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Using tight-binding models and first-principles calculations, we demonstrate the possibility to
achieve a quantum anomalous Hall (QAH) phase on a two-dimensional square lattice, which can be
realized in monolayers of double perovskites. We show that effective intersite spin-orbit coupling
between eg orbitals can be induced perturbatively, giving rise to a QAH state. Moreover, the effective
spin-orbit coupling can be enhanced by octahedral rotations. Based on first-principles calculations,
we propose that this type of QAH state could be realized in La2MnIrO6 monolayers, with the size
of the gap as large as 26 meV in the ideal case. We observe that the electronic structure is sensitive
to structural distortions, and that an enhanced Hubbard U tends to stabilize the nontrivial gap.

I. INTRODUCTION

The quantum anomalous Hall (QAH) effect has drawn
intensive attention recently, in part due to the dissi-
pationless transport that can take place in the spin-
polarized edge states, which are topologically protected
against perturbative disorder. A generic model to achieve
the QAH phase was first proposed by Haldane on the
honeycomb lattice,1 where complex hoppings between
next-nearest neighbors (NNNs) play a crucial role. Sev-
eral systems have been proposed to host such nontriv-
ial topological phases, such as magnetically doped topo-
logical insulators2,3 and honeycomb lattices formed by
transition-metal or heavy-metal ions.4–8 For most of
these systems, the occurrence of the QAH phase relies on
the honeycomb lattice, and the topological properties are
usually carried by the sp bands. Meanwhile, spontaneous
time-reversal symmetry breaking is usually induced by
doping with magnetic ions or via a magnetic proximity
effect. These two limitations greatly reduce the range
of available candidate systems to search for the occur-
rence of a QAH state. In Cr-doped (Bi1−xSbx)2Te3, for
example, where the QAH phase has first been observed
experimentally,9 the QAH effect is only observable be-
low about 30 mK, due to the small exchange splittings
induced by Cr doping.

In their seminal work, Xiao et al. proposed that in
(111) superlattices of perovskite transition-metal oxides
(TMOs), various topological phases can be obtained.11

For TMOs with partially occupied d shells, magnetism is
relatively easy to obtain because the d electrons are more
localized than the sp electrons. Furthermore, electronic
correlations are usually significant in TMOs with local-
ized d electrons, and there is the possibility that nontriv-
ial topological phases can develop by spontaneous sym-
metry breaking13–15 with a dynamically generated spin-
orbit coupling (SOC).16 It has even been theoretically ar-
gued that nontrivial topological phases can be realized in
(111) TMO heterostructures without considering atomic
SOC.12,17 In all these proposals, the underlying honey-
comb lattice facilitates the appearance of a topological
phase. Unfortunately, it is difficult to synthesize (111)

TMO superlattices experimentally with good atomic pre-
cision, although there has been some recent experimental
progress in this direction.10

The presence of a honeycomb lattice is not, how-
ever, a necessary condition for the occurrence of the
QAH effect. For instance, topologically nontrivial phases
can be obtained on square lattices with well designed
nearest-neighbor (NN) and NNN hoppings.18–20 Re-
cently, three proposals have been put forward to achieve
the QAH effect in more realistic systems based on square-
lattice symmetry, i.e., superlattices of CdO/EuO21 and
GdN/EuO22 with the rocksalt structure and CrO2/TiO2

with the rutile structure.23 For the latter case, the rele-
vant bands are the t2g states of Cr; while these states
show large exchange splittings, the topological gap is
only about 4 meV due to the small strength of the on-
site atomic SOC of Cr atoms.

In this work, we demonstrate the possibility of achiev-
ing a nontrivial QAH phase in (001)-oriented double-
perovskite monolayers. Using a two-band model for eg
orbitals on a square lattice, we show that complex ef-
fective intersite hoppings between two eg orbitals can be
induced perturbatively by the atomic SOC, giving rise
to a QAH state. Based on first-principles calculations,
we further show that such a model can be realized in
checkerboard La2MnIrO6 (LMIO) monolayers (MLs) em-
bedded in a non-magnetic insulating host such as LaAlO3

(LAO). The magnitude of the topological gap in the ideal
case can be as large as 26 meV. The advantage of such
a system is that (001) superlattices of perovskite com-
pounds are well studied and can be synthesized with good
atomic precision, resulting in controlled structural prop-
erties. Moreover, given the abundance of physical prop-
erties in perovskite TMO superlattices, including high-
Tc superconductivity,24 the QAH phase realized in (001)
perovskite superlattices can also be integrated more eas-
ily with other functional oxides to achieve new physical
properties.

