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We demonstrate that chiral hinge modes naturally emerge in insulating crystals undergoing a
slow cyclic evolution that changes the Chern-Simons axion angle θ by 2π. This happens when
the surface (not just the bulk) returns to its initial state at the end of the cycle, in which case
it must pass through a metallic state to dispose of the excess quantum of surface anomalous Hall
conductivity pumped from the bulk. If two adjacent surfaces become metallic at different points
along the cycle, there is an interval in which they are in topologically distinct insulating states,
with chiral modes propagating along the connecting hinge. We illustrate these ideas for a tight-
binding model consisting of coupled layers of the Haldane model with alternating parameters. The
surface topology is determined in a slab geometry using two different markers, surface anomalous
Hall conductivity and surface-localized charge pumping (flow of surface-localized Wannier bands),
and we find that both correctly predict the appearance of gapless hinge modes in a rod geometry.
When viewing the axion pump as a four-dimensional (4D) crystal with one synthetic dimension, the
hinge modes trace Fermi arcs in the Brillouin zone of the 2D hinge connecting a pair of 3D surfaces
of the 4D crystal.

I. INTRODUCTION

The electronic states of crystalline insulators can be
characterized by certain geometric properties of the wave
functions that have measurable consequences [1]. For
example, in one-dimensional (1D) insulators the manifold
of valence states carries a Berry phase [2]

γ =

∫ 2π

0

Tr
[
Ak
]
dk , (1)

where k between 0 and 2π is the reduced wavevector in
the Brillouin zone (BZ), and the integrand is the trace of
the Berry connection matrix Akmn = i〈ukm|∂kukn〉 over
the valence bands. Although Tr [Ak] is not invariant un-
der gauge transformations among the valence states, its
integral γ is invariant modulo 2π. Physically, γ describes
the electronic contribution to the electric polarization as

P = −e γ
2π

, (2)

where e > 0. Accordingly, the bulk polarization is itself
only defined modulo e in 1D [3, 4].

The quantum of indeterminacy present in Eq. (1) al-
lows for the possibility of changing γ gradually by a mul-
tiple of 2π during a slow cyclic evolution, resulting in the
transport of an integer number C1 of electrons over one
lattice constant [5]. If the Hamiltonian is parametrized
by an angle φ, the total change in γ over one cycle from
φ = 0 to φ = 2π is given by

∆γ =

∫ 2π

0

dφ

∫ 2π

0

dkTr
[
Ωφk

]
= 2πC1 . (3)
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C1 is known as the first Chern number, and when it is
nonzero the cycle is called a Thouless pump. In Eq. (3),
Ωφkmn = ∂φA

k
mn − ∂kAφmn − i[Aφ, Ak]mn is the covariant

Berry curvature matrix of the valence bands in (φ, k)
space. When this (φ, k) space is viewed as an effective
2D momentum space, 2πC1 becomes a quantized Berry
flux through the corresponding 2D BZ.

The Chern number C1 can be defined in exactly the
same way for real 2D insulators, and those for which it is
nonzero are known as (first) Chern insulators, or quan-
tum anomalous Hall insulators. Chern insulators were in-
troduced by Haldane using a tight-binding model [6], and
have been realized experimentally in magnetically-doped
thin films [7, 8]. They are characterized by a quantized
anomalous Hall conductivity (AHC) of (e2/h)C1, and by
the presence of |C1| chiral edge modes crossing the bulk
gap.

In 3D, the valence bands of insulating crystals carry
another global geometric property. It is known as the
Chern-Simons axion angle θ, and can be expressed as [9,
10]

θ = − 1

4π

∫
BZ

εabcTr

[
Aa∂bA

c − i2
3
AaAbAc

]
d3k , (4)

where each ka runs between 0 and 2π, ∂a = ∂/∂ka, and
Aamn is the corresponding Berry connection along lat-
tice direction a. The axion angle describes an isotropic
contribution αiso

αβ = (e2/h)(θ/2π)δαβ to the linear mag-

netoelectric coupling ααβ = ∂Pα/∂Bβ = ∂Mβ/∂Eα. Like
the Berry phase, the axion angle is gauge invariant only
modulo 2π and can change gradually by multiples of 2π
during slow cyclic evolutions. The net change in θ over
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one cycle parametrized by φ ∈ [0, 2π] is given by

∆θ =
1

16π

∫
BZ

d3k

∫ 2π

0

dφ εabcdTr
[
ΩabΩcd

]
= 2πC2 ,

(5)
where the indices run over kx, ky, kz, φ. The integer C2 is
called the second Chern number, and when it is nonzero
the cycle is referred to as an axion pump [11]. Like 2πC1

given by Eq. (3), 2πC2 can be viewed as a quantized
Berry flux through an effective BZ, which is now that of
a parent 4D insulator.

In this work, we ask what general features one can ex-
pect to see in the boundary spectrum during an axion
pumping cycle when both the bulk and the surface re-
turn to their initial states at the end of the cycle. The
evolution of the surface spectrum under these circum-
stances was studied previously [12]. In the present work
we turn our attention to the hinge band structure, that
is, the spectrum of 1D modes localized at the boundaries
between contiguous surface facets.

