1∗ – yes yes
L1 1 yes yes yes
L2′ 1 – – –
L3′ 2 – – yes

W2′ 1∗ yes yes yes
W3 2∗ yes yes yes
W1 1∗ yes yes yes
W1′ 1∗ yes yes yes
W3 2 – yes yes
W2′ 1 – – yes
W1 1 yes – yes

a detailed band-structure calculation (e.g., Ref. 40), and
then whether or not they are captured by each of the
tight-binding bases. Inspection of the table clarifies that
the t2d5 basis has some very attractive features. Whereas
the sd5 basis misses the X4′ state41 (unoccupied p-like
state not far above EF ) and, even more importantly, the
L2′ state (occupied p-like state just below EF ), t2d5 gets
the symmetries right up to at least the first state above
EF at each high-symmetry k-point. Even sp3d5 does
not do this, failing at the Γ point, since the state Γ2′

has f character. A consequence of this analysis is that
the t orbitals cannot be constructed solely from s and
p orbitals. This can also be seen from Fig. 5(c): The
positive-amplitude central portion of the WF can be in-
terpreted in terms of a superposition of four sp hybrids
coming from each of the four surrounding copper atoms
and pointing towards the interstitial; however this pic-
ture cannot account for the six negative lobes.

To conclude, we note that the sp3d5 description can
also be obtained from our procedure, by minimizing ΩI

with N = 9 within a window containing eleven or more
bands (e.g., with the upper bound at 32.2 eV). The
“maxloc” WFs are then five atom-centered d-like orbitals
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plus four equivalent sp3-like hybrids centered near the
atom.

C. Silicon

Several authors have previously discussed and com-
puted WFs for silicon and other tetrahedral semiconduc-
tors. Some works have focused on the WFs associated
with the valence bands,16,28,43–46 while others have also
dealt with the lowest four conduction bands.29,30

1. Bond orbitals

A set of eight bond-centered WFs, four bonding and
four antibonding, can be obtained by using separate en-
ergy windows for each of the two groups, as indicated
in Fig. 8(a). Since the valence bands form an isolated
group, inside the corresponding window Nk = N = 4
throughout the Brillouin zone. Hence there is no free-
dom for minimizing ΩI, and one can proceed directly

with the minimization of Ω̃ to compute the “maxloc”
WFs, as done in Ref. 16. The resulting bands are es-
sentially indistinguishable from the original ones, since
for such a dense k-mesh the interpolation error is very
small. The trial orbitals used to start the minimization
were bond-centered Gaussians with a root mean-square
(r.m.s.) width of 1.89 bohr. The value of the optimal
spread was Ω = 30.13 bohr2, of which 28.39 bohr2 came
from ΩI.

The use of an energy window becomes necessary for
the four low-lying empty bands, which are attached to
higher bands. As trial orbitals we used an antibonding
combination of Gaussians with a r.m.s. width of 1 bohr.
Each Gaussian was sitting halfway between one of the
two atoms and the center of their common bond. Dur-
ing the minimization ΩI decreased from 106.76 bohr2 to
87.47 bohr2, having reached the minimum in less than 30
steps. (An alternative is to choose the initial subspace
at each k as the lowest four energy eigenstates inside the
energy window. This yields an initial ΩI = 98.10 bohr2,
and again the absolute minimum is reached after ∼30
steps.) The total spread of the four “maxloc” WFs was
Ω = 97.49 bohr2; as expected,28 this is considerably

larger than for the bonding WFs. Note also that Ω̃ ac-
counts for more than 10% of the total spread, whereas for
the bonding “maxloc” WFs that number was less than
6%. This is related to the fact that the antibonding WFs
are more spread out, causing matrix elements of the type
〈wmR|r|wn0〉 with R 6= 0 to have larger values. Eq. (15)

of Ref. 16 shows that this results in a larger Ω̃. The very

small contribution of Ω̃ to the total spread of the highly
localized d-like WFs in copper (less than 1%), as well as
the comparatively larger contribution in the interstitial-
centered WFs are thus easily understood.
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FIG. 8. Solid lines: Original band structure of silicon.
Dotted lines: Wannier-interpolated bands. In (a) the valence
and low-lying conduction bands are treated separately, which
produces four bonding and four antibonding Wannier func-
tions; in (b) they are treated as a single group, which yields
eight sp3-type Wannier functions.

In Fig. 9(a) we present the contour-surface plot of one
“maxloc” antibonding WF in silicon. The other three are
identical (related to the first by the tetrahedral symmetry
operations). Fig. 9(b) shows one of the four identical
bonding WFs.

