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Comment on “Weyl fermions and the anomalous Hall effect in metallic ferromagnets”

David Vanderbilt
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA

Ivo Souza
Centro de F́ısica de Materiales and DIPC, Universidad del Páıs Vasco,
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We point out that, contrary to an assertion by Chen, Bergman and Burkov [Phys. Rev. B 88,
125110 (2013)], the non-quantized part of the intrinsic anomalous Hall conductivity can indeed be
expressed as a Fermi-surface property even when Weyl points are present in the bandstructure.

In a recent paper, Chen, Bergman and Burkov (CBB)1

challenged the claim that the non-quantized part of the
intrinsic anomalous Hall conductivity (AHC) can be re-
garded as a Fermi-surface property.2 In this Comment,
we point out that CBBmisrepresented the previous work,
and that the formal analysis of Ref. 2, as well as subse-
quent first-principles calculations based on Fermi-surface
integrals,3 are in fact correct.
CBB start from their Eq. (4), an expression for the

intrinsic AHC in terms of an integral of the Berry cur-
vature over the occupied band manifold in the Brillouin
zone (BZ). Following Ref. 3 they write this as

σxy =
1

2π

∫ π

−π

dkz σ
2D

xy (kz) , (1)

where σ2D
xy is the contribution arising from a slice of the

BZ at a given kz . They then point out that if σ2D
xy is

evaluated as a sum of Berry phases computed as integrals
over Fermi loops on the slice,

σ2D

xy (kz) =
e2

2πh

∑
n

∮
dk ·Ank(kz) , (2)

where A is the Berry potential and the sum is over bands
crossing the Fermi energy, then contributions from en-
tirely filled bands can be missed. Particularly when iso-
lated band crossings (“Weyl points”) are present in the
occupied manifold, they argue that Eq. (1) will then yield
an incorrect result.
This is true as far as it goes. However, the Fermi-

surface formulas proposed in Ref. 2 are not those of
Eqs. (1-2) above. Instead, the formula proposed in
Eq. (20) of Ref. 2 states that the non-quantized part of
the AHC can be written, upon recasting the Hall con-
ductivity as a vector, as

σ =
e2

(2π)2h

∑
α

∫
Sα

d2k [F(k) · n̂(k)]k . (3)

This takes the form of a sum of Fermi-surface inte-
grals of the position k on the Fermi surface weighted

by the surface-normal component of the Berry curvature
F = ∇ × A of the band crossing the Fermi energy at
k. (The above assumes that the Fermi sheets Sα do not
touch the BZ boundary; the generalization to the case
that they do is provided in Eq. (21) of Ref. 2.) CBB
seem to have overlooked that this was the actual Fermi-
surface expression proposed in Ref. 2. The possible ex-
istence of Weyl points was carefully considered as part
of the derivation of Eq. (3), which remains correct even
when they are present.

There is also no reason for concern that published first-
principles calculations of the AHC might be incorrect
because of overlooking the subtleties discussed by CBB.
Clearly those that were based on volume integrals of the
Berry curvature4–6 are unaffected. (In this class, ap-
proaches based on gauge-invariant trace formulas7 are
particularly suited to the presence of Weyl points, since
they remove the singularity entirely.)

Of more concern is the Fermi-loop calculation of Ref. 3,
which was also based on Eqs. (1-2) above. Since Berry
phases are only defined modulo 2π, those equations
must be supplemented by a prescription for choosing the
branch cuts as a function of kz. CBB adopted a pre-
scription in which the sum of Berry phases in Eq. (2) was
equated with the 2D integral of the Berry curvature over
the occupied portions of the BZ for the partially filled
bands only. This leads to unphysical step discontinuities
in σ2D

xy at isolated kz values where a Weyl point between
the last fully occupied and the first partially occupied
band crosses the BZ slice, which CBB compensate for by
adding a counterterm in their Eq. (8). Instead, in Ref. 3
the quantity σ2D

xy was chosen to be a continuous function
of kz. In this way the extra non-quantized contributions
from filled bands in Eq. (8) of CBB are automatically
included, as illustrated below. In any case, the results
of the Fermi-loop and Fermi-sea integration approaches
were compared in Ref. 3 and found to agree.

As an instructive example, consider a nearly-insulating
crystal that is only metallic due to the presence of two
small electron pockets arising from shallow Weyl points
of opposite chirality located at k1 and k2.

8 In this case,
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Eq. (8) of CBB includes a contribution to σxy that is
proportional to (k2z − k1z), which would be missed in a
naive implementation of Eqs. (1-2) above. This contri-
bution is also included in Eq. (3), because the integral of
F · n̂ over each Fermi surface pocket is ±2π, due to the
enclosed Weyl points; in the limit of small pockets, the
factor of k can be pulled out of the integral, providing
the needed (k2z − k1z) term. In the Fermi-loop approach
of Ref. 3, one sets the branch choice of σ2D

xy arbitrarily
at some reference kz , and then insists on continuity as a
function of kz. In this example, one can set σ2D

xy to zero

for kz below both pockets; it will then rise continuously
from 0 to e2/h while traversing the pocket around k1,
then remain constant at e2/h until the second pocket is
reached, where it will again return to zero. When aver-
aged over all kz , this will correctly give a contribution
proportional to (k2z − k1z).
In summary, we conclude that the non-quantized part

of the intrinsic AHC is indeed correctly expressed as a
Fermi-surface property in Eqs. (20-21) of Ref. 2, and that
the methods used in previous calculations of the AHC
are correct, even when Weyl points are present in the
occupied band manifold.
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