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Abstract

Based on first-principles calculations and an effective Hamiltonian analysis, we systematically

investigate the electronic and topological properties of alkaline-earth compounds AX2 (A=Ca,

Sr, Ba; X =Si, Ge, Sn). Taking BaSn2 as an example, we find that when spin-orbit coupling is

ignored, these materials are three-dimensional topological nodal-line semimetals characterized by a

snake-like nodal loop in three-dimensional momentum space. Drumhead-like surface states emerge

either inside or outside the loop circle on the (001) surface depending on surface termination, while

complicated double-drumhead-like surface states appear on the (010) surface. When spin-orbit

coupling is included, the nodal line is gapped and the system becomes a topological insulator with

Z2 topological invariants (1;001). Since spin-orbit coupling effects are weak in light elements, the

nodal-line semimetal phase is expected to be achievable in some alkaline-earth germanides and

silicides.
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Introduction. The discoveries of topological insulators [1, 2] and Chern insulators [3–6]

have attracted broad interest to topological aspects of band theory. These topologically

nontrivial materials are bulk insulators with novel gapless edge or surface states protected

by bulk band topology. Recently it has been shown that certain types of bulk semimetallic

systems may also possess non-trivial topological properties such as topologically protected

gapless surface states. These topological semimetallic states are characterized by band touch-

ing (BT) points or lines between valence and conduction bands in three-dimensional (3D)

momentum space. Up to now, three types of topologically nontrivial semimetals have been

proposed: Dirac [7], Weyl [8] and nodal-line semimetals [9–16]. Weyl and Dirac semimetals

exhibit two-fold and four-fold degenerate BT points near the Fermi level respectively, and

their low-energy bulk excitations are linearly dispersing Weyl or Dirac fermions. Unlike

Weyl and Dirac semimetals with isolated bulk BT points, topological nodal-line semimetals

possess BTs along one-dimensional (1D) loops or lines in 3D momentum space.

So far, significant progress has been made in identifying topological semimetals in realistic

materials. For example, the Dirac-semimetal state in Na3Bi and Cd3As2 [7] and Weyl-

semimetal state in the TaAs family of compounds [8] have been predicted theoretically

and then verified by experiments. A few candidate materials for topological nodal-line

semimetals have also been proposed recently. Depending on the degeneracy of the states

along the loop, these materials can be classified into two groups. One is known as the Dirac-

type nodal-line semimetal, in which two doubly degenerate bands cross each other to form a

four-fold degenerate nodal loop. This kind of nodal-line semimetal can typically be realized

in materials with both inversion and time reversal symmetries when spin-orbit coupling

(SOC) is neglected and band inversion happens around one or more high-symmetry points

in Brillouin zone (BZ). The other one lacks either inversion or time-reversal symmetry, so

that the otherwise four-fold degenerate nodal loops are split into two doubly degenerate

nodal loops, called “Weyl nodal lines” in the literature [16]. These nodal lines are usually

protected by additional crystalline symmetries such as mirror reflection so as to be stable

against perturbations, including SOC.

In the present work, based on first-principles calculations and a model Hamiltonian anal-

ysis, we find a topological nodal-line semimetal phase in the alkaline-earth compound AX2

(A=Ca, Sr, Ba; X =Si, Ge, Sn) when SOC is absent. Unlike the existing nodal-line

semimetal materials, this system exhibits a snake-like nodal loop in 3D momentum space.
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FIG. 1. (Color online) (a)-(b) Crystal structure of BaSn2 with P 3̄m1 symmetry. (c) Brillouin zone

of the bulk and the projected surface Brillouin zones of the (001) and (010) surfaces.

More interestingly, dispersive gapless surface states exist on the (001) surface, while some

special double-drumhead-like surface states occur on the (010) surface. Including SOC in

the first-principles calculation leads to a transition from a nodal-line semimetal to a strong

topological insulator with (1;001) Z2 indices. Since the SOC effect is negligible in silicides

and remains small in germanides, the nodal-line semimetal phase is expected to be realized

in these compounds.