2. sp3 hybrids

As discussed in Ref. 30, one may instead treat the four
valence and four low-lying conduction bands as a sin-
gle group, which leads to “maxloc” WFs of sp3 char-
acter (Fig. 9(c)). Using our method this may be done
as indicated in Fig. 8(b). An outer energy window is
chosen which spans the eight bands of interest, and the
valence bands are “frozen” inside an inner window; this
ensures that they are not affected by the minimization
of ΩI, whose only aim is to extract the four low-lying
antibonding bands from the conduction band complex.
We have started the minimization of ΩI in two different
ways: (i) by projecting eight “atom-centered” sp3-type
combinations of Gaussians, and (ii) by projecting four
bond-centered Gaussians plus four antibonding combi-
nations of Gaussians, as done in the previous Section. In
both cases the minimization took about 20 steps, taking
from 76.04 bohr2 in the former case and 84.08 bohr2 in
the latter to 63.50 bohr2. As for the minimization of Ω̃,
the absolute minimum (Ω = 85.41 bohr2) was reached
only with (i); with (ii) the algorithm became trapped in
a local minimum (Ω = 101.97 bohr2) having the same
symmetry as the trial orbitals, with four bonding (anti-
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FIG. 9. Contour-surface plots of Wannier functions in sil-
icon. (a) Antibonding, (b) bonding, and (c) sp3-type. In
(a) and (c) the amplitudes are +0.5/

√
v (light gray) and

−0.5/
√
v (dark gray); in (b) they are +1.4/

√
v (light gray)

and −0.4/
√
v (dark gray).

bonding) WFs with a spread of 6.37 bohr2 (19.12 bohr2)
each.

We end this section with the following observation.
Suppose we take the four-dimensional valence (bonding)

space S(b)
4 (k) together with the optimal four-dimensional

antibonding subspace S(a)
4 (k) (Fig. 8(a)) to form an

eight-dimensional space S ′8(k) = S(b)
4 (k) ∪ S(a)

4 (k). This
space has ΩI = 63.64 bohr2, which is slightly higher than
the value 63.50 bohr2 associated with the optimal sub-
space S8(k) for the eight-band problem with an inner

window (Fig. 8(b)). Thus, if we take S ′8(k) as an initial
guess for the minimization of ΩI in the eight-band prob-
lem with an inner window, we will be starting slightly
above the absolute minimum. The extra reduction in ΩI

comes about because the functional that is minimized to
obtain S8(k) contains terms involving overlap between
low-lying conduction states at k and valence states at

neighboring k + b. The wavefunctions relax in response
to these extra terms, and consequently the two antibond-
ing subspaces are not exactly the same. However, they
are almost identical, and therefore the same is true for
the interpolated bands (compare Figs. 8(a) and 8(b)).

V. CONCLUSIONS

We have discussed and implemented a practical
method for extracting maximally-localized Wannier func-
tions from entangled energy bands, starting from the
Bloch eigenfunctions obtained in a standard electronic
structure calculation. Our method is based on a pre-
scription for “disentangling” the bands of interest from
the rest of the band complex inside an energy window
specified by the user. The idea is to extract a subspace
of Bloch-like states whose character varies as little and
as smoothly as possible across the Brillouin zone. This is
achieved by minimizing a functional which measures the
“spillage”, or change of character of the subspace across
the Brillouin zone. The present scheme can be viewed as
an extension of the maximally-localized Wannier func-
tion method of Marzari and Vanderbilt,16 which was de-
signed to deal with isolated groups of bands only. More
precisely, it introduces an extra step – the construction of
the optimal subspace – which is followed by the determi-
nation of the “maxloc” WFs by applying the localization
algorithm of Marzari and Vanderbilt to that subspace.
The procedure for determining this optimal subspace is
both stable and computationally very fast.

Some possible applications of such WFs have been
mentioned in the Introduction. Of particular interest
is the ability to obtain WFs for the low-lying empty or
partially filled bands. For instance, it has been suggested
that these could be useful for accurate calculations of the
optical properties of semiconducting nanocrystals.47 An-
other potential use of the present method could arise in
the description of surface states (e.g., Ref. 48), in par-
ticular when the surface bands become resonant with
the bulk bands. The striking result that we have ob-
tained for the low-lying broad bands of copper, with the
WFs being centered at the tetrahedral interstitial sites,
suggests that the method may provide insight into the
chemistry of transition metal compounds. Also, since the
“maxloc” WFs provide a compact interpolation scheme
for the band structure, they could be used as part of an
efficient algorithm for determining the Fermi surface. Fi-
nally, it might be interesting to apply the present ideas to
the construction of lattice WFs describing the part of the
phonon spectrum relevant for studying structural phase
transitions.49,50
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