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Importance of second-order piezoelectric effects in zincblende semiconductors
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We show that the piezoelectric effect that describes the emergence of an electric field in response
to a crystal deformation in III-V semiconductors such as GaAs and InAs has strong contributions
from second-order effects that have been neglected so far. We calculate the second-order piezo-
electric tensors using density functional theory and obtain the piezoelectric field for [111]-oriented
InxGa1−xAs quantum wells of realistic dimensions and concentration x. We find that the linear and
the quadratic piezoelectric coefficients have the opposite effect on the field, and for large strains the
quadratic terms even dominate. Thus, the piezoelectric field turns out to be a rare example of a
physical quantity for which the first- and second-order contributions are of comparable magnitude.
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Since the discovery of piezoelectricity in 1880 by the
Curie brothers [1], widespread efforts have been aimed
at understanding this peculiar effect and developing its
applications. Piezoelectric materials are in use today in
a wide range of devices, including ultrasonic transducers
for medical and sonar imaging and various types of mi-
cropositioners and actuators. Since the early days, the
effect has been understood as arising from displacement
of the ions in response to a mechanical deformation, lead-
ing to the appearance of charges on some of the crystal’s
surfaces [1]. Despite some early doubts, it is now well
established [2, 3, 4, 5, 6] that this is a bulk effect. It has
two components; the contribution coming from the ionic
displacements tends to be compensated by the purely
electronic (frozen-ion) response, resulting in a subtle bal-
ance between ionic and electronic contributions [3, 4, 5].

Until now, theoretical modeling of the piezoelectric ef-
fect in bulk solids [7], quantum wells (Ref. 8 and refer-
ences therein) and more recently in quantum dots [9, 10,
11, 12, 13, 14] has focused exclusively on the first-order
piezoelectric tensor ẽµj , neglecting possible higher-order
terms. That is, if Pµ =

∑
j eµjηj + 1

2

∑
jk Bµjkηjηk + ...,

where P is the polarization and η is the strain, previous
work has concentrated on the linear coefficient eµj to the
exclusion of the quadratic coefficient Bµjk.

Recent experimental determinations of piezoelectric
constants (e.g., Refs. 15, 16, 17, 18, 19, 20, 21) have
tended to follow this approach, interpreting the mea-
sured piezoelectric fields by assuming a linear relation-
ship between polarization and strain (retaining eµj but
neglecting Bµjk). Indeed, the experimental procedures
used thus far to deduce piezoelectric constants from mea-
sured fields have made it easy to overlook the importance
of the second-order piezoelectric effect, because measure-
ments were restricted to heterostructure quantum wells
with small lattice mismatch (those with large lattice mis-
match, like high-In-content (In,Ga)As/GaAs structures,
were avoided because they tend to develop unwanted dis-
locations). Similarly, experiments for quantum wells or

bulk materials under pressure have tended to probe only
a very small region of strain, so that a clear signature of
the quadratic dependence of field upon strain is difficult
to detect.

In this Letter we show, using self-consistent density-
functional theory (DFT) calculations for GaAs and InAs,
that the hitherto neglected second-order piezoelectric
tensor gives significant contributions to the piezoelectric
field. We show that neglecting the second-order piezo-
electric tensor leads to an overestimation by 200% in
the piezoelectric field for InxGa1−xAs quantum wells on
GaAs in the experimentally accessible range of concentra-
tion x. For higher In concentrations, accessible in quan-
tum dots, second-order terms will dominate over first-
order terms. This new insight is important because it
represents a paradigm shift in the interpretation of mea-
surements of piezoelectricity in quantum wells and quan-
tum dots.