Crystal structure and methodology. Since the compounds in the AX2 family have similar

centrosymmetric crystal structures and electronic structures, we take BaSn2, which has been

synthesized successfully [17, 18], as an example hereafter. BaSn2 crystallizes in the trigonal

P 3̄m1 structure (space group No. 164) as shown in Fig. 1. In this structure, the Sn atoms

form a buckled honeycomb lattice, while each hexagonal Ba layer intercalates between two

neighboring Sn layers.

In order to understand the electronic structure of the AX2 compounds, we perform first-

principles calculations within the framework of density-functional theory as implemented

in the Vienna ab initio simulation package [19] with the projector augmented-wave method

[20]. The Perdew-Burke-Ernzerhof exchange-correlation funcional in the generalized gradient

approximation is adopted [21]. The kinetic energy cutoff is fixed to 520 eV and an 8×8×8

Γ-centered k mesh is used for the BZ sampling. The electronic structure is calculated both

with and without SOC. We also generate ab initio tight-binding Hamiltonians in the basis of
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projected atomic-like Wannier functions without applying a maximal-localization procedure

[22, 23]. In the Wannier representation, we calculate the surface states using the iterative

Green’s function method [24] based on the bulk tight-binding model neglecting possible

surface reconstructions and charge rearrangements. The topological feature of the surface

states are expected to be captured by such simplified Wannier-based approach [25].

Electronic structures. We first study the electronic structure of BaSn2 in the absence of

SOC. The band structure along the high-symmetry path marked by red lines in Fig. 1(c)

is shown in Fig. 2(a). It can be seen that there is a BT close to the Fermi level along the

A-H line. Since the lowest conduction band and the highest valence band along this line

have opposite parities with respect to the C2 operation in the little group of A-H , they

can touch each other without opening a gap. Further orbital-character analysis reveals that

the states around the Fermi level are dominated by Sn s and Sn pz orbitals, as shown in

Fig. 2(a). Moreover, there is a clear signature of band inversion at the A point, implying

possible non-trivial band topology. It should be noted that the band inversion at the A

point is not due to SOC as it is excluded in this calculation.

Although the linear dispersion around the BT resembles the character of a Dirac

semimetal, the system is actually a nodal-line semimetal. Namely, the BT persists along a

closed loop in the 3D BZ forming a snake-like nodal loop around the A point. If the loop

were exactly constant in energy, the iso-energy surfaces would shrink to become exactly this

loop at the energy of the loop. While the energy of the BT varies slightly along the loop, its

shape is still easily inferred by looking at an isoenergy countour at an energy slightly above

that of the loop. Such a contour, plotted at 25meV above the Fermi energy EF , is shown

in Fig. 2(b)-2(d). Given that the BZ is periodic, the calculated isoenergy surface forms a

a closed snake-like pipe enclosing the nodal line which in turn winds around the A point.

Thus, there is a single nodal loop in the BZ.

Further fine band structure calculations within the 1/6 BZ using Wannier interpolation

indicate that the nodal loop has its maximum energy of 0.117 eV when passing through the

Γ-M-L-A plane at (0.136, 0.0, 0.707) (in units of (2π/a, 2π/a, 2π/c)), and its minimum of

0.064 eV when passing through the A-H line at (0.064, 0.064, 0.5). The energy then increases

back to 0.117 eV as the loop snakes to (0.0, 0.136, 0.293) on the adjacent ky-kz plane, and

the remaining 5/6 of the loop is related to this segment by symmetries. BaSn2 is unusual in

having just a single loop, whereas other nodal-loop systems such as Cu3NPd(Zn) [13] and

4



FIG. 2. (Color online) (a) Calculated band structure without SOC. The irreducible representation

of selected bands at A and along A-H line are indicated. Red and green dots in band structures

indicate the projection to the Sn s and pz orbital, respectively. (b) Corresponding 3D iso-energy

surface at E = EF + 25meV. (c) Top view and (d) side view of the isoenergy surface from the

(001) and (010) directions of the Brillouin zone, respectively.
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Pb(Tl)TaSe2 [14] typically have multiple circles or ellipses. Moreover, despite three small

electron pockets around the M point, the Fermi surface is mostly contributed by the single

nodal loop, which makes it easier to study any intriguing properties related to the presence

of the nodal loop.

