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I. MIRROR SYMMETRY

The multilayer system TiO2/VO2 is formed by TiO2 layers and VO2 layers grown along the rutile (001) direction.
Five layers of TiO2 is more than sufficient to prevent direct interactions between successive VO2 slabs. The systems
is in the space group P4̄21m (No.113). The important symmetries of the systems are S4 and Md mirror plane.
The emergence of the semi-Dirac spectrum without considering spin-orbit coupling, is attributed to the unavoidable

band crossing protected by mirror symmetry. The two bands, which cross the Fermi level at a single points along the
digonals of Brillouin zone, belong to different irreps of mirror symmetry, hence two bands simply cross instead of open
a gap when they approach one another at the Fermi level.1 We label the mirror eigenvalues of several bands near the
Fermi level in Fig. 2(a). We also plot the spatial distribution of wavefunctions of the two crossing bands in Fig. 3.
The wavefunction is either symmetric or antisymmetric under mirror operation Md, implying that the states belong
to distinct irreps. To further confirm this, we apply a shear strain (c → c + 0.01a) on the superlattice structure to
break the mirror symmetry in our first-principles calculation. The results shows that the degenerate point split and a
gap of ∼ 70 meV opened, indicating that the mirror symmetry is a critical factor for the special electronic structure.

II. TYPE-I AND TYPE-II SEMI-DIRAC MODEL

Since the system have a diagonal mirror symmetry across Γ–M, we then consider effective Hamiltonian based on the
Md symmetry. We first assume that the two bands have the same Md symmetry, which results out type-I semi-Dirac
model. Then we consider the case in the multilayer (TiO2)5/(VO2)3 where two bands have opposite symmetry, which
leads to the type-II semi-Dirac model.
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FIG. 1: (a) Schematic illustration of symmetries of the system. (b) High symmetry points in the first Brillouin zone. k̂1 and

k̂2 indicate the direction of the new axis.
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FIG. 2: The spin-up band structures of (TiO2)5/(VO2)3 (a) without external strain and (b) under a shear strain. The “+”
and “−” in (a) denote the mirror eigenvalue of the Bloch wavefunction of each band. Spin-orbit coupling (SOC) was excluded
in this DFT calculation.
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State s is symmetric under mirror operatation Md

State a is antisymmetric under mirror operatation Md

FIG. 3: The isosurface plot of the real and imaginary part of wavefunctions of states s and a [labeled in Fig. 3(a)]. Blue and
yellow indicate the opposite signs. State a (s) is antisymmetric (symmetric) under the mirror operation Md, implying that the
two states belong to distinct irreps.

A. Two bands have the same Md symmetry

Firstly, we assume the two bands have the same Md symmetry. For convenience, herein we define k1 =
kx+ky

2

(k2 =
kx−ky

2 ) for the direction along (perpendicular to) the Γ–M line. For the two crossing bands without SOC, the
effective Hamiltonian can be write as, H = hxσx + hyσy + hzσz, where hi(k1, k2) are all real function of (k1, k2). The
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generic structure of the Hamiltonian for two bands having the same Md symmetry is

hz(k1, k2) = u(k1) + v(k1)k
2
2 + . . .

hx(k1, k2) = s(k1) + t(k1)k
2
2 + . . . (1)

and hy = 0, since the Hamiltonian is basically real when SOC is absent. Here we express the hx,y,z in terms of k2.
The Md symmetry requires both hx and hz to be even in k2, since both bands have the same Md symmetry. The
functions u, v, s and t are just some functions of k1.

Now it can generically happen that u(k1) has a zero somewhere along Γ–M; call it k
(u)
1 . Also s(k1) may have a

zero somewhere along Γ–M; call it k
(s)
1 . If and only if k

(u)
1 = k

(s)
1 which is not happen generically, we can get a type-I

semi-Dirac point.

To be more specific, let’s go to relative coordinates. We choose k1 = k
(u)
1 , k2 = 0 for reference, and define

q1 = k1 − k
(u)
1 , q2 = k2. Then if we expand the functions near the reference point, we get

hz = Aq1 +Bq22 + . . .

hx = C +Dq1 + Eq22 + . . . (2)

Then we only get a semi-Dirac point along Γ–M (i.e., at q2 = 0) if C=0, which should not happen generically.
If we neglect higher order terms, we can easily find two zero-gap (Dirac) points near the semi-Dirac point: q1 =

−BC/(BD − AE), q2 = ±
√
AC/(BD −AE). By tuning C through zero, the two Dirac points merge into the

semi-Dirac point, then disappear with a gap of 2C opens. Hence the type-I semi-Dirac model can be viewed as the
consequence of the merging of two Dirac points.
More importantly, the Berry curvature should be an odd function of q2, since both hx and hz are even functions

of q2. Hence the integrated Berry curvature would be zero after including the SOC-induced complex hoping term to
open a gap, which is inconsistent with the TiO2/VO2 system.