The manuscript is organized as follows. In Sec. II we
present the tight-binding model for half-filled eg states on
a square lattice. We demonstrate how the effective SOC
can be induced following standard perturbation theory,



2

(a) (b)

θ

dx2−y2

dz2

t1a

t1b

t2a

t2b

t2c

t1c

FIG. 1: (Color online) (a) Oblique view of the crystal struc-
ture of an La2MnIrO6 (LMIO) monolayer (ML) sandwiched
between LaAlO3 layers. (b) Sketch defining the parameters
of the tight-binding model of Eq. (1) that describes the LMIO
ML. Only the local eg orbitals on Mn atoms (purple, at ori-
gin) are shown; orbitals on Ir (brown, at the center) are sup-
pressed. The intersite hoppings between Mn eg orbitals on
nearest neighbors (t1i) and next-nearest neighbors (t2i) are
shown by arrows (see main text for details). The octahedral
rotations, denoted by angle θ in (b), are exaggerated for clar-
ity of illustration.

focusing on the role of octahedral rotations. Detailed
symmetry analysis is given to understand how the non-
trivial topological phase develops. Our first-principles

results are shown in Sec. III, where the model arguments
in Sec. II are verified by considering a hypothetical struc-
ture. The effects of structural relaxations are then stud-
ied in detail and it is shown that epitaxial strain can be
used to tune the LMIO monolayers close to the critical
region where a nontrivial QAH state exists.

II. TWO-BAND MODEL

Our tight-binding model simulates a double-perovskite
ML with checkerboard ordering of the two sublattices,
either isolated in vacuum or embedded in an inert (wide-
gap non-magnetic) perovskite host. To be specific, we
consider a case in which one sublattice is populated with
ions having large exchange splittings, typically high-spin
3d transition-metal ions, while ions with filled (e.g., t2g)
subshells, preferably with large on-site SOC, are located
on the other sublattice. In this work we consider the
combination of Mn3+ and Ir3+ ions as an example, as it
will turn out to be a promising candidate based on our
first-principles calculations in Sec. III.

The crystal structure of such an LMIO monolayer
sandwiched between LAO layers is shown in Fig. 1(a).
The corresponding tight-binding model for the two eg
orbitals on each Mn site can be expressed in the local
(dz2 , dx2−y2) basis as

H=

(
t1a f1(k)+t2a f2(k) (t1c−iλ(1)) g1(k)−(t2c−iλ(2)) g2(k)

c.c. ∆+t1b f1(k)+t2b f2(k)

)
(1)

where f1(k) = cos kx + cos ky, g1(k) = cos kx − cos ky,
f2(k) = 2 cos kx cos ky, and g2(k) = 2 sin kx sin ky. The
model is parametrized by the difference ∆ between the
on-site energies of dx2−y2 and dz2 orbitals, the NN hop-
pings t1i, the NNN hoppings t2i, and the effective SOC
parameters λ(1) and λ(2), which respectively denote the
NN and NNN couplings between dz2 and dx2−y2 orbitals
induced perturbatively as explained below. For the hop-
pings t1i and t2i, i=a or b refers to the like-orbital hop-
ping between dz2 or dx2−y2 orbitals respectively, while
i=c denotes the unlike-orbital hopping between dz2 and
dx2−y2 orbitals. Note that these are all “effective hop-
pings” in the sense that the oxygen and iridium orbitals
are regarded as having been integrated out.

