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Using the semiclassical theory of electron dynamics, we derive a gauge-invariant expression for the
spin toroidization in a periodical crystal. We establish a direct and elengant relation between our
spin toroidization and the antisymmetric magnetoelectric polarizability in insulators. By further
expressing our result in the Wannier function basis, we show that the spin toroidization is comprised
of two contributions: one is due to the configuration of a classical spin array, while the other comes
from the coordinate shift of the electron as spin carrier in response to the inhomogeneous magnetic
field. Finally, we demonstrate our theory in a tight-binding model.

Recent years have seen a surge of interest in toroidal
moments in crystals [1–4], mainly motivated by their in-
triguing role in various magnetoelectric effects [5–11]. A
toroidal moment is generally associated with a vortex-
like structure of magnetic moments. Its spontaneous or-
dering characterizes a ferrotoroidal state that exhibits a
non-vanishing magnetoelectric effect. The density of the
toroidal moment, called toroidization, also constitutes an
essential building block in the free energy expansion in
inhomogeneous fields. However, despite its importance,
a microscopic theory of the toroidization based on quan-
tum mechanical wave functions is still missing.

In crystals the toroidization can arise from two sources,
the orbital and spin moments. Here we will focus only
on the contribution from spins. By treating the spins
as classical vectors, it has been proposed that the spin
toroidization can be written as [3, 4]

T =
gµB
2h̄V

∑
i

ri × si , (1)

where g is the gyromagnetic factor, µB is the Bohr mag-
neton, ri and si are the position and spin of each lattice
site, and V is the volume of the sample. Later there is
also an attempt to obtain a microscopic theory of the
spin toroidization by treating r and s as operators and
directly evaluating the expectation of Eq. (1) using Wan-
nier functions [12]. However, the resulting expression is
not gauge-invariant.

In this Letter, we develop a microscopic theory of the
spin toroidization in crystals. Using the semiclassical
theory of electron dynamics [13, 14], we obtain a gauge-
invariant expression for the spin toroidization in terms
of bulk Bloch functions, which has a remarkably simi-
lar structure to the orbital magnetization formula [15–
18]. To our delight, we are able to establish a direct and
elegant relation between our spin toroidization and the
magnetoelectric polarizability in the case of insulators
[see Eq. (14)]. Furthermore, by considering the molecu-
lar insulator limit, we find that the contributions to the
spin toroidization consists of two parts with clear phys-
ical interpretations: one is due to the configuration of a
classical spin array, similar to Eq. (1), while the other

comes from the coordinate shift of the electron as spin
carrier in response to the inhomogeneous magnetic field.
Finally, we demonstrate our theory in a tight-binding
model. Our formula can be easily implemented in first-
principles codes.
Toroidization as a response function.—Our starting

point is the free energy density F (r) in an inhomoge-
neous magnetic field B(r). Suppose that B(r) is small
and varies slowly in space. At a given point r, we can
perform a gradient expansion of F (r) up to first order
with respect to the derivatives of the magnetic field

F (r) = F0(r)−M ·B(r)− T · [∇×B(r)]

− 1

2
Qij [∂iBj(r) + ∂jBi(r)] + · · · ,

(2)

where F0(r) is the free energy density at B = 0 and M
is the magnetization. Here and hereafter the Einstein
summation convention is implied for repeated indices. In
the last two terms of Eq. (2), we explicitly separate the
antisymmetric and symmetric part of ∂iBj(r). We thus
define the coefficient T and Qij as the toroidization and
the magnetic quadrupole moment density, respectively.

Based on Eq. (2), we can obtain a linear-response ex-
pression for T (r) by treating B(r) and ∇ × B(r) as
independent variables, arriving at

T (r) = − lim
B(r)→0

∂F (r)

∂(∇×B)

∣∣∣∣
B(r)

. (3)

Here the subscript B(r) in taking the derivative with
respect to ∇ × B means that the magnetic field at the
point r has to be kept fixed as ∇×B(r) is varied.
Semiclassical theory of the spin toroidization.— With

the above definition of the toroidization, we now formu-
late its microscopic theory. We will focus only on the
spin toroidization. Therefore, we take B(r) as the Zee-
man field, which couples to the spin operator ŝ. Then
the full Hamiltonian can be written as

ĤF = Ĥ(ih̄∂r, r)− gµB
h̄
B(r) · ŝ . (4)

For definiteness we can consider the context to be that
of a spinor implementation of density functional theory
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with spin-orbit interactions included. The first term,
Ĥ(ih̄∂r, r), describes a perfect crystal in the absence of
a Zeeman field, while the second term is inhomogeneous
and breaks the translational symmetry, making it diffi-
cult to diagonalize the Hamiltonian (4) analytically. Here
we take a different route by using the semiclassical theory
of electron dynamics [13, 14], which is designed to study
Bloch electrons subject to perturbations varying slowly
in space.