We find it most convenient to formulate the piezoelec-
tric response in terms of the reduced (and dimensionless)

polarization pµ defined implicitly via Pα = e
Ω

∑
µ pµa

(µ)
α ,

where e is the charge quantum, Ω is the cell volume, Pα

is the polarization in Cartesian coordinates, and a
(µ)
α is

the α’th component of the µ’th strain-deformed lattice
vector. We expand this reduced polarization, retaining
the second-order strain as

pµ =
∑

j

ẽ0
µj ηj +

1

2

∑

jk

B̃µjk ηjηk . (1)

The reduced proper piezoelectric tensor is then

ẽµj =
dpµ

dηj

= ẽ0
µj +

∑

k

B̃µjk ηk , (2)

where we use ηj (j=1,6) to denote strain in the Voigt
notation. Here ẽ0

µj is the reduced proper piezoelectric

tensor of the unstrained material, while B̃µjk is a fifth
rank tensor with Cartesian coordinates µ and the strain
index in Voigt notation j, k and represents the first-order
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TABLE I: Linear and quadratic piezoelectric coefficients
(C/m2) as calculated from DFT.

e14 B114 B124 B156

InAs −0.115 −0.531 −4.076 −0.120
GaAs −0.230 −0.439 −3.765 −0.492

change of the reduced piezoelectric tensor with strain.
We obtain ẽ0

µj and B̃µjk from first-principles calculations
in a manner described next.

First-principles calculation of linear and non-linear
piezoelectric coefficients: Symmetry considerations for
the zincblende crystal structure imply that the only
nonzero elements of the piezoelectric tensor are ẽ0

14 =
ẽ0
26 = ẽ0

36 (i.e., there is only one independent element).
Similar considerations guarantee that there are only 24
non-zero elements of the B̃µjk tensor, which can be re-

duced to three independent elements B̃114, B̃124, and
B̃156. (The other nonzero elements are obtained by ap-
plying cyclic permutations x → y → z or interchanges
such as x ↔ y on the Cartesian axes, e.g., B̃114 = B̃225,
B̃124 = B̃235 = B̃215, and B̃156 = B̃225.) We carried
out ab-initio calculations of these tensor elements us-
ing a plane-wave pseudopotential approach to DFT in
the local-density approximation (LDA) as implemented
in the ABINIT code package[22]. First, we relaxed
the lattice parameters for both GaAs and InAs. Next,
linear-response calculations of the linear bulk piezoelec-
tricconstant ẽ0

14 were carried out on these relaxed struc-
tures using the ANADDB module of the ABINIT pack-
age [22, 23], which implements a direct calculation of
the strain derivatives of the quantities of interest (Kohn-
Sham wavefunctions, polarizations, etc.) via the chain
rule. Then, a finite-difference technique was used in or-
der to obtain the non-linear bulk piezoelectric tensors
B̃µjk. Specifically, we considered strain states of the form
η1 = η2 = η3 = 0 and η4 = η5 = η6 = γ for several small
values of γ. With the strain frozen in for a particular
value of γ, the ions were allowed to relax, after which the
reduced piezoelectric tensor elements ẽ11(γ), ẽ12(γ) and
ẽ15(γ) were computed using linear-response techniques
as before. The dependence of these elements on γ was
then fitted, and the linear dependence extracted. From
Eq. (2), this determines the three independent elements

of the B̃ tensor as B̃114 = dẽ11/dγ, B̃124 = dẽ12/dγ, and

B̃156 = dẽ15/dγ. The results for GaAs and InAs are given
in Table I.

Calculation of the piezoelectric field for large struc-
tures (non self-consistent Poisson approach): The DFT
method cannot be applied to 103-106-atom structures
which are often of interest in nanoscience. Instead, such
structures can only be calculated by non self-consistent
methods (e.g., tight binding, k.p, empirical pseudopo-
tentials), in which case piezoelectricity must be added

as an external potential. Thus, to model such struc-
tures, we first calculate the strain tensor η at each atom
site using the valence force field (VFF) method. In this
method, the bond-stretching, bond-bending, and mixed
bending-stretching terms are derived from experiment.
The method has been shown to give accurate atomic
positions for defect-free bulk and alloys. For example,
Bernard and Zunger compared strain values obtained by
LDA and by VFF for the extreme case of a single mono-
layer InAs superlattice in GaAs and obtaining agreement
within 0.4% [24]. From a knowledge of the strain field
ηj(r), we can use Eq. (1) to obtain pµ(r), and the piezo-
electric charge density (per unit undeformed volume) is
then calculated from the divergence (in undeformed co-
ordinates) of pµ via