We find that chiral hinge states appear generically in
the course of cyclic evolutions characterized by a nonzero
C2 invariant. In contrast to the hinge states in intrinsic
higher-order topological insulators [13, 14], their occur-
rence does not rely on the presence of certain bulk crys-
tallographic symmetries, but only on the global Chern
topology of the pumping cycle.

The paper is organized as follows. In Sec. II we provide
a qualitative discussion of the main ideas. We then illus-
trate them for a concrete tight-binding model in Sec. III,
where we use various tools to predict from slab calcu-
lations the occurrence of gapless hinge modes, and to
illuminate the concept of surface topology. We conclude
in Sec. IV with a summary and outlook.

II. QUALITATIVE DISCUSSION

In this section we examine the generic behavior of
boundary states during an axion pumping cycle, making
no special assumptions about the presence of symmetries
or the position of the Fermi level EF in the gap, and
ask what general features one can expect to see in the
surface and hinge band structures during an axion pump
evolution cycle.

We consider for simplicity an orthorhombic structure
with primitive lattice vectors along the Cartesian axes,
and work with reduced wavevectors (kx, ky, kz) with each
kj between 0 and 2π. To these we can add the adiabatic
Hamiltonian parameter φ whose evolution from 0 to 2π
controls the axion pump, so that we can also think in
terms of a 4D insulator with a second Chern number
C2 in (kx, ky, kz, φ) momentum space. In the present
discussion we shall assume C2 = 1, so that one quantum
of axion coupling is pumped during the adiabatic cycle.

A. Surface states

Consider the system shown in Fig. 1(a) – a crystal ter-
minated at two semi-infinite surfaces normal to +ẑ and
−ŷ, meeting at an x-directed hinge. In preparation for
the discussion of hinge-localized states in the next sub-
section, here we consider the band structures of the two
surfaces, but projected as though seen from the hinge.

We focus first on the top surface (unit normal +ẑ).
The evolution of its hinge-projected band structure is
sketched in panels (b-d) for three increasing values of φ
in the region where the metalization occurs. These are
labeled as φ1, φ2, and φ3, corresponding to panels (e-g)
respectively, where the locus of electron-occupied surface
states is indicated in the 3D (kx, ky, φ) space. As a re-
minder, the surface is required to become metallic over
some range of φ. This follows because we assume that
the surface Hamiltonian (as well as the bulk one) returns
to itself at the end of the φ loop, so that the quantum of
AHC that is pumped to this surface has to be removed by
a metallic interval [12]. Typically this happens as shown
in panels (b-d). That is, surface states penetrate into
the gap with increasing φ, leading to the formation of a
nodal touching in (kx, ky) space at the critical parameter
value φ2, after which the gap reopens to restore an in-
sulating surface. When viewed in (kx, ky, φ) space, that
nodal touching becomes a Weyl point, indicated by the
solid dot in panels (e-g).

If one would follow the evolution of the surface AHC by
computing the contributions only up to the nodal point,
one would observe a sudden jump by e2/h when passing
through φ2. This jump is precisely by the amount needed
to return the surface AHC to its initial value at the end
of the cycle. With the indicated Fermi-level position,
however, the change occurs continuously. An electron
pocket first appears when the conduction band minimum
drops below EF, somewhere between panels (b) and (c);
it grows, then shrinks and disappears somewhere between
(c) and (d). This behavior is visualized in 3D (kx, ky, φ)
space in panels (e-g), with the dashed rectangles showing
the φ values corresponding to panels (b-d), respectively.

At any value of φ for which the surface electron pocket
exists, such as that shown by the horizontal cut in
Fig. 1(f), the contribution of that pocket to the sur-
face AHC is proportional to the Berry phase computed
around its boundary. This phase evolves by 2πCFS

1 from
the creation to the destruction of the pocket, where CFS

1

is the first Chern number (one, in our case) on the
spheroidal Fermi surface shown in panels (e-g) of Fig. 1.

We can regard any one of those three panels as show-
ing the Fermi-surface structure of the 3D (kx, ky, φ) sys-
tem corresponding to the z-terminated 3D surface of
a 4D (kx, ky, kz, φ) second-Chern insulator. We see a
Fermi pocket with nonzero first Chern index surround-
ing a Weyl node, shown as a dark central point in each
panel. This looks very much like a picture of a Weyl
semimetal [15], but with one crucial difference. In a true
3D system, the Nielsen-Ninomiya theorem [16] requires
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FIG. 1. (a) Real-space view of a sample of an insulating material undergoing an axion pumping cycle parametrized by φ. The
sample is obtained by terminating a bulk crystal at two semi-infinite surfaces oriented normal to +ẑ and −ŷ (blue and red
shadings, respectively), meeting at an x-directed hinge that may harbor chiral modes (arrows). (b-d) Hinge-projected band
structure focusing on surface states on the +ẑ-oriented surface (blue shading), for three increasing values of φ. Gray shading
represents projected bulk states. (e-g) View in (kx, ky, φ) space, for the choice of Fermi level indicated in (b-d); blue indicates
the “Fermi surface” in (kx, ky, φ) space enclosing the electron pocket; solid dot is the Weyl point, corresponding to the nodal
touching of surface valence and conduction bands at the critical parameter value φ2. The dashed lines in (e-g) indicate the φ
values used in (b-d), respectively. (h,i) Same as (d,g), but focusing on states localized on the surface normal to −ŷ.

that the chiralities of the Weyl nodes must sum to zero
over the 3D BZ. The violation we see here is an example
of an anomaly; since we are at the surface of a topological
4D insulator, the reasoning used to prove the Nielsen-
Ninomiya theorem no longer applies. In fact, the sum
of chiralities is necessarily equal to the 4D bulk second
Chern number, that is, CFS

1 = C2. Hence, every 3D sur-
face facet of a 4D second-Chern insulator must show the
same excess of chirality [9, 12]. In particular, every 3D
surface must be metallic, in analogy to the 1D surfaces
of a 2D first-Chern insulator.