Symmetry analysis. The nodal loop in BaSn2 is topologically protected due to the co-

existence of time-reversal (T ) and spatial inversion (P) symmetries [12, 26]. When SOC is

absent, the system can be considered as a spinless system for which T is simply a complex

conjugation operator. Therefore one can adopt a gauge for the Bloch functions such that

u∗

nk(r) = un−k(r). On the other hand, inversion symmetry connects unk(−r) to un−k(r),

and we are allowed to let unk(−r)=un−k(r). Combining the above two equations, one ob-

tains u∗

nk(r)=unk(−r). Then it is straightforward to show that the corresponding effective

Hamiltonian H(k) has to be real-valued, i.e., Hmn(k)=Hnm(k).

A BT problem at an arbitrary k point can be minimally described by a two-band ef-

fective Hamiltonian, which can be expressed in terms of the identity matrix and the three

Pauli matrices. According to the above argument, the two-band Hamiltonian for a system

respecting both T and P symmetries can be chosen as real valued, so the codimension of

such a BT problem is 2, one less than the number of independent variables (i.e., kx, ky and

kz). Hence a nodal loop is stable in the presence of coexisting T and P symmetries.

Some other symmetries of the system, such as C2 rotation about the A-H line and

C3 rotation about the kz axis, are crucial in determining the shape of the nodal loop.

Nevertheless, the nodal loop would be robust even in the absence of these additional crystal

symmetries; weakly breaking them would just distort the loop.

Effective Hamiltonian. We further construct a minimal effective Hamiltonian that can

describe the nodal loop around the A point. We adopt a spinless two-band Hamiltonian of

the form

h(q) = ǫ(q)σ0 + d(q) · ~σ, (1)

where the 2 × 2 identity matrix σ0 and Pauli matrices ~σ = (σx, σy, σz) operate in the

pseudospin space of the two bands that cross near the A point and q = k−kA. Since ǫ(q)σ0

represents an overall energy shift, we neglect this term in the following analysis.

Let us start by considering the symmetries of the systems which impose constraints

on the allowed form of the coefficients di(q) (i = x, y, z). The little group at A contains

a threefold rotation C3 about kz, a twofold rotation C2 about the A-H axis, inversion
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FIG. 3. (Color online) Calculated band touching points (nodal line) in 3D k-space using the

effective Hamiltonian of Eqs. (1) and (2). (b) Evolution of Wannier charge center z(kx, ky) for the

occupied bands.

P, and time reversal T . Thus the Hamiltonian has to obey the symmetry constraints

U h(q)U−1 = h(U−1q), for U = C3, C2,P and T [25].

First-principles calculations indicate that the low-energy states at the A point are mostly

contributed by the Sn s and Sn pz orbitals. If we choose the two basis vectors as |s〉 and

|pz〉, the symmetry operations of the little group take the form C3=σ0, C2=σz, P=σz and

T =Kσ0. Then we obtain the symmetry-allowed expressions for di(q):

dx = 0,

dy = Aqz +B(q2xqy − qxq
2
y)

+ C(q2x + q2y − qxqy)qz +Dq3z ,

dz = M + E(q2x + q2y − qxqy) + Fq2z .

(2)

We see from Eq. (2) that the Hamiltonian is expressed only in terms of two of the three

Pauli matrices, which is consistent with the previous codimension argument.

