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ABSTRACT

The structure and electronic preoperties of bonding defects
in amcrphous semiconductors are investigated using a variety
of theoretical approaches. First, realistic self-consistent
pseudopectential calculations on superlattice structures con-
taining defects are applied to glassy selenium as a model sys-
tem. It is demonstrated that accurate structural ground state
and excitaticon energies can be obtained; these are used to rule
cut the existence of certain defects and predict the relaxed
structural cenfiguration ¢f others. Informaiion on the elec-
tronic structure 1s then extracted and utilized in the
construction o©f a tight-binding Hamilteonian. The latter is
applied to more realistic structures containing truly isclated
defects, using cluster~Bethe-lattice techniques. The origin,
character, energy locaticon, and localization of the defect
states associated with bond coordination defects, and with
defect pairs and certain relaxed defects, are discussed. It is
shown that a unigue rw-interaction between non-bonding
p-orbitals stabilizes the neutral one-fold defect and gives
rise to a well-localized deep gap state. Experimental support
for this picture is discussed.

Similar cluster-Bethe-lattice tight-binding calculations
are then applied to the increasingly dissimilar cases of
heteropolar chalcogenides and polyacetvliene. Important simi-
larities and differences emerge. Defects in arsenic selenide
are classified, and a new selection rule is formulated which
greatly reduces the number of allowed Fermi-level pinning
reacticns. The defect gap states are found to arise due to
unique bond-orbitals that occur at defects. Finally, bonding



defects {chain ends and crosslinks) in polyacetylene are
investigated, with particular attention to soliton binding or
emission at these sites. Certain other Rinds of structural
disorder are also studied, and the effect upon the electronic
density of states is calculated in each case.
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CHAPTER I INTRCODUCTION

For roughly f£ifty years, our understanding of the exist-
ence of energy bands and gaps in the electronic structure of
crystalline semiceonductors has rested upon Bloch's theorem.
It is not surprising, therefore, that the discovery of corre-
sponding features in the spectrum of amorphous materials has
led to new thecretical approaches and new physical insights.
Perhaps the central insight has been the understanding that it
is the short range order (the uniformity in the local bonding
environment of each atom), rather than the long range order
(pericdicity), which primarily determines the existence and
character of bands and asscciated gaps. Accordingly, émor-
phous semiconductors are presently understood to be materials
that possess almost perfect short range order, while lacking
long range crder.

The prevalence of short range order means that almost all
atoms are able to satisfy their preferred coordination, with
fairly uniform bond lengths and bond angles, resulting in a

"continuous random network." However, it is inevitable

¢t

hat

the geometrical constraints involved in packing atoms

ill

£

cccasicnally cause the short range corder to break down. One
therefore expects some density of "defects" in which the pre-
ferred bonding geometry is not satisfied for cne or more atoms.
These intrinsic defects play a central role in the physics of

amorphous semiconductors because they can give rise to gap



states which dominate the optical, transport, and magnetic
properties of the material.

I+t is clearly important to obtain a thorough theoretical
understanding of such defects. O©Of course, the absence of
franslational symmetry in the defect problem means that tradi-
tional approaches based upcn Bloch's theorem are inapplicable.
However, a variety of alternative technigues have become
available in the last ten years or sc. Of these, two have been
found to be particularly useful and have been employed exten-
sively below. One is the construction of artificially periedic
("superlattice™) structures containing defects, which may then
bpe solved using traditional realistic (e.g. self-consistent
pseudcpotential) methods. The second is the cluster-Bethe-
lattice method, in which structural models containing isolated
defects ére solved exactly for a given tiqht—binding
Hamiltonian using Green's function techniques.

This thesis represents a detaziled thecretical investi-

gation of defects in three model systems: amorphous selenium

{a-Se), amorphous arsenic selenide (a-ASESeS), and
polyacetylene [{CH)X]. This choice o¢f materials provides
interesting contrasts. The first twoe are chalcogenide

glasses, one elemental and the other hetercpolar; the third is
an organic polymer. =a-Se and a«AsZSe3 are experimentally cuite
similar, although the partial ionic character and the possi-

bility of Dbreaking the chemical ordering {intreducing

"like-atom bonds") in As,Se, give rise to a variety of inter-



esting phenomena which are not to be found in pure Se. In
polyacetylene, the possibility of Dbreaking the bond-
alternation (Peierls) ordering (introducing "solitons") pro-
vides still other unigue phencmena neot found in the cther two
materials.