Panels (h) and (i) of Fig. 1 show similar plots at the
same φ = φ3 value as in panels (d) and (g), but now for
the surface with unit normal −ŷ. Here we assume that
the metallic interval has not yet begun, so the electron
pocket corresponding to this surface lies above the φ = φ3
plane. Incidentally, if the Fermi-level position had been
chosen lower in the gap, the metallic interval of φ could
correspond to the temporary creation of a hole pocket
instead, on either or both of the surface facets; entirely
parallel arguments apply in these cases.

B. Hinge states

Now consider the x-directed hinge adjoining the y- and
z-oriented surface facets discussed above (we refer to it
as a “y|z hinge”). Figure 2(a) shows the locus of points
on the (kx, φ) plane where there are states at EF, that is,
the hinge-projected Fermi surface plotted as a function
of φ. The blue region is the projection onto the (kx, φ)
plane of the Fermi surface in (kx, ky, φ) space of the +ẑ-
oriented surface [Fig. 1(g)]. Likewise, the red region is
the projection of the (kx, kz, φ) Fermi surface of the −ŷ-

oriented surface [Fig. 1(i)] adjoining the +ẑ surface at
the hinge. Each electron pocket encloses a Weyl point,
and these bring opposite chiral charges due to the fact
that positive circulations on the +ẑ- and −ŷ-oriented
surfaces correspond to positive and negative transport
respectively at the hinge.

The Nielsen-Ninomiya theorem is now satisfied, since
the total chirality of all Weyl points projecting onto the
(kx, φ) plane necessarily vanishes. However, the separa-
tion of chiral charges between the two pockets requires
the presence of a Fermi arc connecting them, as shown by
the green line in Fig. 2(a), just as for the case of a Fermi
arc at the surface of a Weyl semimetal [15]. Indeed, the
count of Fermi arcs and geometry of attachment must

𝜙3 

kx kx 

EF 

(a) (b) 
𝜙

FIG. 2. (a) Hinge-projected Fermi surface of the system de-
picted in Fig. 1(a), plotted in (kx, φ) space. Blue and red
electron pockets correspond to surface states on the +ẑ- and
−ŷ-oriented surfaces, as shown in Fig. 1(g) and (i), respec-
tively. Fermi-arc state is shown in green. (b) Hinge-projected
band structure plot vs. kx (at φ = φ3, indicated by the dashed
line in (a)). The gray, blue, and red regions are the projected
bulk, +ẑ-surface, and −ŷ-surface states shown in Figs. 1(d,f),
and the green line is the chiral hinge state.
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follow the same rules outlined by Haldane [17]. The full
hinge-projected band structure at φ = φ3 is illustrated in
Fig. 2(b), showing the hinge-localized state that crosses
from the valence to the conduction manifold and gives
rise to the Fermi arc.

Of course, at other points along the adiabatic pump-
ing cycle, corresponding to different values of φ, the chi-
ral hinge mode may be absent, as above the red region
or below the blue region in Fig. 2(a). At some other φ
values, the presence of hinge states will be obscured by
degeneracy with the continuum of surface states. In some
cases these regions of metallic surface behavior could be
much more extensive than as sketched above, hiding the
hinge electronic structure almost completely. However,
we can be sure of the existence of at least one Weyl-
node-surrounding hole or electron pocket arising from
each adjoined surface, and a required Fermi arc state
connecting them somewhere in the (kx, φ) space (unless
the two pockets overlap when projected into this space).
In this sense, the presence of Fermi arcs and chiral hinge
channels at some stage of a second-Chern pumping cycle
is generic.

In any case, these observations all serve to illustrate
the very close analogy between the physics on the 2D
“hinge” of a 4D second-Chern topological insulator, and
at the 2D surface of a 3D Weyl semimetal.

III. NUMERICAL STUDY OF A TOY MODEL

A. The alternating Haldane model

To illustrate the physics described above, we study
the tight-binding model for an axion pump introduced
in Ref. [12], consisting of alternating layers of the Hal-
dane model [6]. The on-site energies are modulated by
an angle φ in such a way that for −π/2 < φ < π/2
the first Chern numbers vanish on all layers, while for
π/2 < φ < 3π/2 they alternate between +1 and −1,
for isolated layers. To prevent the layers from becoming
metallic at φ = π/2 and 3π/2, φ-dependent interlayer
couplings are introduced. As φ goes from 0 to 2π, the
system is carried along a gapped circuit that encloses a
gapless point in parameter space, and the axion angle θ
increases gradually from 0 to 2π [12].