B. Two bands have opposite Md symmetry

Then, we move to the more relevant case of opposite symmetry. According to our above analysis, the two bands
that cross the Fermi level along Γ–M line have opposite Md symmetry, we consider effective Hamiltonian based on
Md symmetry. The generic structure of the Hamiltonian near the Γ–M line is

hz(k1, k2) = u(k1) + v(k1)k
2
2 + . . .

hx(k1, k2) = s(k1)k2 + t(k1)k
3
2 + . . . (3)

Since the two bands have opposite Md symmetry, the bands only couple at odd orders in k2.

Now let’s again define k
(u)
1 and k

(s)
1 and go to relative coordinates as before. we choose k1 = k

(u)
1 , k2 = 0 for

reference, and define q1 = k1 − k
(u)
1 , q2 = k2. Finally, we get

hz = Aq1 +Bq22 + . . .

hx = Cq2 +Dq1q2 + . . . (4)

Now we can get a semi-Dirac point if C = 0, which only happen when k
(u)
1 = k

(s)
1 . Keeping only terms up to

quadratic order in q1, q2 and solving the equations of hz = 0, hx = 0, we find three zero-gap (Dirac) points near the

reference point: q1 = q2 = 0; q1 = −C/D, q2 = ±
√

AC/BD. We assume without loss of generality that A/BD < 0.
With increasing C from negative to positive values, the three Dirac points merge into the semi-Dirac point and then
becomes a single Dirac point. This is a type-II semi-Dirac point as we described in the main text.

To make it more clear, we can choose k1 = k
(s)
1 , k2 = 0 for reference, and define q1 = k1 − k

(s)
1 , q2 = k2, we get the

expansion

hz = ∆+Aq1 +Bq22 + . . .

hx = Dq1q2 + . . . (5)

This is essentially identical to the type-II semi-Dirac model (Eq. (6) in the main text) after an unitary transformation
[i.e., a permutation in h = (hx, hy, hz)]. Moreover, Eq. (5) can map onto Eq. (4) by redefining the reference point
as (−C/D, 0), so we can identify C = −∆D/A. Hence, by tuning ∆ through zero, we get a generic region with one
Dirac point, then the appearance of a semi-Dirac point, then a generic region of three Dirac points. What’s more,
the integral of Berry curvature is nonzero when considered the SOC interaction, which is consistent with the DFT
results of the TiO2/VO2 case.
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TABLE I: On-site energies of t2g orbitals of all V atoms from MLWF calculations.

dxz dyz dx2−y2

V1 4.67 4.61 3.84

V2 4.68 4.53 3.63

V3 4.82 4.08 4.67

III. MLWF ANALYSIS

In the rutile VO2 structure, each V ion and the nearest surrounding oxygen ions form a distorted octahedron. Each
octahedron shares one edge with adjacent members. Since there are two kinds of VO6 octahedron whose in-plane
O-V-O chain are perpendicular to each other, we use local axis for different V sites. The local z axis is along in-plane
O-V-O chain and local y axis is aligned with global c axis [shown in Fig. 1(a) of the main text]. The 3d shell of V
ions split into doubly degenerate eg and triply degenerate t2g orbitals due to the octahedral crystal field splitting1.
Since the local frame defined here is different from ordinary definition in octahedron of perovskite materials, the eg
represents the dz2 and dxy orbitals, while the t2g are dxz, dyz and dx2−y2 orbitals. Because of the non-regularity
(distortion from cubic symmetry) of the VO6 octahedron, the low lying t2g orbtials of V ions further split into two
doubly degenerate d⊥ orbtials (yz and xz) and one d∥ orbital (x2 − y2). Following previous work2,3, we label the V
atoms as V1, V2, V3 in terms of their distance to the TiO2 layers.
The bands around the Fermi level, which are separated from lower bands by an energy gap, are dominated by the

d⊥ and d∥ orbitals. We projected the Bloch wavefunction into these local orbitals and get MLWFs, which may serve
as ideal building blocks in tight-binding models. As shown in Fig. 1 of the main text, The MLWFs keep the shape
and symmetry of local atomic d orbitals. Note that the small lobes at the O sites clearly demonstrate the d − p
hybridization, which lead to the splitting of degenerate d states at different V ions.
Duo to the d1 configuration of V ions in conventional rutile VO2, the low lying d∥ orbital is occupied and dominate

the valance bands below the Fermi level, while the unoccupied d⊥ orbitals correspond to the conduction bands.
Because the relative energies of the d∥ and d⊥ depends upon the c/a ratio which affect the distorted octahedron

crystal field splitting4, the orbital ordering and occupancies change in the superlattice, which turn out to play an
important role for the existence of semi-Dirac cones. In (TiO2)5/(VO2)3 superlattice, the ion position relaxation in
the superlattice compress the c/a ratio around V3 layers, hence change the orbital ordering and occupancies. As
shown in Table I, The on-site energies of dyz is lower than that of d∥ (dx2−y2) for V3 atoms, which is different from
V1 and V2 atoms. Therefore, V1 and V2 ions have a occupied d∥, while V3 has a occupied orbital of d⊥ of combined
dxz and dyz character.