Despite these contrasts, there are a number of unifying
threads which weave through our study of all three of these
systems. The same theorstical methods will fraquently be
applied, and certain impertant concepts will re-emerge. (For
example, %total energy calculations and estimates will play an
important role in determining what defect configurations are
likely to exist and what their stable configuration will be.)
All *hree materials are amorphous semiconducteors with gaps on
the order of 1-2 V. All three are believed to contain coordi-
nation défects with associated deep gap states. Perhaps a
particularly intriguing common feature is the existence of
free spins.at charge-neutral defects; this can occur when
defects are topologically constrained to be created in pairs,
as is the case for certain defects in all three systems.

The plan of the thesis is straightforward. We shall cen-
sider each cf these materials in turn, with the emphasis upocn
the physics and the results, in Chapters II-IV. The theore-
tical methods will be introduced as necessary as we proceed;
certain details concerning the Green's function soclution of

the cluster-Bethe~lattice, and the self-consistent



pseudopotential method, are deferred to Appendices A and B

respectively.



CHAPTER II SELENIUM

{a} Introduction

From a theorist's point of view, the elemental nature of
glassy selenium makes it uniguely suited as a model system for
the chalcogenide glasses, a family of materials which includes
the arsenic selenide, sulfide and telluride glasses as well.
All of these materials have a number of experimental properties
in common.le They all are excellent glass-formers, with glass
transition temperatures in the range 300-500°K. They are all
p-type semiconductors with the Fermi Llevel pinned near

midgap.l_B They all show diamagnetic behavior at low temper-

atures, with the density of free spins estimated at less than

.14 -3 . - .
101 cm on the basis of ESR (Electron Spin Resonance) meas-
urements. Moreover, there is a wvariety of photoinduced
rhencomena commen to these materials, including

. 6 . - 5 )
rphotoluminescence, photoinduced ESR, and photoinduced IR
: : g A . . . o
(infrared) absorpticn. The photoluminescence is quite simi-
lar in all cases, with a large Stckes shift (about half the band

gap), an excitation spectrum which falls off strongly above the

[e 3

Urbach edge, an an ancmalous quenching of the

photoluminescence quantum efficiency beginning at low temper-
0. &

atures {~107K).

Naturally, cne wanted to understand these features in

terms of a single model for the chalcogenide glasses. As it
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happened, the key to the development of this model lay in a
long-~standing puzzle: how can the Fermi level be pinned in a
system which shows no free spins? The traditional picture is
+that Fermi level pinning is accomplished by the capture of
added carriers (say electrons) into gap states at the Fermi
level. Once an electron is added to given gap state, however,
the repulsive Coulomb correlation energy UC will make it unfa-
vorable to place a second electron into the same state. One
therefore. expects a manifold of states (those whose "first

ionization potential™ lies between s, and 3F+Uc) to contain

F
free spins. These spins were not observed.

The solution to this puzzle was indicated in an obscure
paper by Anderson.7 He suggested, on the basis of a simple
Hubbard Hamiltonian, that a strong electron-phenon coupling in
these materials could give rise to a negative effective corre-
laticon energy, Uef£<o’ which would tend to pair spins in the
material. The presence of this "negative U" can be understooed
as follows. First, consider adding a single electron to a
state which is initially uncccupied. In a system with a strong
electron-phonon coupling, there will be a different equilib=-
rium structural configuration for each cccupancy; the system
will therefore undergo structural relaxation when the first
electron is added. This relaxation always occurs in such a way
as to lower the one-electron eigenvalue of the newly-occupied

eigenstate. (Let Uph be the magnitude of the lowering.) If

UC-Up = U __ < 0, then as a second electron is added to the



system, it will be energetically favorable to deubly occupy
this lewvel before singlyv occupving a different cne. In this
way the Fermi level is pinned without accumulating free spins.