When viewed along the stacking direction z, the model
consists of coupled chains that project onto the honey-
comb sites on each layer, with alternating on-site ener-
gies and hoppings along z. In the limit of vanishing in-
terchain coupling, the chain Hamiltonian is identical to
the Rice-Mele model of alternating site energies and hop-
ping strengths [18], which realizes a Thouless pump [4].
Chains passing through the A and B sites have equal and
opposite first Chern numbers in (φ, kz) space, so that no
net charge is transported along z over one cycle. Depend-
ing on the choice of parameters, the magnitude of those
Chern numbers is either zero or one.

The 2D unit cell of each layer is spanned by the lattice

vectors a1 = ax̂ and a2 = ax̂/2 +
√

3aŷ/2, with orbitals
sitting on the honeycomb sites tA = a1/3 + a2/3 and
tB = 2a1/3 + 2a2/3. The Hamiltonian for an isolated
layer indexed by p is

Hp = (−1)p∆
∑
i

γic
†
picpi + t

∑
〈ij〉

c†picpj

+(−1)p
∑
〈〈ij〉〉

iνijc
†
picpj ,

(6)

where i and j label the sites, with γi = ±1 if site i belongs
to the A or B sublattice. 〈ij〉 and 〈〈ij〉〉 denote pairs of
first and second nearest-neighbor sites, with each pair ap-
pearing twice. The first and second terms contain the on-
site energies and nearest-neighbor hoppings respectively,
and the third describes a pattern of staggered magnetic
fluxes generated by complex second-neighbor hoppings
of unit magnitude. Therein, νij = +1 (−1) if the hop-
ping direction from j to i is right-handed (left-handed)
around the center of a plaquette. The (−1)p factor in
the first term reverses the energies of sites on the same
sublattice in adjacent layers, while the same factor in the
third term reverses the pattern of magnetic fluxes, and
with it the first Chern numbers on consecutive layers.
The hopping magnitude in the third term has been set
to unity as a reference, and each 2D layer undergoes a
Chern transition between topological and trivial phases
at ∆ = ±3

√
3. At ∆ = 3

√
3 the gap-closing transition

occurs at the high-symmetry point K = (4π/3a)x̂ in the

2D BZ, and at ∆ = −3
√

3 it occurs at K ′ = −(4π/3a)x̂.
The full 3D model has a3 = cẑ as the third lattice

vector, and two layers per unit cell. The layers p = 0, 1
are located at z = −c/4, c/4, and the Hamiltonian reads

Hbulk =
∑
p

[
Hp+

[
1+(−)p t′

]∑
i

γi

(
c†picp+1,i + H.c.

)]
,

(7)
where the second term describes the interlayer (intra-
chain) coupling and “H.c” stands for “Hermitian conju-
gate.” We choose t = −4.0, and parameterize ∆ and t′

according to

∆ = 3
√

3 + 2 cosφ , (8a)

t′ = 0.4 sinφ . (8b)

The presence of a nonzero t′ introduces an alternation
of interlayer hopping strengths that keeps the system
gapped as φ passes through π/2 and 3π/2 where the topo-
logical transitions occur in the isolated layers. The bulk
spectrum is therefore gapped everywhere along the adia-
batic cycle parameterized by φ, encircling a gapless point
at (∆, t′) = (3

√
3, 0).

The model has neither time reversal (TR) nor inversion
symmetry at generic φ. However, the Hamiltonian is
invariant under an antiunitary operator

Λ = Kiτyσx = KτzI (9)
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FIG. 3. Pumping of the axion angle θ by 2π in the alternating
Haldane model.

where K is complex conjugation and τj and σj are the
j’th Pauli matrices acting in the layer and sublattice
spaces respectively.1 Inversion about a hexagonally cen-
tered point midway between the layers is represented by
I = τxσx, so the second equality expresses Λ as I fol-
lowed first by a sign reversal of all amplitudes on odd
layers, then by scalar TR. Because Λ is antiunitary and
squares to −1, it acts the way inversion times TR does in
a spinor system, forcing the four energy bands to come
in two Kramers-degenerate pairs. At the points φ = 0
and π where the alternation t′ of the interlayer hoppings
vanishes, the model acquires two additional symmetries:
mirror symmetry Mz (z → −z) about the layers, and
time-reversal K combined with a twofold rotation Cy2
about an axis lying on the atomic layers and pointing
along the armchair edges.

The evolution with φ of the axion angle is shown in
Fig. 3. θ increases gradually from 0 to 2π over one cycle,
corresponding to C2 = 1 in Eq. (5). Both Mz and KCy2
take θ into −θ, constraining θ to be 0 mod π at φ = 0
and π, consistent with the figure. At φ = 0 the system is
a topologically trivial insulator with θ = 0. Instead, at
φ = π it is a topological crystalline insulator with θ = π
(a “generalized axion insulator” in the sense of Ref. [19]),
harboring metallic states on surfaces that preserve either
Mz or KCy2 symmetry, or both [12, 19].

B. Surface topological transitions and surface
anomalous Hall conductivity

We study three types of slabs, shown schematically
in Fig. 4. The ones in the left and middle panels are
terminated along z, and the one on the right is termi-
nated along y. In the left panel the stacking unit is a cell
with boundaries at z = ±1/2 (in units of c), enclosing
layers located at z = ±1/4. With this “z1/2 termina-
tion,” the Chern numbers of the top and bottom layers

1 We thank N. Varnava for pointing out this symmetry of the
model.

FIG. 4. Left and middle: inequivalent z-terminated slabs of
the alternating Haldane model. Arrows indicate edge-mode
chiralities on the uncoupled layers for π/2 < φ < 3π/2.
Right: one layer of a y0-terminated slab, with zigzag edges
(top view).

