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COMPUTATIONAL METHODS

The first-principles calculations are carried out within the framework of density functional theory (DFT) as imple-
mented in the Vienna ab initio simulation package[1], with the Perdew-Burke-Ernzerhof generalized gradient approxi-
mation exchange-correlation functional and the projector augmented-wave method. [2, 3] The kinetic-energy cutoff is
fixed to 520 eV and an 8×8×8 Γ-centered k mesh is used for the BZ sampling. The electronic structures are calculated
both with and without SOC. To investigate the topological properties of these materials, we calculate the surface
states and Fermi surfaces using the Wannier interpolation technique. More specifically, we use the WANNIER90
package to generate Wannier function (WFs) from the outputs of standard first-principles calculations[4].

It should be noted that the tight-binding models constructed from WANNIER90 are realistic in the sense that
the Wannier-interpolated band structures reproduce the first-principles band structures essentially exactly within a
certain energy window. This “frozen window” is chosen to extend from the lowest eigenvalue in the system (bottom
of the energy range) up to 1.5 eV above the Fermi level in our calculations. In addition to the frozen window,
there is also an outer energy window outside which the Bloch eigenstates will not be included in generating the
WFs. However, here we use a default value of the outer window, i.e., from the lowest to the highest eigenvalues in
the system. In the calculation, we project the DFT wavefunctions into Sn s, Sn p and Ba d orbitals to construct
the Wannier function without applying a subsequent maximal-localization procedure.[5] We also check the effect of
d orbitals of Sn by including them into the initial atomiclike trial orbitals, and got similar results. Within the
Wannier representation, we calculate the surface states using the iterative Green’s function method based on the bulk
tight-binding Hamiltonian.[6]

SYMMETRY ANALYSIS

The nodal loop in BaSn2 is topologically protected due to the coexistence of time-reversal (T ) and spatial inversion
(P) symmetries.[7, 8] When SOC is absent, the system can be considered as a spinless system for which T is simply a
complex conjugation operator. With T symmetry, the Bloch functions at k become equal to the complex conjugation
of those at −k up to an arbitrary phase factor: T ψnk(r) = e−ik·ru∗nk(r) = e−ik·run−k(r)e

iφ, where n is the band
index. Setting φ=0 leads to u∗nk(r)=un−k(r). On the other hand, inversion symmetry connects unk(−r) to un−k(r),
i.e., Pψnk(r) = e−ik·runk(−r) = e−ik·run−k(r)e

iφ, so that unk(−r) = un−k(r) (setting φ= 0). Combining the above
two equations, one obtains u∗nk(r) = unk(−r). Then it is straightforward to show that the corresponding effective
Hamiltonian H(k) has to be real-valued, i.e., Hmn(k)=Hnm(k).

Some other symmetries of the system, such as C2 rotation about the A-H line and C3 rotation about the kz axis,
are crucial in determining the shape of the nodal loop. For example, the C2 symmetry about the A-H line implies
that a BT is allowed on the A-H line as the states with opposite C2 eigenvalues can cross each other without opening
a gap, while the C3 symmetry combined with T or P implies that the nodal loop has to cross the kz = π plane at
six isolated points on the equivalent A-H lines. Nevertheless, the nodal loop would be robust even in the absence
of these additional crystal symmetries; weakly breaking them would just distort the loop so that its shape would no
longer respect them.
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Now let us consider the symmetries of the systems which impose constraints on the allowed form of the coefficients
di(q) (i=x, y, z). The little group at A contains a threefold rotation C3 about kz, a twofold rotation C2 about the
A-H axis, inversion P, and time reversal T . Thus the Hamiltonian has to obey the following symmetry constraints:

C3h(qx, qy, qz)C
−1
3 = h(−qy, qx − qy, qz),

C2h(qx, qy, qz)C
−1
2 = h(qy, qx,−qz),

Ph(qx, qy, qz)P
−1 = h(−qx,−qy,−qz),

T h(qx, qy, qz)T
−1 = h(−qx,−qy,−qz).

(1)

HYBRID WANNIER FUNCTIONS

The 1D hybrid Wannier functions (WFs) localized in the z direction are constructed as

|WnRz
(kx, ky)〉 =

1

2π

∫ 2π

0

dkze
ikz(rz−Rz)|un,k〉 , (2)

where Rz is the z component of a lattice vector R. The hybrid WCC zn(kx, ky) is then defined as the expectation
value of ẑ for the hybrid WFs in the “home” unit cell Rz = 0, i.e., zn(kx, ky) = 〈Wn0|ẑ|Wn0〉. The sum of the hybrid
WCCs over the occupied subspace, z(kx, ky) =

∑
n〈zn(kx, ky)〉, is equivalent (up to a factor of 2π) to the total Berry

phase of the occupied Bloch functions accumulated along the kz direction.

SURFACE STATES

In order to characterize the localization of the drumhead-like surface state on the (001) surface, we calculate the
local density of states of several principal layers near the surface in the same energy and k-space range. As shown in
Fig. 1, the surface states within the projected node loop are localized in the surface region and decay rapidly away
from the surface. In particular, the signature of surface states almost vanishes within five principal layers.