Anderson did not specify a microscopic medel £for the
states and relaxations involved, but he appears to have been
thinking in terms of a truly random picture of the glass con-
taining a broad distributicen of bond lengths and bond
strengths, with many or all valence states being negative U
states. Subsegquent models based upon this idea have even tried
to explain the existence of the band gap on the basis of these
two-electron effects‘S*lO However, this picture would require
a2 huge Uph to account for a band gap of ~2 eV, and is hard to
reconcile with the uniformity of bond lengths indicated by the
sharp first peak in the radial distribution function of the
glass.ll

The next major advance came in a series of papers by Mott,

12,13

Davig, and Street, who recognized that the prevalence of

short range order in these materials gave rise to bands and
gaps. They attributed the negative U to some density (~ 1@18
cm_s) of intrinsic structural defects which could exist in the
glass. They referred to these defects as "dangling bonds, " and
used D+, DO, and D~ to denote the three charge states of the
defect. D' and D~ were assumed to have hydrogenic {acceptor
and donor) gap states, while the D would have a midgap state

and a free spin. This model proved to be extremely successful

in accounting for many of the experimental properties of
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chalcogenide glasses mentioned above. In addition To provid-
ing a natural explanation for the diamagnetic Fermi level
pinning, it explained all ¢f the photoinduced phenomena on the
basis of *“he photoexcitaticn of D° from D+ and D . The
photoluminescence results from the radiative recombination D°
> D +e or D +h, with the half-band-gap Stokes shift a natural
consequence of the relaxations at the defect. The phetoinduced
ESR is just due to the free spin on the DO, and the photoinduced
sbsorption corresponds to h+D° -+ D" or e+D° > D".

Despite the extraordinary success of this medel, there was
still no clear identification of the microscopic bonding con-
figqurations involved, and no clear explanation of why these
phencmena should net occur in other (e.g. pnictide or
tetrahedr;—xl) amorphous semiconductors. By referring explicit-
ly to the coordination chemistry of <these lone pair
semiconductors, however, Kastner, Adler, and E‘ritzschelé“l&
were able to address these points. On the basis of simple
pond-orbital models, they suggested that the D~ was indeed a
dangling bond (Cl- in their notation), but that the D' corre-
sponded to a threefeold ccordinated selenium atom (C‘.3+). These
+wo defects form a "Valence Alternation Pair" (VAP). The
Fermi-level pinning reacticon Cl—+2h - C3+ occurs via a mech-
anism in which a dangling Se atom swings over and bonds to an
atom of a2 neighboring chain. They point out that it is really
the availability of lone-pair orbitals on the chalcogen atoms

which makes this negative U possible. This explains the appar-



ent absence of the negative U in pnictide and tetrahedral
systems.

Thege are the broad outlines of the defect model for
chalcogenide glasses. While it is used today teo interpret muc:k
of the experimental work on chalccgenide glasses,2‘4’12’15’17

it is not universally accepted. As mentioned above, some mod-

els propose a smooth distribution of bond strengths and invoke
8-10

two-electron effects to explain the gap. Emin has proposed
18
a model based on small polarons. Several other
. 1 19“22 . . ,
defect-related models have been suggested, including the

raft model of Phil}.ips.19

The controversy surrounding the
defect model provides cne impetus for a detailed theoretical
investigation.