ρpiezo(r) = −
e

a2
0

∇ · p . (3)

The calculation of the divergence [Eq. (3)] is performed
using a piecewise polynomial function to represent the
polarization data points. Finally, the piezoelectric po-
tential Vpiezo is obtained from a finite-grid solver of the
Poisson equation

ρpiezo(r) = ǫ0∇ · {ǫs(r)∇Vpiezo(r)} , (4)

where we assume an isotropic local static dielectric con-
stant ǫs(r). However, note that the local polariza-
tion cannot be defined on an arbitrarily small region of
space[25], but only on a scale that exceeds the localiza-
tion of the maximally localized Wannier functions [26].
For GaAs and InAs we average the strain tensor over
eight-atom clusters. The piezoelectric tensor of Eq. (2)
is position dependent since it depends on the inhomoge-
neous strain. Furthermore, for alloys or heterostructures,
ẽµj(r) also depends on the material concentration at r.
In our case we have regions in the cell with InAs, GaAs,
or mixed (In,Ga)As, and we use a linear interpolation

A(r) = xAInAs(r) + (1 − x)AGaAs(r) (5)

of the tensors (A = eµj or Bµjk) between the constituent
bulk materials for the given local concentration x of the
eight-atom cell. Finally, the solution of the Poisson equa-
tion [Eq. (4)] is obtained on the eight-atom-cluster grid
through a conjugate-gradient algorithm with a position-
dependent dielectric constant ǫs(r) calculated according
to Eq. (5) with A = ǫs. The approach developed for the
calculation of Vpiezo can be applied easily to very large
(106-atom) nanostructures.

Testing the non-self-consistent Poisson approach: We
tested the non-self-consistent procedure described in
Eqs. (1)-(4) by comparing the results with direct self-
consistent DFT calculations for a model quantum well
of artificially small dimensions which can be handled by
DFT. The system is a 30-atom [111] InAs quantum-well
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[(InAs)6(GaAs)9] epitaxially strained to the GaAs in-
plane lattice constant. For the DFT calculations, we used
the same pseudopotentials and convergence parameters
as in the calculation of the piezoelectric tensors. To ob-
tain the piezoelectric field directly from the DFT-LDA
quantum-well calculations, we averaged out the atomic
oscillations from the self-consistent Kohn-Sham potential
(including ionic, Hartree and LDA exchange-correlation
contributions). The direct DFT results of this averaging
procedure[27] are denoted in Fig. 1 as the “SCF DFT-
LDA” curve. (A linear regression of the obtained curve
in the region marked with “Linear Fit” gives a value for
the piezoelectric field of 1255 kV/cm.) The piezoelec-
tric potential obtained with the procedure of Eqs. (1)-
(4) is given in Fig. 1 as the dashed curve denoted “non-
SCF Poisson”. The potential jump at the interface is
related to the band offset between materials [27] and is
not present in the bare piezoelectric potential given by
the dashed curve. The potentials are arbitrarily shifted
to coincide in the InAs region. We see that the field de-
duced from the non-SCF procedure is 1367 kV/cm, in
very good agreement with the self-consistent DFT-LDA
quantum-well result of 1255 kV/cm.

Application to large quantum-well structures. Having
established the validity of the non-self-consistent method
for small systems, where comparison with DFT-LDA is
possible, we now address nanostructures with sizes and
composition typical of experimental conditions. We chose
here the quantum well system InxGa1−xAs/GaAs where
the InxGa1−xAs alloy is epitaxially grown on the GaAs
substrate and the thickness of the well is around 10 nm.
We use 12,000 atoms in the simulation cell to accurately
represent the random alloy. We plot in Fig. 2 the piezo-
electric potential (in mV) along the [111] direction for
In concentration x=0.1 to 1.0. Figure 2 shows a linear
potential along the growth axis, as expected from the
fact that the piezoelectric charges are well localized at
the interfaces. The small oscillations in the potential are
due to random alloy fluctuations which are most promi-
nent at low In concentrations. Interestingly, Fig. 2 shows
that the field reverses sign between x = 0.4 and 0.3, go-
ing from a very strong positive field (i.e., negative slope
along [111]) for In-rich wells to a weak negative field in
the In-poor regime.