The complex hopping terms iλ(1) and iλ(2) in Eq. (1)
between dz2 and dx2−y2 orbitals can be induced by consid-
ering perturbative processes involving SOC. When there
is no rotation of the transition-metal-oxygen octahedra,
the iλ(1) term arises following

iλ(1) =
〈dMn
z2 | Ĥ |dMn

xy 〉 〈dMn
xy |ξMnL̂ · Ŝ |dMn

x2−y2〉
EMn
eg − EMn

t2g

(2)

where L̂ (Ŝ) is the orbital (spin) angular-momentum op-
erator, ξMn is the strength of the atomic SOC on Mn,
and Ĥ denotes direct hybridization between dxy and dz2
orbitals located on NN Mn sites. EMn

t2g and EMn
eg denote

the on-site energies of the t2g and eg subshells on the Mn
ions in the cubic crystal field. In a general case when
the in-plane rotation angle θ (cf. Fig. 1(b)) is nonzero, it
can be shown that iλ(1)∝ iξMn sin(2θMn) = iξMn cos(2θ),
where θMn denotes the rotation angle of the MnO6 oc-
tahedra and θMn = θ+ 45◦. That is, iλ(1) is an even
function of the rotation angle θ. We note that second-
order processes involving Ir t2g orbitals can also lead to
an effective SOC between the eg orbitals located on NN
Mn sites, but the two most obvious contributions, corre-
sponding to hopping via the two Ir atoms adjacent to a
given Mn-Mn bond, tend to cancel one another.

A finite rotation angle θ leads to a nonzero iλ(2) term
between eg orbitals located on NNN Mn sites. It arises
following
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iλ(2) =
〈dMn
z2 | Ĥ ′ |dIrxy〉 〈dIrxy |ξIrL̂ · Ŝ |dIrx2−y2〉 〈dIrx2−y2 |Ĥ ′ |dMn

x2−y2〉
(EIr

eg−EIr
t2g )(EMn

eg − EIr
eg )

(3)

where ξIr denotes the strength of the atomic SOC on Ir
sites, EIr

t2g and EIr
eg are the on-site energies of the Ir t2g

and eg orbitals, and Ĥ ′ denotes the direct hybridization
between orbitals on Mn and Ir atoms. Similar virtual
transitions involving coupling of the dMn

x2−y2 orbital of Mn

to the dIrxy orbital of Ir also lead to nonzero contributions.

The resulting total iλ(2)∝ iξIr sin(2θ), with θ the octahe-
dral rotation angle. That is, iλ(2) is an odd function of θ.
Furthermore, the magnitude of λ(2) is determined by the
strength of the atomic SOC of the Ir atoms. We observe
that for the LMIO monolayers considered in this work,
the magnitude of λ(2) is about one order of magnitude
larger than that of λ(1), due to the much stronger atomic
SOC of Ir (∼0.5 eV) compared to that of Mn (∼0.05 eV).

The two-band model of Eq. (1) can be solved analyt-
ically by decomposing the Hamiltonian as H = σ0h0 +∑3
i=1 hiσi where σ0 is the unit matrix and σi are the

Pauli matrices. The Berry curvature for the lower-lying
band can be obtained explicitly as

Ω = − 2

h

εijk hihjxhky
(E+−E−)2

(4)

where εijk is the Levi-Civita symbol, h=
√
h21+h22+h23,

hiα=∂hi/∂kα (α=x, y), and E±=h0 ± h are the energy
eigenvalues for the higher/lower bands. In our case,

h0 = [∆+(t1a + t1b)f1(k)+(t2a + t2b)f2(k)] /2 ,

h1 = t1cg1(k)− t2cg2(k) ,

h2 = λ(1)g1(k)− λ(2)g2(k) ,

h3 = [−∆+(t1a − t1b)f1(k)+(t2a − t2b)f2(k)] /2 .

(5)

The band structure obtained from a model of this form
is presented in Fig. 2(a), and the regions of strong Berry
curvature, corresponding to small direct gaps, are shown
as the (blue/red) shaded regions in Fig. 2(b-d). The di-
agonal hopping parameters for the plots were obtained by
fitting to the first-principles band structure of Fig. 3(b),
yielding t1a = −0.27 eV, t1b = 0.09 eV, t2a = 0.05 eV,
t2b=−0.105 eV, and ∆=0.28 eV. The off-diagonal terms
were set to t1c=0.02 eV, t2c=0.02 eV, λ(1) =0.02 eV, and
λ(2) =0.08 eV. The inset of Fig. 2(a) shows the computed
edge states for an 80-unit-cell-wide ribbon cut from this
model, providing the first evidence that the model ex-
hibits a non-trivial topology.