In the spirit of the semiclassical theory, each Bloch
electron responds to the external Zeeman field in the form
of a wave packet, which has a specified center of mass
position rc and momentum kc. To construct the wave
packet, we make a local approximation and assume that
the system can be described by a set of local Hamiltoni-
ans Ĥc[B(rc)] = Ĥ(ih̄∂r, r) − (gµB/h̄)B(rc) · s. Since
Ĥc respects the lattice translational symmetry, its eigen-
state has the form of a Bloch function eik·r|ũn(k,B(rc))〉
with the eigenenergy ε̃(kc,B(rc)), where n is the band
index. In the limit B(rc) → 0, |ũn(k,B(rc))〉 reduces
to |un(k)〉, the periodic part of the Bloch function of
Ĥ, and ε̃n(kc,B(rc)) reduces to εn(kc), the eigenenergy
of the unperturbed Hamiltonian Ĥ. For simplicity, we
hereafter drop the argument of |ũn〉, |un〉, ε̃n and εn.
For illustrative purposes, we consider a single band with
index 0, and the wave packet is thus the superposition of
eik·r|ũ0〉.

The wave-packet dynamics can be properly formulated
as a set of semiclassical equations of motion in the phase
space spanned by rc and kc [13, 14]. The spatial inho-
mogeneity of B(r) introduces two essential ingredients
for the purpose of evaluating the spin toroidization in
Eq. (3). First, the phase space density of states D is
modified. It has the form [15] (see also Sec. VI.B of
Ref. [14])

D(rc,kc) = 1 + Tr(Ωk,r) , (5)

where

(Ωk,r)ij = −2 Im〈∂kci ũ0|∂rcj ũ0〉 (6)

is the mixed Berry curvature between the real and mo-
mentum space. This modified density of states has been
applied to derive the polarization in inhomogeneous crys-
tals [19]. Secondly, the band energy ε̃ is also affected by
the spatial inhomogeneity [13]

ε′0 = ε̃0 + Im〈∂kci ũ0|(ε̃0 − Ĥc)|∂rci ũ0〉 . (7)

With the above two ingredients we are ready to eval-
uate the free energy density F . For simplicity we set
T = 0. The free energy density is given by F =∫

dkc

(2π)3D(rc,kc)(ε
′
0−µ)Θ(µ− ε′0), where Θ is the Heavi-

side function. At first order with respect to the derivative
of B, the correction to the free energy density is

δF = −
∫ µ dkc

(2π)3
Im〈∂kci ũ0|(ε̃0+Ĥc−2µ)|∂rci ũ0〉 . (8)

Here the upper limit µmeans that the integration is taken
up to ε0 = µ.

The toroidization defined in Eq. (3) can be obtained
from the above free-energy correction. Since |ũ0〉 depends
on rc through B, we make the substitution ∂rci |ũ0〉 =
∂rciB`∂B`

|ũ0〉. We then collect terms involving the an-
tisymmetric part of ∂rciB` and take the derivative as in
Eq. (3). The final expression is

T =
1

2

∫ µ dk

(2π)3
Im〈∂kũ0| × (ε̃0 + Ĥc − 2µ)|∂Bũ0〉

∣∣∣
B→0

.

(9)

Here and hereafter we drop the subscript c of kc. Note
that Eq. (9) can be straightforwardly generalized to the
multiband case by summing over all occupied states, but
we continue to focus on the single-band case here.

The similarity between Eq. (9) and the orbital magne-
tization formula [15–18] is striking. In fact, by making
the substitution ∂B → ∂k, Eq. (9) exactly coincides with
the expression of the orbital magnetization. This simi-
larity has its root in the nature of spin toroidization and
orbital magnetization: they both measure the moment
of some observable, which is spin for spin toroidization
and velocity for orbital magnetization. To further check
the validity of Eq. (9), we have also carried out a linear
response calculation [20], similar to the derivation of the
orbital magnetization in Ref. [18], and obtained the same
result.