IV. k · p ANALYSIS BASED ON FIRST-PRINCIPLES RESULTS

Since the band crossing doesn’t happen at high symmetry point such as Γ or M, we conduct the k · p analysis
numerically to get the effective Hamiltonian in Eq. (7) of the main text. We first solve the MLWF-based TB
Hamiltonian H to get all eigenvectors V = (u1, · · · ,un) numerically at the band crossing point (kc, kc), where ui is
the eigenvector corresponds to eigenvalue ϵi. For convenience, we make a coordinate transformation: q = (q1, q2) =

(k1 − kc, k2) = (
kx+ky

2 − kc,
kx−ky

2 ). Then we express the Hamiltonian near the the crossing point as

Hc(q) = V †HV = H0 +H ′(q) =

(
A B

B† D

)
(6)

where H0 = diag(ϵ1, · · · , ϵn) is the diagonal matrix which independent with q and H ′(q) is the perturbation term
near the band crossing point. Here we suppose A is the 2× 2 submatrix that we are interested in (mainly contribute
to the two crossing bands). By employing the downfolding method5,6, we obtain the 2 × 2 effective Hamiltonian
Heff = A + B(EF I2×2 − D)−1B†, where I2×2 is the unit matrix and EF is the Fermi energy. As a lowest order
approximation, we adopte D ≈ D0, where D0 is the corresponding part of H0

7. Keeping only terms up to quadratic
order in q and performing an unitary transformation to keep the Hamiltonian real-valued, we finally get the k · p
Hamiltonian

Hk·p = ϵ(q)I2×2 + h(q) · σ⃗, (7)
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FIG. 4: Band structures along q1 and q2 near the crossing point. Blue dots and red lines represent results from MLWF-based
TB Hamiltonian H and Hk·p respectively.

FIG. 5: Calculated Berry curvature −Ω from Hk·p after including the SOC-induced hy term to open a gap at the crossing
point.

with

ϵ(q) = 3.885− 0.0792q1 + 0.2500q21 − 0.06966q22 ,

hz = −0.3929q1 − 0.256q22 − 0.1125q21 ,

hx = −0.02044q2 + 0.1044q1q2,

hy = 0.

(8)

Clearly, the Hamiltonian satisfies the above symmetry analysis of Sec. II B. To make a direct comparison with the type-
II semi-Dirac model given in the main text, we rotate the h(q) = (hx, hy, hz) to h′(q) = (h′

x, h
′
y, h

′
z) = (−hz, hx, 0)

using a unitary transformation.
It is worth noting that the Hamiltonian is not an effective model in the whole Brillouin zone but only well-

defined near the crossing point. As shown in Fig. 4, Hk·p describes the band structure near the crossing point well.
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Furthermore, after adding a small terms in hy to open a band gap at the crossing point, we found that the model
provide a Berry flux of Φ ≈ −π. What’s more, the Berry curvature near the crossing point is of banana-shape as
shown in Fig. 5, which entirely corresponds with the DFT results in Fig. 2(c) of the main text.
Note that there is a small linear term of q2 in Hk·p which should vanish for an exact semi-Dirac spectrum. This term

is not forbidden by symmetry, therefore it is generally expected to be present. From the above symmetry analysis, we
know that the semi-Dirac spectrum can easily depart from the transition point [C = 0 in Eq. (4)]. Hence we expect
that this term should exist in general and can be tuned by external strain or other perturbation.
However, Hk·p indeed belongs to the type-II semi-Dirac model which can provide a nonzero Berry flux. By solving

the equations of h(q) = 0, we find three zero-gap (Dirac) points near the origin in the complex q-space: q1 = q2 = 0
and (q1, q2) = (0.1957 ∓ 0.0002045i, 0.0005742 ± 0.5628i) (in units of a−1, where a is the in-plane lattice constant).
If we gradually decrease the linear term of q2 to zero, three Dirac points move and merge at q = (0, 0), as exactly
predicted by the type-II semi-Dirac model. Hence, we conclude that the k · p Hamiltonian belongs to the type-II
semi-Dirac model. Moreover, the calculated band structure, banana-shaped Berry curvature and nonzero Berry flux
indicate that the Hk·p Hamiltonian, even though is not exactly at the transition point of the type-II semi-Dirac model,
should be very close to it. Therefore, we conclude that the TiO2/VO2 nanostructure is a Chern insulator and its
low-energy electronic structure can be described by a type-II semi-Dirac model.
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