To understand how these features of the band structure
come about, it is useful to return to Eqs. (4-5). Note that
h1 and h2 both have to be present in order to obtain a
nonzero Berry curvature. Actually we find that nonzero
t2c and λ(1) or nonzero t1c and λ(2) can both lead to

nontrivial topological phases, corresponding to the case
without rotations and the case with only terms induced
by rotations, respectively. Interestingly, the Chern num-
bers are of opposite sign for the two cases. Due to the
much larger magnitude of λ(2), the Chern number of the
system is determined in practice by the combination of
t1c and λ(2).

Consider first the case that the octahedral rotation an-
gle θ vanishes. Then t1c= 0 because symmetry prevents
any direct hybridization of dz2 and dx2−y2 orbitals on NN

Mn sites. In this case, λ(2) = 0 as well because the hy-
bridization of dz2 and dx2−y2 orbitals on NNN Mn sites
via Ir atoms is forbidden. In fact, we observed that both
t1c and λ(2) is proportional to sin 2θ, as explained above
for λ(2). That is, without octahedral rotations only t2c
and λ(1) in the off-diagonal terms of Eq. (1) are nonzero.
Examining Eq. (1) reveals that without the off-diagonal
terms proportional to λ(1) and t2c, the eigenvalues of the
Hamiltonian are degenerate wherever h3 =0, which turns
out to be a loop centered at the M point in the Brillouin
zone (BZ) as shown by the green lines in Fig. 2(b). This
reflects the fact that neither f1(k) nor f2(k) vanishes in
the vicinity of M. By contrast, g1(k) vanishes along the
Γ-M lines, while g2(k) vanishes along the X-M lines, as
indicated by the (black) dashed and (blue) dotted lines
in Fig. 2(b) respectively. Thus, the loop of degeneracy is
reduced to four points (Dirac nodes) located on the X-M
directions if λ(1) is turned on, or on the Γ-M lines if t2c
is turned on.

When both λ(1) and t2c are nonzero, the energy spec-
trum of Eq. (1) is fully gapped, leaving concentrations of
Berry curvature in the regions of the BZ where the gap is
small, as shown by the (blue) shading in Fig. 2(b). Since
the magnitude of λ(1) is comparable to that of t2c, the
distribution of the Berry curvature is quite smeared. The
resulting total Chern number is C=−2 after integrating
the Berry curvature over the whole BZ, indicating that
a QAH state has been formed. This is confirmed by our
numerical calculation of the anomalous Hall conductivity
(AHC), which we find to be equal to −2 e2/h.

Switching on the octahedral rotations modifies the hy-
bridization between d orbitals of Mn and Ir atoms, renor-
malizing all the hopping parameters in Eq. (1). However,
we find that the most important changes arise from the
fact that t1c and λ(2) adopt nonzero values when θ 6= 0.
To characterize the influence of these two terms, we first
consider an artificial situation in which t1c and λ(2) are
turned on while t2c and λ(1) are turned off, with all other
parameters kept fixed at their previous values. As shown
in Fig. 2(c), the sharpest concentrations of Berry curva-
ture are found in monopole-like peaks; these lie on the
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FIG. 2: (Color online) Electronic structure of the tight-
binding model of Eq. (1) with parameters as given in the text.
(a) Band structure along the high-symmetry Γ-X-M-Γ k-path.
Inset shows the projected bulk band structure (shaded region)
and edge states for an 80-cell-wide ribbon in the reduced 1D
BZ along Γ̃-X̃-Γ̃, color-coded to distinguish the contributions
from the two edges; dashed line denotes EF . (b-d) Color map
showing the distribution of negative (blue) and positive (red)
Berry curvature in the BZ for three cases: (b) without octa-

hedral rotations (t2c and λ(1) nonzero); (c) with octahedral

rotations (t1c and λ(2) nonzero) but t2c and λ(1) artificially set
to zero; and (d) with octahedral rotations, including all four
terms. For guidance, nodes of h1, h2, and h0+h3 in Eq. (5) are
shown as dotted blue, dashed black, and solid green curves,
respectively.

X-M lines because |t1c| < |λ(2)|. The Chern number that
results by integrating the Berry curvatures over the BZ
is now C=2, opposite to the case when t2c and λ(1) are
nonzero. This sign reversal results from the fact that the
λ(1) and λ(2) terms are of opposite sign (cf. Eq. 1).