Equation (9) can be cast in a form involving only un-
perturbed Bloch states |u0〉 instead of |ũ0〉. Using the
perturbation theory, up to the first order in the Zeeman
field we have

|ũ0〉 = |u0〉 −
gµB
h̄

∑
n 6=0

B · sn0
ε0 − εn

|un〉 . (10)

Then Eq. (9) can be rewritten as

T = −gµB
2

∑
n6=0

∫ µ dk

(2π)3
(ε0 + εn − 2µ)

Im(v0n × sn0)

(ε0 − εn)2
,

(11)
where v0n = 〈u0|v̂|un〉 and sn0 = 〈un|ŝ|u0〉 are the in-
terband elements of the velocity and spin operators, re-
spectively. Both Eq. (9) and (11) are amenable to imple-
mentation in a first-principles calculation.

It is clear that our expression (11) for the spin
toroidization is gauge-invariant since neither v0n nor sn0
changes if an arbitrary phase factor is applied to |un〉.
As a consequence, the spin toroidization does not have
any quantum of uncertainty, and it always vanishes for
a system with either time-reversal or inversion symme-
try. This is in sharp contrast to both the electric po-
larization [21, 22] and the previous theory of the spin
toroidization [3, 12].

It is also worth mentioning that our toroidization can-
not be used to predict a surface magnetization density,
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unlike the electric polarization, which has a definitive re-
lation to the surface charge density [23]. This difference
can be traced to the fact that charge is conserved but
spin is not.

Connection to magnetoelectric polarizability.—The
toroidization and the antisymmetric part of the magne-
toelectric polarizability transform in the same way un-
der symmetry operations [4]. However, an explicit re-
lation between these two quantities has not previously
been identified. Here we show that for an insulator, the
spin toroidization admits a direct and elegant connection
to the spin magnetoelectric polarizability.

According to the modern theory of polarization [21,
22], as we vary the j-th component of the Zeeman field,
the change of the polarization is given by

∆Pi = e

∫
dkdBj
(2π)3

Im〈∂ki ũ0|∂Bj
ũ0〉 . (12)

Therefore, the magnetoelectric polarizability has the
form [24]

αij =
∂Pi
∂Bj

∣∣∣∣
B→0

= e

∫
dk

(2π)3
Im〈∂ki ũ0|∂Bj ũ0〉

∣∣∣
B→0

.

(13)
On the other hand, note that for an insulator the Fermi-
surface contribution to T vanishes. If we take the deriva-
tive of Eq. (9) with respect to µ, we find the desired
connection

e
∂Tk
∂µ

= −1

2
εijkαij , (14)

where εijk is the Levi-Civita symbol.

There is a heuristic derivation of the relation (14).
Equation (2) suggests that the differential form of the
free energy is dF = −T · d(∇ × B) − ρdµ, where ρ is
the particle density. We can then obtain via the Maxwell
relation

∂Ti
∂µ

=
∂ρ

∂(∇×B)i
. (15)

For a given point r, we write B = (1/2)h× r such that
∇×B = h and B vanishes exactly at r. This choice en-
sures that ∂iBj only has the antisymmetric component.
On the other hand, the application of an inhomogeneous
Zeeman field B(r) will induce an inhomogeneous polar-
ization P (r), which in turn leads to a charge density
change, i.e.,

eρ = ∇ · P = ∂i(αijBj) =
1

2
εijkαijhk . (16)

Combining Eq. (15) and (16) then yields Eq. (14).

We note that in the above argument, whether B is a
Zeeman field or a magnetic field does not matter, there-
fore Eq. (14) should also be valid for the orbital toroidiza-
tion.
Molecular insulator limit.—To shed light on the phys-

ical meaning of the spin toroidization in Eq. (9), we
rewrite it for an insulator using the Wannier function
representation. We label the Wannier function defined
from the local Hamiltonian Ĥc by |w0(R,B)〉, with 0 be-
ing the band index and R being the lattice site. In this
representation Eq. (9) becomes [20]

T =
1

Vcell
Re〈w0(B)|r(Ĥc − µ)× ∂B|w0(B)〉

∣∣∣
B→0

− gµB
2h̄Vcell

〈w0(B)|r × ŝ|w0(B)〉
∣∣∣
B→0

− gµB
2h̄Vcell

∑
R

〈w0(B)|r|w0(R,B)〉
∣∣∣
B→0

× 〈w0(R,B)|ŝ|w0(B)〉
∣∣∣
B→0

,
(17)

where |w0(B)〉 = |w0(R,B)〉 with R = 0, and Vcell is the
unit cell volume.