The Fermi surfaces of the (010) surface with the chemical potential at different energy values are presented in Fig. 2.
Two surface states with different energy occur in the BZ. The lower surface state spans both the ellipse area and
the exterior of the projected node loop. The upper surface state only exists in the ellipse area. Hence there are two
surface states inside the ellipse area of the projected node-line loop but none in the two crescent areas.

The dispersions of surface band structures are found to be sensitive to the surface condition. By cutting the surface
at different positions, the dispersion of the surface states can be dramatically different, as shown in Fig. 3. It is
interesting to note that when the (001) surface is terminated at the Ba atomic layer, the topological surface states fill
the region outside the projected nodal loop as shown in Fig. 3(c)-(d), which is exactly opposite to the Sn-terminated
surface. To understand such an interesting phenomenon, one may consider the in-plane wavevectors kx and ky as
some external parameters of a fictitious “1D” chain extending along the z direction with two sublattices in each unit
cell (consider the Sn dimer as one sublattice, the Ba as the other). As discussed above, the Berry phase of such a 1D
chain with both T and P symmetries have to be either 0 or π. A chain with π Berry phase is topologically distinct
from that whose Berry phase is 0, as they cannot be adiabatically connected to each other without closing the bulk
gap. Since the Berry phase is well-defined modulo 2π, there is a Z2 classification to such 1D chains, and the one whose
Berry phase is π (0) is denoted as Z2 odd (even). The nodal loop acts exactly as the critical phase separating the
even and odd 1D chains parameterized by (kx, ky). Unlike topological phases in higher dimensions, neither of these
two phases have robust mid-gap end states; instead the existence of the end states is sensitive to how the chain is
truncated. Nevertheless, if one phase, say, the Z2-odd chain has mid-gap end state for a given truncation, then there
cannot be topological end state for the Z2 even chain for the same truncation, and vice versa.

The above argument explains why the topological surface states exist in different regions for different surface
terminations. As shown in Fig. 3(b) in the main text, the Berry phase along the z direction is π (0) within (outside)
the projected loop, so that the fictitious chains inside and outside the projected nodal loop are topologically distinct.
When the system is terminated at the Sn atoms, it turns out that there are mid-gap end states for the fictitious chains
inside the projected nodal loop with π Berry phase, and it is opposite for the Ba-terminated surface.
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FIG. 1. (Color online) Layer-resolved local density of states of the (001) surface state as a function of the principal layers index
n. Here n is the index of the layer counted from the surface.

EFFECT OF SPIN-ORBIT COUPLING

When SOC is included in the calculation, the node line is gapped and the system becomes a topological insulator.
We calculated the Z2 invariants [(ν0; ν1ν2ν3) = (1; 001)] and the surface states (Fig. 4) to identify the nontrivial
topological nature of the system.

OTHER MATERIALS

We also computed band structures with and without SOC and surface band structures of other AX2 materials
(Figs. 5-12), including alkaline-earth stannides (SrSn2 and CaSn2), alkaline-earth germanides (BaGe2, SrGe2 and
CaGe2) and alkaline-earth silicides (BaSi2 SrSi2 and CaSi2).
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FIG. 2. (Color online) Fermi surface of the semi-infinite (010) surface with chemical potential at different values. (c) The lower
surface state spreads both the ellipse area and the exterior of the projected node loop. (g,h) The upper surface state only exists
on the ellipse area.
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FIG. 3. (Color online) Surface band structures of semi-infinite (001) surfaces cut in different terminations.
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FIG. 4. (Color online) (a) Calculated band structure with (red) and without (blue) SOC. (b) Evolution of the Wannier charge
center along 0 < kz < Gz/2 on the kx = 0 and Gx/2 plane. Red points mark the midpoint of the largest gap. The (c)
Sn-terminated and (d) Ba-terminated surface band structures of the (001) surface in the presence of SOC.
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FIG. 5. (Color online) (a) Band structure of SrSn2 with (red) and without (blue) SOC. Surface band structures of (b) Sn- and
(c) Sr-terminated semi-infinite (001) surface.
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FIG. 6. (Color online) (a) Band structure of CaSn2 with (red) and without (blue) SOC. Surface band structures of (b) Sn- and
(c) Ca-terminated semi-infinite (001) surface.
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FIG. 7. (Color online) (a) Band structure of BaGe2 with (red) and without (blue) SOC. Surface band structures of (b) Ge-
and (c) Ba-terminated semi-infinite (001) surface.
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FIG. 8. (Color online) (a) Band structure of SrGe2 with (red) and without (blue) SOC. Surface band structures of (b) Ge- and
(c) Sr-terminated semi-infinite (001) surface.
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FIG. 9. (Color online) (a) Band structure of CaGe2 with (red) and without (blue) SOC. Surface band structures of (b) Ge-
and (c) Ca-terminated semi-infinite (001) surface.
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FIG. 10. (Color online) (a) Band structure of BaSi2 with (red) and without (blue) SOC. Surface band structures of (b) Si- and
(c) Ba-terminated semi-infinite (001) surface.
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FIG. 11. (Color online) (a) Band structure of SrSi2 with (red) and without (blue) SOC. Surface band structures of (b) Si- and
(c) Sr-terminated semi-infinite (001) surface.
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FIG. 12. (Color online) (a) Band structure of CaSi2 with (red) and without (blue) SOC. Surface band structures of (b) Si- and
(c) Ca-terminated semi-infinite (001) surface.