(when isolated) are C1 = ±1 respectively in the interval
π/2 < φ < 3π/2. In the middle panel the stacking unit
is a cell with boundaries at z = 0 and 1 and enclosing
layers at z = 1/4 and 3/4. With this “z0 termination,”
the top and bottom layers have Chern numbers C1 = ∓1
respectively in the same interval. Finally, in the right
panel we have a slab with a “y0 termination” consisting
of zigzag edges on every layer.

For each type of slab we perform the cyclic evolution
described by Eq. (8), with the surfaces returning to their
initial states along with the bulk. The surfaces must then
pass through metallic states to dispose of the quantum
of surface AHC pumped from the bulk. To visualize the
gap closure, we plot in Fig. 5(a) the minimum energy gap
as a function of φ. There is one gap closure per cycle,
as in Fig. 1(c), taking place at isolated critical values φc
that are different for the three slabs. An examination
of the slab band structures [12] reveals that at φc the
valence and conduction surface bands touch at a nodal
point, which occurs at precisely EF because we consider
the slabs at half filling. If we were to shift EF away
from the nodal point as in Fig. 1(c), each surface would
remain metallic over a finite φ interval containing φc, as
illustrated in Fig. 1(e-g).

The gap closure is pinned to φc = π on y0 surfaces, be-
cause at φ = π the system becomes a generalized axion
insulator protected by Mz and KCy2 symmetries, both of
which are preserved at those surfaces.2 The gap closing
occurs exactly at E = 0 as an artifact of a particle-hole
symmetry in the model. As for the z-oriented surfaces,
neither Mz nor KCy2 symmetry is preserved there, so
these surfaces are not required to be metallic at φ = π.
Nevertheless they must still become metallic somewhere
along the cycle, and the closing of the gap occurs at
φc = π/2 on the z0 surface and at φc = 3π/2 on the
z1/2 surface, again exactly at E = 0. (The closing occurs

at point K in the 2D BZ [12], where A and B chains

2 The symmetry Mz (but not KCy
2 ) is also preserved at x-oriented

surfaces terminated at armchair edges, and this suffices to pin the
gap closure to φc = π on those surfaces as well.
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FIG. 5. (a) Evolution of the minimum energy gap versus φ
in slabs of the alternating Haldane model, for the three types
of surface terminations pictured in Fig. 4. The gap closures
occur at the surfaces. (b) Evolution of the surface AHC of
each slab. Dotted lines are different branches of the bulk
axion coupling, plotted as −θ/2π according to Eq. (10). The
finite slopes of the discrete jumps at φ = π/2, π, and 3π/2 are
artifacts of the finite step size used for φ in the calculation.

become decoupled, with HA = −HB. At generic φ each
takes the form of a Rice-Mele chain [18], and the surface
gap closure occurs when the surface-state energies of the
two chains cross through each other and through zero,
which occurs at cosφ = 0 where the effective site energy
alternation vanishes.)

These gap-closing events at the surfaces are topological
phase transitions, and to elucidate the notion of surface
topology we now examine the AHC carried by the sur-
faces along the pumping cycle. For EF = 0 and in the
limit of a thick slab, we expect the surface AHC to jump
by e2/h at φc, as described by the relation

σsurf
AHC = (n− θ/2π)

e2

h
(10)

between the AHC of a gapped surface and the bulk ax-
ion coupling [10, 20]. Once a specific branch has been
chosen for θ, a unique integer n can be assigned to each
surface, and for n to change the surface gap must close
and reopen. The difference in AHC between two insulat-
ing surface terminations of the same bulk is (e2/h)∆n,
where ∆n is the difference between the n values on the
two surfaces. In the φ intervals where ∆n is nonzero the
two surfaces are in topologically distinct states, and if
they meet there will be |∆n| chiral modes propagating
along the adjoining hinge [21].

We have calculated the surface AHC according to
Refs. [20, 22] for slabs of different thicknesses (7, 13,
and 19 cells across y, and 7, 9, and 11 cells across z).

FIG. 6. Topological phase diagram for 1D channels in the
alternating Haldane model at half filling. The outer and mid-
dle racetracks are for the two types of y|z hinges, and the
inner one is for single-layer-high steps on z-oriented surfaces.
In the yellow regions there are no protected 1D modes be-
cause the surface-AHC difference in Fig. 5 is ∆n = 0, while
in the blue (∆n = +1) and red (∆n = −1) regions there is
one protected mode per hinge or step. Red, blue, and green
lines mark the gap-closing points φc on the y0, z0, and z1/2
surfaces, respectively, that separate the different phases.

The extrapolated results are plotted in Fig. 5(b), con-
firming that Eq. (10) is satisfied throughout the cycle.
The AHC of each surface tracks one branch of −θ/2π
for 0 ≤ φ < φc, switches to another branch at φc, and
returns to its initial value at the end of the cycle. We
see that the y0 surface is topologically distinct from the
z0 surface for φ ∈ (−π/2, π/2) and from the z1/2 sur-
face for φ ∈ (π, 3π/2), with ∆n = −1 and ∆n = +1
respectively. Gapless modes are therefore expected to
appear on the y0|z0 hinges in the former interval and on
the y0|z1/2 hinges in the latter, with opposite chiralities
in the two cases. This is illustrated by the outer and
middle racetracks in the phase diagram of Fig. 6.