The meaning of Eq. (17) can be clarified further by tak-
ing the molecular insulator limit. Since the spin toroidal
moment arises from a vortex-like arrangement of spins,
there must be multiple atoms in a unit cell, which we call
a molecule. The molecular insulator limit is then taken
by letting the distance between neighboring molecules go
to infinity while the relative structure of each molecule
is unchanged. In this limit, |w0(R,B)〉 is just the en-
ergy eigenstate of the molecule, translated to sit in cell
R. We will further assume that the system respects the
combined time reversal and inversion symmetry such that
〈w0|ŝ|w0〉 vanishes.

In the molecular insulator limit Eq. (17) consists of two
parts [20]. The first part is

T1 =
gµB

2h̄Vcell
〈w0(B)|r × ŝ|w0(B)〉

∣∣∣
B→0

. (18)

It is clear that this term is due to the configuration of an
array of classical spins, similar to the equation appearing
as Eq. (1) in Refs. [3, 4]. The second part, coming from
the modified density of states, is

T2 = − 1

2Vcell
(ε0 − µ)(∂B × r̄)

∣∣∣
B→0

, (19)

where ε0 refers to the molecular electronic energy levels
and r̄ = 〈w0(B)|r|w0(B)〉 is the electron position under
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(a) (b)

FIG. 1. Spin toroidization of a tight-binding model. Panel (a)
is part of a periodic crystal. t1 and t2 is the nearest neigh-
bour hopping strength. The red arrow on each lattice site
indicates the direction of the local exchange field. The lattice
constant is a/2. Panel (b) is the calculated spin toroidization
(in units of gµB/4a) as a function of the chemical potential.
The shaded areas correspond to energy gaps. The parameters
are chosen as follows: t1 = 0.3∆ and t2 = 0.15∆.

the external Zeeman field. Here ε0 − µ is the free energy
for state 0.

The T2 term can be intuitively understood as follows.
In the spirit of the molecular insulator limit, if each
molecule is simply a cluster of classical spins, under an
inhomogeneous magnetic field the spins on each site can
rotate but cannot move. However, the spins are car-
ried by electrons, and the inhomogeneous Zeeman field
will exert a spin force [25] on the electron. Therefore,
the electron will shift to a new equilibrium position due
to the balance between the spin force and the restoring
force that binds electrons to ions. The corresponding en-
ergy change gives rise to T2. In a semiclassical picture,
∂B × r̄ counts the change of the number of electronic
states within a volume element located at r.

Equation (19) also provides a strong hint of the rela-
tion in Eq. (14). Taking the derivative with respect to
µ in Eq. (19) yields (1/2Vcell)∂B × r̄. Since r̄ is pro-
portional to the electric polarization, its derivative with
respect to the Zeeman field B is exactly the magneto-
electric polarizability.

Tight-binding model.—Next we demonstrate our the-
ory using a tight-binding model shown in Fig. 1a. The
tight-binding Hamiltonian is

ĤTB = −∆
∑
i

ni · σαβc†iαciβ +
∑
〈i,j〉

tijc
†
iαcjα , (20)

where ∆ is the local exchange field, ni is the exchange
field direction, α and β label the spin components,
and tij is the spin-independent nearest neighbor hop-
ping strength alternating between t1 and t2 as shown
in Fig. 1a.

Since T transforms as a vector, it is useful to first an-
alyze the symmetry of this system. The system has a 4-
fold rotational symmetry about the vertical axis. There-

fore, the toroidization cannot have any in-plane com-
ponent. Moreover, if t1 = t2, the system also respects
the combined symmetry of the mirror operation σh (i.e.,
z → −z) followed by a translation across the diagonal
direction. This requires that the out-of-plane component
of the toroidization vanishes. Both results have been ver-
ified in our numerical calculations. We thus focus on the
case t1 6= t2 for which an out-of-plane toroidization is
expected.

Figure 1b shows the toroidization calculated from
Eq. (9) as a function of the chemical potential. The sys-
tem has four bands with each band doubly degenerate.
We can see that T decreases linearly inside the first gap
due to the nonzero magnetoelectric polarizability. The
curve is symmetric with respect to µ = 0 because of the
particle-hole symmetry of our model.

In summary, we have derived a microscopic theory of
the spin toroidization in crystals. Its expression involves
bulk Bloch functions and has clear physical interpreta-
tions. We have also established an explicit relation be-
tween the toroidization and the antisymmetric magneto-
electric polarizability.
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