The piezoelectric field extracted from the potential of
Fig. 2 is shown in Fig. 3 as a function of the In concen-
tration (circles). Figure 3(b) shows the electric field with
an emphasis on the experimentally relevant concentra-
tion range from x= 0.10 to 0.25. We see that the ampli-
tude of the field obtained with both linear and nonlinear
terms is much smaller than the field obtained with eµj

only. Considering the full concentration range, the field
obtained using both eµj and Bµjk is shown to be nega-
tive at low In concentrations and almost constant until
it reaches 30%, where it reverses sign and becomes very
strong. The field we obtain for a concentration range of

16-20% In is nearly constant around 80 kV/cm.

A direct comparison of calculated and measured elec-
tric fields is difficult because only few experiments report
the value of the measured field and the measurements
and calculations are performed on different concentra-
tions and thicknesses. Cho et al.[20] obtained a field of
129 ± 12 kV/cm for a 17 % In well with an estimated
8.7 nm thickness, and Sanchez et al. obtained a field of
137 ± 6 kV/cm for a 17% In well with 10 nm thickness
and 121 ± 5 kV/cm for a 10 nm thick well with 21% In
concentration. Furthermore, the results are clouded by
strong temperature effects [17, 20, 21] (pyroelectricity)
and possible effects of In segregation [19]. However, one
experimental observation that does not seem to depend
on well concentration and thickness is the fact that the
measured piezoelectric field leads to an e14 value that is
about 35% smaller than what is expected by using the
linear coefficients alone. This has been reported on many
occasions [16, 17, 18, 20, 28] and constitutes an unsolved
puzzle. This result can be accurately compared with our
calculations. If we calculate the piezoelectric field us-
ing the experimental value of e14 for bulk InAs (−0.045
C/m2) and bulk GaAs (−0.160 C/m2) and neglecting the
second-order tensors Bµjk in Eq. (1) (triangular symbols
in Fig. 3), which is equivalent to the experimental pro-
cedure that leads to an overestimation of e14 by 35%, we
find for the concentration region of ≃18-21%, an overes-
timation of the magnitude of the field by 34-52%. Our
results therefore explain the origin of the experimentally
observed deviation [16, 17, 18, 20, 28] : a linear inter-
polation between the InAs and GaAs values of e14 can-
not reproduce the piezoelectric field of alloyed quantum
wells since the field does not originate from the linear co-
efficient alone but has significant contributions from the
second-order piezoelectric tensors Bµjk (neglected in the
analysis of the experimental results).

To emphasize the effect of the non-linear tensors Bµjk

further, we plot using square symbols in Fig. 3 the piezo-
electric field with eµj set to the DFT values and Bµij

set to zero. The results show that, when taking only the
linear tensor into account, the field is overestimated by
about 200% in the region of low concentration [Fig. 3(b)],
and even has the wrong sign at higher concentrations.

In summary, we have shown that the second-order
piezoelectric tensor, generally neglected so far in theoret-
ical and experimental work, contributes significantly to
the piezoelectric effect in zincblende semiconductors. We
showed that the piezoelectric field calculated by includ-
ing first- and second-order piezoelectric tensors obtained
from DFT agree well with experiments, whereas neglect
of non-linearities leads to qualitative disagreements. We
argue that the “piezoelectric coefficients” that have been
extracted from experimental work so far are actually ef-
fective ones reflecting equally strong first- and second-
order contributions.

This work has been supported by U.S. DOE-SC-BES-
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FIG. 1: (Color online) Piezoelectric potential calculated from
Eqs. (1) to (4) (dashed line) and the Kohn-Sham potential ob-
tained from self-consistent DFT calculations (solid line). Both
calculations are for an (InAs)6/(GaAs)9 superlattice epitaxi-
ally strained on GaAs.
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FIG. 2: (Color online) (a) Piezoelectric potential calculated
from Eqs. (1-4) for an 11 nm InxGa1−xAs well epitaxially
strained to GaAs for x = 0.1 - 1.0. (b) for x = 0.1 - 0.5.
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