Finally, the topological difference ∆n = +1 between z0
and z1/2 surfaces for φ ∈ (π/2, 3π/2) can be understood as
follows. To switch from one termination to the other one
either removes the outer surface layer, or adds an extra
layer. Doing so changes the surface AHC by ±e2/h in the
range (π/2, 3π/2) where the individual layers have Chern
numbers ±1, and leaves the surface AHC unchanged in
the range (−π/2, π/2) where the layer Chern numbers
vanish. A similar behavior was observed in Ref. [22] for a
model of an axion insulator, where the half-quantized sur-
face AHC changed sign when a surface layer was added or
removed. As a consequence, every single-layer-high sur-
face step carries a chiral edge channel in such cases [23],
as shown for our model by the inner racetrack in Fig. 6.

C. Gapless hinge modes and hinge Fermi arcs

To verify the presence of protected hinge modes in the
predicted φ intervals, we have studied rod-shaped sam-
ples extended along x, and 15-cells thick along both y
and z. Figure 7(a) shows the energy bands of a y0-



7

0 Ly

y

0

Lz
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FIG. 7. (a) Energy bands of the alternating Haldane model,
calculated at φ = 5π/4 for a rod extended along x and with
y0 and z1/2 terminations along y and z. All bands are doubly
degenerate, and those in red and in blue are hinge-localized
chiral modes crossing the bulk and surface gaps, depicted
schematically in the inset. (b) Site-resolved weights of the
four hinge-localized states at an energy slightly above the
crossing point in the middle of the gap, as indicated by the
blue and red dots in (a).

and z1/2-terminated rod at φ = 5π/4 (the middle of
the φ interval where gapless hinge modes are expected
to occur). All bands are doubly degenerate, since the
Kramers-enforcing operator Λ of Eq. (9) remains a sym-
metry of the rod as a whole, and the bands drawn in
red and in blue are the predicted hinge modes crossing
the bulk gap. The weights of their wave functions on
each site are displayed in Fig. 7(b) at an energy near
E = 0 (the middle of the gap); modes localized on adja-
cent hinges disperse in opposite directions, forming the
pattern shown in the inset of panel (a).

The spectrum looks qualitatively the same for any
value of φ between π and 3π/2; when passing through
π or 3π/2, the surface gap closes and reopens on one of
the surfaces, allowing a change of surface topology such
that the band crossing on the hinge no longer occurs.
Outside that interval, the highest-occupied and lowest-
unoccupied states become delocalized over the entire rod.
When the surface termination is changed from z1/2 to z0
the interval hosting gapless modes changes from (π, 3π/2)
to (π/2, π) and the chiralities get reversed, as predicted.

−π/3−5π/12

kx

(b)

−π/3−5π/12

kx

π

3π/2

φ

(a)

FIG. 8. (a) Fermi arcs traced on the (kx, φ) plane by the
gapless hinge modes of a rod extended along x and with a
z1/2 vertical termination, for the Fermi level at EF = 0. (b)
Same, but for EF = 0.2. The two elliptical discs indicate
approximately the regions where the surface conduction bands
move below E = 0.2.

Figure 8 shows, for a y0- and z1/2-terminated rod, the
locus of points on the (kx, φ) plane where the energy
bands cross the Fermi level. In panel (a), the Fermi level
is at the charge-neutrality point EF = 0. In that case the
locus of points at EF reduces to a four-fold degenerate
Fermi arc in (kx, φ) space (the same on all hinges). In
panel (b) the Fermi level has been shifted to EF = 0.2,
and as a result the Fermi arc has split into a pair of
two-fold degenerate arcs, where the Kramers degeneracy
again results from the fact that Λ of Eq. (9), defined with
respect to an inversion center in the middle of the rod,
commutes with the rod Hamiltonian. The two Fermi arcs
attach tangentially to opposite sides of the two projected
surface Fermi surfaces, which have expanded from iso-
lated points in panel (a) to finite disks [compare with
Fig. 2(a)]. The way the Fermi arcs close on adjacent
hinges is analogous to the way they close on opposite
surfaces of a Weyl semimetal slab [15].

D. Surface-hinge correspondence from slab
Wannier bands

We have seen how the quantized difference in AHC
between two surfaces dictates the occurrence of chiral
modes on the connecting hinge. In this section we revisit
this “surface-hinge correspondence” from the viewpoint
of the Wannier band structure of a slab.

1. Hybrid Wannier representation

Let us begin by reviewing the hybrid Wannier (HW)
representation for a d-dimensional insulating crystal [24].
The idea is to describe the valence states using func-
tions that are maximally-localized (Wannier-like) along
one chosen crystallographic direction z, and extended
(Bloch-like) along the remaining d−1 directions. These
HW functions wk

ln(r) are labeled by a wavevector k in
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the projected (d−1)-dimensional BZ, and by two discrete
indices l and n; l labels cells along z, and n = 1, . . . , J
is an intracell index with J being the number of valence
bands. The HW centers zln(k) = 〈wk

ln|z|wk
ln〉 are orga-

nized into “Wannier bands” that are periodic in z, with J
bands per lattice constant c,

zln(k) = z0n(k) + lc . (11)

From now on, the HW centers will be written in units of
the lattice constant along the wannierization direction.
Accordingly, we set c = 1 in Eq. (11).