Fig. 2(d) shows the distribution of the Berry curvature
and the corresponding nodes of the h1, h2, and h0 + h3
defined in Eq. (5) when the full Hamiltonian of Eq. (1)
is considered, including both the preexisting interactions
and those induced by rotations. Since λ(1) and λ(2) have
different k-dependences as given in Eq. (1), the nodes of
h2 shift slightly in the counterclockwise direction rela-
tive to the case of Fig. 2(c). There is also a shift (larger
and in the opposite direction) in the nodes of h1 aris-
ing from the competition between t1c and t2c. However,
because of the large magnitude of λ(2), the avoided cross-
ings follow the nodes of h2. The result is that the four
avoided crossing points of the full Hamiltonian are ro-
tated slightly in the counterclockwise direction around M

compared to Fig. 2(c). Moreover, the topological prop-
erties of our model are dominated by the combination of
λ(2) and t1c, so that the Chern number is C=2. That is,
the octahedral rotations induce a topological phase tran-
sition where the Chern number changes from −2 to 2.
The topological non-triviality is also confirmed by an ex-
plicit calculation of the edge states of a one-dimensional
ribbon as shown in the inset of Fig. 2(a). It is evident
that two edge states with the same group velocity are
located on one edge, while another two edge states with
the opposite group velocity are located on the other edge.

The fact that the absolute value of the Chern num-
ber is two, and not one, can be understood in several
ways. For example, we note that in the limit of a very
small coefficient of g2, so that the four Dirac points are
just barely opened, each should carry a Berry phase of
±π (as is standard for a simple avoided Dirac crossing);
four of them add to ±4π, suggesting C =±2. Another
approach is to consider the limit that the four degener-
acy points shrink to the M point and merge. Specifically,
we find that by tuning ∆, the difference between on-site
energies of valence dz2 and conduction dx2−y2 orbitals in
the tight-binding model, the four avoided crossings shrink
to a singular point with quadratic dispersion at M when
∆c = 1.034 eV, and the gap reopens in a normal C = 0
phase for ∆>∆c. As pointed out in Ref. 25, the Chern
number transfer should always be ∆C = 2 in the case
of a critical quadratic band touching. This can also be
understood based on the symmetry of the orbitals. At
the M point, dz2 and dx2−y2 states are both eigenstates
of the C4 symmetry operator, but with eigenvalues of +1
and −1, respectively. If these labels had been adjacent
in the cycle of possible eigenvalues (1, i, −1, −i, ...), a
Chern transfer ∆C = ±1 would have been expected; but
because they are not, we get ∆C = ±2.26

Finally, we note that since the minimum avoided cross-
ings are not in general located on the high-symmetry X-
M or Γ-M k-path when octahedral rotations are present,
the actual band gap is smaller than the one obtained
from a band structure plotted along the Γ-X-M-Γ high-
symmetry lines. For example, a direct inspection of
Fig. 2(a) suggests a gap of 30 meV, compared to the true
value of 25 meV obtained from a more careful scan over
the full 2D BZ.

III. FIRST-PRINCIPLES CALCULATIONS

In this section we demonstrate how the tight-binding
model discussed above can be realized in more realistic
systems. The spin-polarized half-filled eg states could
be realized by a d4 or d9 configuration, while non-spin-
polarized sublattice could be populated by d0, d6, or d10

ions. In this work we considered a specific system con-
sisting of a monolayer of LMIO sandwiched into an LAO
environment, as shown in Fig. 1(a), although the real-
ization of the tight-binding model is not limited to this
specific system. We have chosen LAO as the host en-



5

Γ X M Γ−1.0

−0.5

0.0

0.5

1.0
E

n
e
rg

y 
(e

V
)

(a)

Γ X M Γ−1.0

−0.5

0.0

0.5

1.0
(b)

 0

 0.5

 1

 1.5

 2

-100 -50  0  50  100  150  200

A
H

C
 (

e2
/h

)

Energy (meV)

(c)

Γ X M Γ−1.0

−0.5

0.0

0.5

1.0

E
n

e
rg

y 
(e

V
)

(d)

Γ X M Γ−1.0

−0.5

0.0

0.5

1.0

−8
−4
0
4
8

m
e
V

(e)

Γ X M Γ−1.0

−0.5

0.0

0.5

1.0

−80
−40
0
40
80

m
e
V

(f)