A second impetus is the fact that there has been controver-
sy among the propenents of the defect model themselves about
the nature of the defects involved. The simple models in cir-
culation have not been able to address with sufficient accuracy
such important questions as the character, localizatiocn, and
enargy position of the defect states. A particular source of
contreversy has been the nature of the photoinduced neutral

12,14-16,23-24

(DO) center. Since it governs the photoinduced

phencomena, it is crucial to cbtain a better understanding o

bt

this defect. Mott, Davis, and Street originally assumed that
the preferred neutral defect would be a 1l-fold atom, weakly
bonded to an atom of a neighboring chain. A 3-fold defect was

thought to be unlikely because a Jahn-Teller distortion was



expected to weaken one of the three eguivalent bonds.12’23

However, Kastner, Adler, and Fritzsche then pointed out that
the electronic energy gained by bond formation would favor the
3-fold site.14 On the other hand, one expects that inclusion
of intercore repulsive terms could easily turn the tides in
faver of the l-fold defect again. On the basis of the simple
bond~ocrbital models, it was impossible to resolve this contro-
versy theoretically. Moreover, altheugh important new
experiments have shed light upon the photoluminescence mech-

anism,25 the VAP radial distribution function,zs’26

26-28

and the
density of states in the gap, these experiments are gener-
ally not sensitive to the bonding configuration of the defects
involved.

To obtain a satisfactory understanding of the basic phys-
ics underlying the structure, ground-state properties, and
elementary excitations of defects, it is necessary to develop a
theoretical description which is realistic. Owing to the
inherent nonperiodicity of the defect proklem, this has been an
elusive gecal. We have approached the problem by employing a
powerful combination of realistic self-consistent
pseudopctential (SCPSP) calculaticons on pericdic superlatiice
structures containing defects and by employing flexible
tight-binding (TB) technigues which can be used to solve nonpe-
riodic single-defect structures. The SCPEP calculations
employ a realistic Hamiltonian and are self-consistent, but

the structure, being periodic, is approximate. Defect states
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get brecadened into bands, and therefore these results do not
lend themselves to direct interpretation. However, the SCPSP
results were then used as the basis for the fitting of a TB
Hamiltonian, which was then applied to more realistic nonperi-
odic {(cluster-Bethe-lattice) single-defect structures. These
realistic tight-binding calculations reproduced all of the
essential features of the SCPSP results. Morecover, they pro-
vide a good pnysical description of the nature of the defect
states.

Finally, we have resolved the controversy regarding the
neutral (DO) center by rerforming self-consistent
pseudcpotential calculations of the total energies of various
possible bonding configurations for the neutral defect. The
calculation of total energies is of crucial importance because
it allows us to determine the stable (or metastable) defects
which can actually occcur in the glass. This can ke accom-
plished simply by searching for the lowest-energy structural
configuration.

The remainder of this chapter will be devoted to discuss-
ing these results. Since the main gecal here 1s to present the
theoretical understanding which has emerged from this work, we
begin Sec. II{(bk) by discussing the nature of the electronic
states at unrelaxed onefold and threefold c¢oordination
defects. We begin with an extremely simplified but intuitively
accessible TB model and then discuss in some detail the new

physics which arises when a realistic TB Hamiltenian, f£it to a



- 16 -

realistic SCPSP calculation, is used. We then extend the work
ro include more complicated defect structures, including close
defect pairs and certain kinds of relaxations. The method used
ro obtain the density of states for these defect structures
{generalized to the case of nonorthogonal basis orbitals) is
given in Appendix A, together with a discussion of an empirical
method for estimating defect total energies. BSec. II(c) con-
tains a discussion of the SCPSP results and the fitting cf the
realistic TB Hamiltonian to these results. In Sec. I1{(d)} we
present the results of realistic total energy calculations
based upon the SCPSP method. (Some details relevant to the
methods of Secs. I1I(c) and II(d) are deferred to Appendix B.)
Finally, in Sec. II(e) we summarize and discuss the impli-

cations of the work.

(b) Bethe-Lattice Tight-Binding Calculations

Our model for the glass will consist of defects embedded in
an otherwise perfectly cocrdinated continuous random network
which will be referred to as the bulk. For the case of glassy
Se, this consists of infinite chains {and perhaps some
eightfold and larger rings) packed in such a way that bond
angles and bond lengths remain approximately those of the crys-
+alline structure. The first step, clearly, is to model the
electronic density of states of the bulk. Because the intsr-
chain bonding is weak, having considerable van der Waals

character, and because the gross features of the density of



states are expected to be determined by the short~range crder
{(i.e., the local bonding'conﬁigurationf, we model the bulk ran-
dom network by focusing on a single average chain embedded in
the glass. Similarly, an N-fold coordination defect is modeled
by attaching N such bulk chains to the defect site. For
definiteness we choose a chain identical to that in the
trigenal crystal, keeping in mind that bond~angle fluctuaticns
and dihedral-angle disorder may broaden the resulting density
of states slightly and introduce narrow band tails. Thus,
within a first-neighbor tight-binding point of view, our model
for the electronic structure of the bulk has reverted to that
of trigonal Se, although the results must be interpreted with
the philosophy outlined above in mind.