The Wannier band structure provides a very general
means of implementing the bulk-boundary correspon-
dence [25, 26]. Consider for example a crystal in d= 3
dimensions. When the boundary of interest is a z-
terminated surface, one inspects the bulk Wannier bands
zln(kx, ky). Under appropriate conditions to be specified
shortly, these can be smoothly deformed onto the surface
energy bands En(kx, ky), so that the topological features
of the two spectra are in correspondence: any protected
gapless modes in the surface bands are reflected in the
connectedness (or “flow”) of the Wannier bands [25, 26].

For insulators with multiple occupied bands, the abil-
ity to make such a smooth deformation depends on the
choice of Wannier bands making up a “Wannier unit
cell” [12]. This is equivalent to the choice of a Wan-
nier gap separating one Wannier cell from the next along
z, or in the language of Ref. [27], “fixing the Wannier
chemical potential.” Specifically, if the Wannier unit cell
is repeated a large integer number of times along z, the
surface AHC at the top surface of the slab constructed
in this way must match that of the insulating surface in
question, since if it differs by an integer multiple of the
quantum, a topological obstruction prevents the smooth
deformation. In our case, the correspondence is obvious:
setting the Wannier gap at z = 0 or z = 1/2 is appro-
priate for the z0- or z1/2-terminated surface respectively.
In general, however, a separate calculation may be re-
quired to determine the correct choice of Wannier gap
for a generic insulating surface.

2. Flow of surface-localized Wannier bands

The surface-hinge correspondence can now be devel-
oped using closely related methods. To look for protected
gapless modes on hinges connecting y- and z-oriented
surfaces, we examine the Wannier bands zln(kx) of a y-
terminated slab. The interesting bands are those whose
HW functions reside near the surfaces. If the flow of
these Wannier bands is such as to cross the Wannier gap
appropriate to the z-terminated surface of interest, then
the x-directed y|z hinges will host topologically protected
gapless modes. Identical conclusions are reached by ex-
amining the bands yln(kx) of z-terminated slabs.

Figure 9 shows the bands zln(kx) of y0-terminated
slabs with a thickness of 20 unit cells, calculated at

FIG. 9. Wannier bands zln(kx) of y-terminated slabs of the
alternating Haldane model, at different φ values. The bands
are color-coded according to the degree of localization on the
+ŷ surface [Eq. (12)]: gray dots are modes extending along y
across the entire slab, and blue (red) dots are modes localized
on the +ŷ (−ŷ) surface; the degree of surface localization
is also indicated by the size of the dots. Two types of cells
are displayed in each panel: the “z0 cell” with boundaries at
z = 0 mod 1 (in black), and the “z1/2 cell” with boundaries
at z = 1/2 mod 1 (in gray).

φ = 5π/4, 3π/4, and 0. They are color-coded by the
weight

ρ+yn (kx) =

∫
+y

∣∣∣wkxln (r)
∣∣∣2 d3r (12)

of the HW functions in the half of the slab containing
the +ŷ surface, and for added clarity the degree of local-
ization at the surfaces is also indicated by the size of the
dots.

Let us first examine the bands at φ = 5π/4 in panel (a).
At kx = −π they are evenly split into two narrow bulk-
like groups, one centered at z = 1/4 mod 1 and another
at z = 3/4 mod 1. Between them there is a “z0 gap”
centered at z = 0 mod 1, and a “z1/2 gap” centered at
z = 1/2 mod 1. As kx increases the two groups broaden
slightly, and one band detaches from each. The two de-
tached bands cross the z1/2 gap in opposite directions, and
as kx approaches π each merges with the bulk-like group
from which the other came. While crossing the gap, these
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FIG. 10. Same as Fig. 9, but for the Wannier bands yln(kx)
of z1/2-terminated slabs.

two chiral bands become strongly localized on opposite
surfaces; this surface-localized flow across the z1/2 gap is
maintained over the interval π < φ < 3π/2, signaling the
presence of protected gapless modes on y0|z1/2 hinges.3

Conversely, the lack of flow on the z0 gap indicates the
absence of such modes on y0|z0 hinges over that interval.

The same logic applies to the other panels of Fig. 9.
In panel (b) the Wannier flow at φ = 3π/4 shifts to the
z0 gap (and switches chirality), consistent with the fact
that the z0 termination is the one producing hinge modes
(of the opposite chirality), for π/2 < φ < π. In panel (c)
both types of gaps are devoid of chiral surface modes at
φ = 0, reflecting the absence of chiral hinge modes for
−π/2 < φ < π/2 with either type of z termination.

With the above procedure, we have been able to pre-
dict the existence of gapless modes on both y0|z0 and
y0|z1/2 hinges from a single slab calculation (at each φ).
This is somewhat unexpected, given that the surface-
AHC approach of Sec. III B required three separate slab
calculations to gather the same information. It should
be noted, however, that the HW-based procedure only

3 In Fig. 9(a), the Wannier band localized on the +ŷ surface flows
downward, in agreement with the negative chirality of the mode
localized at the hinge between the +ŷ and +ẑ surfaces in Fig. 7.