FIG. 3: (Color online) Electronic structures of the LMIO/LAO superlattices. Red (blue) color-coding highlights the character
of the dz2 (dx2−y2) orbitals of the Mn atoms, and black indicates the Ir-5d states. All calculations are done with U = 5.0 eV
and J = 1.0 eV on Mn unless stated otherwise. (a) Hypothetical structure without octahedral rotations (see main text for
details). (b) Hypothetical structure with 15◦ rotations about the z-axis in the LMIO layers only. (c) Calculated anomalous
Hall conductivity for case (b). (d) Relaxed structure at zero epitaxial strain. (e) Relaxed structures at 2% tensile epitaxial
strain. (f) Same as (e) but with U on Mn sites increased to 7.0 eV. Insets in (e-f) zoom in on the region around the M point.
Dashed lines denote the Fermi energies.

vironment because it has a large bulk gap of 5.6 eV, so
that the states around the Fermi energy (EF ) will be
dominated by the orbitals in the LMIO layers.

Our first-principles calculations are done using the
projector augmented wave method as implemented in
VASP.27 The exchange-correlation potentials are approx-
imated using the Perdew-Burke-Ernzerhof functionals.28

For all the structures considered, the in-plane lattice con-
stants are fixed at 3.789 Å, the cubic lattice constant of
bulk LAO. For the self-consistent total-energy calcula-
tions, the plane-wave energy cutoff is taken to be 500 eV.
All our calculations are carried out using the

√
2×
√

2×3
supercell shown in Fig. 1(a), which also accommodates
octahedral rotations about the z axis, and a k-point set
corresponding to an 8×8×4 mesh in the full BZ is used.

To treat Coulomb interactions for open shells, we ap-
plied the GGA+U method29 with double-counting con-
sidered in the fully localized limit. Since the t2g shells of
Ir are almost fully occupied, the GGA+U corrections are
only applied to Mn sites. Initially our calculations are all

carried out with U=5.0 eV and J=1.0 eV,30 correspond-
ing to commonly accepted values for Mn3+. Later, we
study the effect of varying the U value on the Mn sites,
as discussed below. In all our calculations, we assume
that the magnetic moments of Mn are ferromagnetically
coupled. To shift the 4f states of La away from EF , we
impose U4f = 11 eV and J4f = 0.68 eV as used for other
calculations on heterostructures.31 The AHC is obtained
by Wannier interpolation using an effective Hamiltonian
constructed in a basis of 128 maximally localized Wan-
nier functions32 corresponding to all Mn-3d, Ir-5d, and
O-2p orbitals in the supercell.

Consider first a hypothetical structure without octa-
hedral rotations, specifically one in which the in-plane
Mn-O and Ir-O distances are set to be equal, and the
out-of-plane Mn-O distance is set to be 2.0 Å. The first-
principles band structure is shown in Fig. 3(a). Due to
the strong atomic SOC of Ir atoms, their t2g bands are
separated into a group of four lower-lying J=3/2 bands
and two higher J = 1/2 bands.33 The bands around EF
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are mostly a mixture of eg bands from Mn and the J=1/2
bands from Ir. The eg states of Mn are half-filled, lead-
ing to an atomic magnetic moment of about 4µB. The
hybridization of the Ir t2g states with the Mn eg states
induces small (about 0.05µB) magnetic moments on the
Ir sites.

Introducing octahedral rotations in the LMIO layers
leads to significant changes of the band structure by in-
ducing additional hybridizations. Fig. 3(b) shows the
band structure with a staggered rotation of the MnO6

and IrO6 octahedra of 15◦ about the z axis, while all
the other degrees of freedom remain fixed. Now only two
bands, mainly of Mn dx2−y2 and dz2 character, are left
around EF , although these orbitals hybridize strongly
with the Ir 5d orbitals. Recalling the arguments given
above in connection with our tight-binding model, such
hybridization is crucial for inducing the effective SOC
λ(2) in Eq. (1), which in turn helps to give a nontrivial
gap. We confirm that the gap is indeed nontrivial, with a
quantized AHC of 2 e2/h, by direct calculation as shown
in Fig. 3(c). The topological band inversion is also evi-
dent in the band structure of Fig. 3(b), where the band
characters have clearly exchanged between the conduc-
tion and valence bands around the M point. We note
that the size of the gap is about 26 meV as measured
by the width of the quantized AHC plateau, which is
smaller than the gap obtained from inspection along the
high-symmetry k-path in Fig. 3(b); this is again due to
the fact that the avoided-crossing points are not located
on the high-symmetry lines (cf. Fig. 2(d)).