In order to achieve a band crossing on the A-H line (qz=0), ME < 0 must be satisfied,

which is nothing but the band-inversion condition. The A point lies within the band-inverted

region, hence the two bands tend to cross each other as k moves away from A. Based on

the effective Hamiltonian, we determine the BT points by solving the equations d(q) = 0.

The calculated BT points form a snake-like ring around the A point as shown in Fig. 3(a),

which is consistent with the iso-energy-surface calculation as shown in Fig. 2(b).
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FIG. 4. (Color online) Calculated (001) surface band structure and Fermi surface without SOC for

(a, b) Sn-terminated, and (c, d) Ba-terminated, surfaces. The Fermi surfaces shown in (b) and (d)

are calculated with the chemical potential at 60meV [green dashed lines in (a) and(c)]. Note that

the inner circle in (d) originates from a concave conduction band state, not from the drumhead-like

surface state.

Topological invariant. To identify the nontrivial band topology in BaSn2, we further

study the evolution of the 1D hybrid Wannier charge centers (WCCs) along a high-symmetry

path in the kx-ky plane [22, 27–29]. The sum of the hybrid WCCs over the occupied subspace,

z(kx, ky) (in unit of c), is equivalent (up to a factor of 2π) to the total Berry phase of

the occupied Bloch functions accumulated along the kz direction. For a spinless system

respecting both T and P symmetries, the Berry phase has to be either 0 or π for an arbitrary

loop in the BZ. Therefore, we expect that the total hybrid WCC z(kx, ky) would be quantized

as either 0 or 1/2 at any (kx, ky), and that z(kx, ky) would jump by 1/2 when passing through

a projected nodal point. This is exactly what happens in BaSn2 without SOC. As shown

in Fig. 3(b), we find that z(kx, ky) is 1/2 inside the projected nodal loop centered at Γ̄ in

the projected 2D Brillouin zone and jumps to zero outside, as is expected from the above

discussions.
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FIG. 5. (Color online) (a) Calculated (010) surface band structure and (b) Fermi surface without

SOC. The Fermi surfaces shown in (b) are calculated with the chemical potential at 10meV [green

dashed lines in (a)]. The white dashed line in (b) forming an ellipse and two crescents indicates

the projected nodal line on the (010) surface. Surface states exist outside the projected nodal loop

and inside the ellipse. (c) Enlargement of the double drumhead-like (010) surface bands near Z̃.

(d)-(e) Schematic illustration of the formation of “double-drumhead” surface states due to nodal

loop twisting and intersecting.

Surface states. One of the most important signatures of a topological nodal-line semimetal

is the existence of “drumhead-like” surface states either inside or outside the projected nodal

loop [9, 12–14]. Figure 4 shows the calculated local density of states for the semi-infinite

(001) surface, from which we have an intuitive visualization of surface band structure and

Fermi surface. For the Sn-terminated (001) surface, the drumhead-like surface states are

nestled inside the projected nodal loop as shown in Fig. 4(a)-(b). Unlike the nearly flat

“drumhead” surface states in some previous works[12, 13], the surface states of BaSn2 are

more dispersive, with a bandwidth of about 180meV. It is interesting to note that when

the (001) surface is terminated on the Ba atomic layer, the topological surface states fill the
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region outside the projected nodal loop as shown in Fig. 4(c)-(d), exactly the opposite as

for the Sn-terminated surface. Such an interesting phenomenon stems from the properties

of 1D atomic chains with PT symmetry, as explained in the supplement [25]. We have also

checked that the local density of states of the surface states decays rapidly into the bulk

and becomes negligible within five principal layers [25].