−π 0 π
kx

(b) z1/2 cell

−π 0 π
kx

−1.0

0.0

1.0

P z

(a) z0 cell
P+y
z

P−yz

FIG. 11. Pumped charge Pz(kx) of Eq. (13), in units of e, for
a y-terminated slab at φ = 5π/4. Blue (red) curves denote
results for the +ŷ (−ŷ) surface. In (a) and (b), Eq. (13) is
evaluated using the z0 and z1/2 cells shown in Fig. 9, respec-
tively. Filled dots correspond to the home cell ([0, 1] in (a)
and [−1/2, 1/2] in (b)), and open dots correspond to the cells
immediately above and below.

works when the choice of Wannier gap corresponding to
the z-terminated surface of interest is known, whereas
the surface-AHC approach can be applied directly to ar-
bitrary insulating surfaces.

The protected modes on y|z hinges can also be deduced
from the Wannier spectrum yn(kx) of z-terminated slabs,
but this requires two slab calculations instead of one (one
for each type of z termination). This is illustrated in
Fig. 10 for the case of y0|z1/2 hinges, using z1/2-terminated
slabs. As expected, Wannier flow is present on the y0 gap
at φ = 5π/4 but not at φ = 3π/4 or at φ = 0.

3. Interpretation in terms of charge pumping at the surface

The information in Figs. 9 and 10 about the topology
of y|z hinges can be presented concisely in the language
of charge pumping. Let us describe the procedure for the
case of Fig. 9, where the slab is terminated along y. Fol-
lowing Ref. [28], we assign to the +ŷ surface a quantity
with units of charge defined as

P+y
z (kx) = −e

c

∑
n

z0n(kx)ρ+yn (kx) , (13)

where ρ+yn is given by Eq. (12). For a given value of kx,
this quantity is a measure of the charge pumped along z
on the +ŷ edge of the ribbon (finite in y, infinite in z)
described by Hslab(kx). However, its physical interpre-
tation is rather subtle. For example, consider a weak
electric field along x that acts for one Bloch period. In
this case, the continuous change in P+y

z as kx increases
by 2π is quantized in units of e, and it describes the +ẑ-
directed flow of current on the +ŷ surface relative to the
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−ŷ-directed current on the +ẑ surface (that is, the quan-
tized difference ∆n in surface AHC). Note that Eq. (13)
depends on the choice of Wannier unit cell, and again the
answer will only be correct if that cell is chosen correctly
for the +ẑ-terminated surface of interest.

In Fig. 11, P+y
z is plotted at φ = 5π/4 for two differ-

ent cell choices. In panel (a), the black z0 cell in Fig. 9
was used. Since in Fig. 9(a) the chiral Wannier band
localized on the +ŷ surface does not cross the bound-
aries of that cell, P+y

z does not exhibit flow as a function
of kx, indicating that no protected gapless modes are
present on the y0|z0 hinges. In Fig. 11(b) the calculation
was repeated using the gray z1/2 cell in Fig. 9. Now the
surface-localized band does cross the cell boundaries, and
as a result P+y

z exhibits flow as a function of kx (when
viewed as a continuous but multivalued function), indi-
cating the presence of gapless modes on the y0|z1/2 hinges.

Also shown in Fig. 11 is P−yz , obtained by replacing ρ+yn
with ρ−yn = 1− ρ+yn in Eq. (13).

IV. SUMMARY AND OUTLOOK

We have shown that gapless modes appear naturally on
the hinges of 3D insulators undergoing an axion pump-
ing cycle. The basic idea is illustrated in Figs. 1 and 2.
When a surface is introduced in the system, the valence
and conduction surface bands must exhibit at least one
nodal touching along the cycle. If, as is generically the
case, those band touchings occur on adjacent surfaces
at different values of the pumping parameter φ, then the
connecting hinge will host chiral modes over the interven-
ing φ range. Those modes are boundary manifestations of
the second Chern number characterizing the axion pump,
and they can be viewed as Fermi arcs in the BZ of the

2D hinge connecting the 3D surfaces of a 4D sample with
(kx, ky, kz, φ) reciprocal space.

Note that at any given value of φ, the appearance of 1D
modes on the hinges of the 3D crystal represents an “ex-
trinsic” higher-order topological phase in the language of
Refs. [14]] and [29], since the bulk is topologically trivial
and hinge modes are not required. Instead, the presence
of Fermi arc states is generically required on the 2D sur-
faces of the 4D second-Chern insulator, thus representing
“intrinsic” topology when the system is viewed from the
standpoint of the global (kx, ky, kz, φ) parameter space.

We have exemplified these behaviors by means of a
tight-binding model, but the same methodology could
easily be applied in the framework of ab initio calcula-
tions. However, it remains a major challenge to devise a
physical mechanism leading to the adiabatic pumping of
axion coupling in a real material.

Alternatively, it may be possible to demonstrate axion
pumping behavior in other settings such as photonic crys-
tals, ultracold atoms, or electrical circuits. The physics
of second-Chern insulator is already being explored in
such systems [30–37], and we hope that the present work
may inspire future efforts towards the observation of the
associated topological hinge states.
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