To be more realistic, we relaxed the structures by al-
lowing the out-of-plane lattice constant and internal co-
ordinates to vary, but keeping the in-plane lattice con-
stants fixed at those of LAO. We find the relaxed octa-
hedral rotation angle in the LMIO layers to be 15.6◦, and
the relaxed out-of-plane Mn-O distance is about 2.02 Å.
By these measures, the ideal structure discussed above
is quite reasonable. However, the most drastic change
occurs locally in the MnO6 octahedra, where the local
c/a ratio (i.e., the ratio of apical to in-plane Mn-O bond
lengths) increases to 1.06, from 1.02 in the ideal struc-
ture. This change results from a contraction of the in-
plane Mn-O distances.

Fig. 3(d) shows the band structure for the fully re-
laxed structure. Evidently the dx2−y2 bands are shifted
to higher energies due to the variations of the on-site en-
ergies of the dx2−y2 and dz2 orbitals caused by the local
distortions of the MnO6 octahedra. The resulting dx2−y2
and dz2 bands no longer overlap anywhere in the BZ, and
as a result the gap at EF is topologically trivial, as veri-
fied by our calculations of the AHC (not shown). Another
consequence of the structural relaxations is that the lo-
cal conduction-band minimum at Γ has shifted downward
and now falls about 120 meV below the conduction-band
minimum at M. This is caused by a change in the sign of
the hopping parameter between dx2−y2 orbitals located
on NN sites, i.e., t1a in Eq. (1). Thus, even if some means
could be found to restore the band inversion at M, this

reversal in the energy ordering of the conduction-band
minima could prevent the maintenance of a global gap,
forcing the system metallic.

To overcome these negative effects of the structural
relaxations, which disfavor the topological phase, ten-
sile epitaxial strain can be applied to increase the in-
plane lattice constants and decrease the out-of-plane one,
thus reducing the local octahedral distortions. Fig. 3(e)
shows the band structure with a 2% tensile epitaxial
strain applied to the LAO substrate. In this case the
dx2−y2 bands are shifted downward in energy relative to
the dz2 bands, once again overlapping with them. The
gap opened around M shows a typical anticrossing be-
havior, as emphasized in the inset of Fig. 3(e), and our
calculation of the AHC confirms that it is topologically
nontrivial. However, the magnitude of the gap is quite
small, only about 1 meV. This is a consequence of the
fact that the off-diagonal terms in the Hamiltonian of
Eq. (1) vanish as one approaches the M point because
of the form of g1(k) and g2(k). To our satisfaction, we
observe that the dx2−y2 conduction-band minimum at Γ
remains above that at the M point, if only barely (by
∼5 meV), so that the gap around M is a true global gap.
We conclude that a tensile strain of at least 2% is needed
to obtain the QAH state, and speculate that out-of-plane
uniaxial pressure could help further.

Interestingly, increasing the strength of the local Hub-
bard U on the Mn sites also tends to stabilize the topo-
logical phase. Fig. 3(f) shows the resulting band struc-
ture obtained by increasing the Hubbard parameter to
U = 7 eV on the Mn sites, with the conditions otherwise
the same as in Fig. 3(e) (i.e., relaxed with 2% tensile epi-
taxial strain). Larger U not only shifts the conduction-
band minimum at Γ upwards away from EF , but also
enhances the magnitude of the nontrivial topological gap
opened around the M point. The magnitude of the global
band gap is calculated to be about 4 meV. This is much
smaller than the band gap derived from states along the
high-symmetry k-path, which is about 25 meV, again be-
cause the avoided crossings are not located on the high-
symmetry lines as explained in Sec. II. Moreover, sig-
nificant changes occur in the hybridizations between the
valence states, caused by the enhanced local atomic U
values on the Mn sites. For instance, the dz2 bands are
shifted to lower energies (Fig. 3(e) versus Fig. 3(f)), and
the first valence band below EF acquires more dx2−y2
character with increasing U because of more significant
hybridization with the d states of Ir atoms.