The surface states for the (010) surface are dramatically different. The interior region of

the projected nodal loop now is divided into three subregions, one ellipse and two crescents

[see Fig. 1(d) and the white dashed line in Fig. 5(b)]. As is shown in Fig. 5, there are

two surface bands inside the ellipse, none inside the crescents, and one topological surface

band outside the projected nodal loop. The single surface band outside the projected nodal

loop is regarded as the hallmark of a bulk topological nodal-loop semimetal. On the other

hand, the two surface bands inside the ellipse result from the twist and intersection of the

projected nodal loop along the Ũ -Z̃ line, so that the surface states outside the untwisted

nodal loop [Fig. 5(d)] become overlaid with each other, leading to two drumhead-like surface

states inside the ellipse [Fig. 5(e)].

SOC effect. In general, spin-orbit coupling (SOC) can drive the nodal-line semimetal

into different topological phases, such as a topological insulator [30], 3D Dirac semimetal

[13], or other kinds of nodal-line semimetals [14]. In graphene it is well known that SOC

splits the BT, leading to a quantum spin Hall insulator [31]. Similarly, in a 3D system with

a nodal loop, SOC generally lifts the degeneracy on the loop and drives the system into a

3D topological insulator [30]. Some crystalline symmetries, such as C4 rotation or reflection,

may protect the existence of the nodes at isolated k points or in a mirror plane, even in the

presence of SOC, resulting in 3D Dirac semimetals [13] or nodal-line semimetals protected

by crystalline symmetry [14].

In the case of BaSn2, our first-principles calculations indicate that the SOC, which is

much smaller than the dispersion of the nodal loop, completely lifts the degeneracy of the

nodal loop, and a topological-insulator phase with a global energy gap of 13meV results.

We calculate the Z2 invariants, finding, (ν0; ν1ν2ν3) = (1; 001), and the Dirac surface states,

thus identifying the nontrivial band topology [25]. We further check the SOC-induced gap

along the nodal loop locally and find that the gap is ∼50meV on the Γ-M-L-A plane, while

it increases to a maximum value of ∼160meV on the A-H line. Note that BaSn2 is an

extreme case among the AX2 compounds, where both Ba and Sn are heavy elements with
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relatively strong SOC.

The SOC strength may be diminished by doping or substituting lighter elements such as

Si or Ca, potentially allowing the nodal-line semimetal topological-insulator phases to reap-

pear. Our detailed investigations are reported in the Supplement [25]. Similar to BaSn2,

alkaline-earth stannides (SrSn2 and CaSn2), germanides (BaGe2, SrGe2 and CaGe2) and

silicides (BaSi2 and SrSi2) all exhibit nodal-line semimetal behaviors in the absence of SOC.

Meanwhile, the SOC-induced splitting of the nodal line gets smaller from stannides to sili-

cides (< 10meV). Moreover, various new properties show up in these materials. For example,

in addition to the nodal loop, isolated point nodes appear around the M point in BaSi2,

while unlike BaSn2, there are only isolated nodes on the kz axis in CaSi2. More importantly,

a type-II 3D Dirac-fermion electronic structure, which is robust against SOC, appears in the

valence bands of most akaline-earth stannides and germanides. This new type of quasiparti-

cle is a counterpart of the recently discovered type-II Weyl fermions [32], and is expected to

exhibit novel properties distinct from previous Dirac semimetals. The details of this exotic

type-II Dirac semimetal will be discussed in future work [33].

Conclusion. In summary, we have theoretically predicted the existence of 3D topological

nodal-line semimetals in alkaline-earth compounds AX2 when SOC is neglected. The single

snake-like nodal loop distinguishes this class of materials from existing nodal-line semimetals

which typically have multiple nodal rings. The drumhead-like surface states on the (001)

surface may appear either inside or outside the projected nodal loop, depending on surface

termination, while some unconventional double-drumhead-like surface states occur on the

(010) surface. Including SOC drives the system into a topological-insulator phase whose

Z2 indices are (1;001). As the SOC effect is much weaker in alkaline-earth compounds

composed of light elements, the nodal-line semimetal as and its exotic electronic properties

are expected to be observed in these materials.
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