IV. CONCLUSIONS

In conclusion, we have demonstrated the possibility of
achieving a quantum anomalous Hall phase on a square
lattice via an appropriate pattern of intersite spin-orbit
couplings between d orbitals, which can be realized in
double-perovskite monolayers. We have shown that for a
half-filled manifold of eg orbitals, an effective SOC can be
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induced by hybridizing with other d orbitals located on
the neighboring sites, even though no direct on-site SOC
is present. We have found, in particular, that octahedral
rotations can induce an effective SOC between eg orbitals
located on NNN sites. We have demonstrated that a sim-
ple tight-binding Hamiltonian encoding the most impor-
tant features of the interactions gives rise quite gener-
ically to a quantum anomalous Hall phase. Then, us-
ing first-principles calculations, we have also shown that
such a model can be realized in La2MnIrO6 monolay-
ers. The gap can be as large as 26 meV in the ideal
case. However, there are several open issues that need
further investigation for this system. First, we have as-
sumed ferromagnetic order, even though there is some
tendency of the magnetic moments of the Mn ions to
be coupled antiferromagnetically. This problem may be
remedied by choosing a substrate with a magnetic order
that can enforce the desired ferromagnetic state. Second,
there is the issue of the assumed checkerboard composi-
tional order. Even though both Mn and Ir are 3+ ions,
which by itself would give no strong tendency toward or-
dering within the La2MnIrO6 monolayer, we argue that
such a tendency may come instead from the substantial
difference in ionic radii. Third, it would be useful to
understand the role of correlations in more detail. We
have found that enhancing the local Hubbard U favors
larger band gaps while maintaining the topological non-
triviality, but the interplay of electronic correlations and
SOC on the square lattices deserves further investigation

from beyond-DFT methods.

Finally, as discussed above, the global gap may not
remain open after the contraction of the in-plane Mn-
O distances with relaxation. We have shown that this
problem may be overcome by engineering structures uti-
lizing tensile epitaxial strains of about 2%, making use
of the sensitivity of the relevant dx2−y2 and dz2 bands to
local distortions. Further stabilization of the QAH phase
might be achieved by varying the choice of the inert per-
ovskite surrounding material, by applying vertical uni-
axial pressure in addition to the tensile epitaxial strain,
or by chemical doping within the double-perovskite layer
or in the surrounding material. Other combinations of
transition-metal ions, in which one has a half-filled eg
shell, should also be explored. Lastly, we suspect that
the idea of intersite SOC on the square lattices should be
applicable to ions with partially filled t2g shells as well.
These interesting questions are left for future investiga-
tions.
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17 A. Rüegg, and G.A. Fiete, Phys. Rev. B 84, 201103 (2011).
18 Y.-X. Wang, F.-X. Li, and Y.-M. Wu, EPL 99, 47007

(2012).
19 S. Yang, Z.-C. Gu, K. Sun, and S. Das Sarma, Phys. Rev.

B 86, 241112 (2012).
20 X. Guo, X. Ren, G. Guo, and J. Peng, Canadian Journal

of Physics 2013, 0241 (2013).
21 H. Zhang, J. Wang, G. Xu, Y. Xu, and S.-C. Zhang,

arXiv:1308.0349 (2013).
22 K. Garrity and D. Vanderbilt, arXiv:1404.0973 (2014).
23 T.-Y. Cai, X. Li, F. Wang, J. Sheng, J. Feng, and C.-D.

Gong, arXiv:1310.2471 (2013).
24 G. Logvenov, A. Gozar, and I. Bozovic, Science 326, 699

(2009).
25 J. Bellissard, arXiv:9504030
26 C. Fang, M.J. Gilbert, X. Dai, and B.A. Bernevig, Phys.

Rev. Lett. 108, 266802 (2012).
27 http://www.vasp.at
28 J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.

77, 3865 (1996).
29 A.I. Lichtenstein, V.I. Anisimov, and J. Zaane, Phys. Rev.

B 52, 5467 (1995).
30 E. Pavarini, and E. Koch, Phys. Rev. Lett. 104, 086402

(2010).



8

31 S. Okamoto, A.J. Mills, and N.A. Spaldin, Phys. Rev. Lett.
97, 056802 (2006).

32 A.A. Mostofi, J.R. Yates, Y.-S. Lee, I. Souza, D. Vander-
bilt, and N. Marzari, Comput. Phys. Commun. 178, 685

(2008).
33 B.J. Kim, H. Jin, S.J. Moon, et al., Phys. Rev. Lett. 101,

076402 (2008).