The electrecnic structure of these trigenal chains is by

now well understood‘29’3o

In the wvalence region, one finds a
4zg-1ike band fairly well separated frem three 4&p-like bands.
The latter consist of filled valence and lone~pair bands and an
empty antibonding conduction band.

The origin of the distict p bands may be understcod by
referring to Fig. l1l{(a). Here we have faken an extremely sim-
plified model for trigonal Se which nevertheless contains much
of the essential physics. The helical chain is chosen to have
bond angles and dihedral angles of exactly 900, and we use a
simple nearest-neighbor tight-kbinding medel with just the
three valence p orbitals on each site. Because of the

gecmetry, there are no interactions kbetween the systems of P
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Figure 1
sructure and interaction diagram (double line Vs’ single
line V“) for (a) helical chain, (b) onefold defect, and (c)

threefold defect.



(b) 1-fold

X =0-0-=0-0~O
< ~O=O-O-0=0-0
N OO0~ 0-C=0
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py, and P, orbitals, s¢ that the three subsystems become decou-
pled and degenerate. It thus suffices to consider only the
system of y orbitals shown explicitly in Fig. 1(z). The only
free parameters in the model are a ¢-bonding interaction inte-
gral VG and a weaker 1 interaction VH. I1f we represent these
schematically by double and single lines, respectively, we
cbtain the interaction diagram shown at right in Fig. 1(a).

The origin of the three p bands now becomes clear. In the
Iimit vn + 0, the o bonded pairs of crbitals decouple from the
remaining nonbonding orbitals (NBC's or lone pairs). The lat-
ter give rise to a discrete lone-pair level at the unperturbed
p energy, while the .former produce bonding and antibonding (¢
and o*) levels below and above the lcne-pair level, respective-
ly. For Vﬁ + £ these three discrete levels must broaden into
bands; thée resulting density of states is easily calculated and
ig shown in Fig. 2(a). The ¢ and the lone-pair bands are
filled, while the ¢* band is empty. Note that the widths of the
bands are determined not simply by a direct 7 interaction, but
rather by a weaker effective interaction of order VHZ/VG,
pecause of the alternation of bond orbitals and NBO's (sepa-
rated by energy Vo) . This fact will be c¢rucial o the
understanding of bond-¢ccordination defects.

Let us consider the simplest such defect, a onefold coor-
dinated (dangling-bond) site terminating a chain in the bulk.
This is shown in Fig. 1l(k) alcong with the appropriate inter-

actiocn diagrams for the systems of %, y, and z orbitals. Note



- 20 -

igqure 2

by

Local density of states averaged over sites near the
defect. Using a simple tight-binding Hamiltonian: (a) bulk,
{b) onefold defect, and (¢} threefold defect. Using a realis-
tic tight-binding Hamiltonian: (d) bulk, {(e) cnefold defect,

and (f) threefold defect.
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that the three subsystems are still decoupled but but nc longer
identical; each is terminated in z different fashion. The pz
system ends cn ¢ and o* orbitals which contribute featurelessly
to the bonding and antibonding bands. Similarly, the terminal
nen-bonding vy orbital contributes to the lcne-pair band. OCf
special interest is the system cf x orbitals which terminates
on a pair of NBO's connected by a direct 7 interaction. Recall
that this is a stronger interaction than the effective inter-
action which determines the lone-pair kandwidth. As a result
the twe NBC's are split into w bonding and n antibonding combi-
nations [henceforth n{NBO) and #*(NBO), respectively], qiving
rise to localized states above and below the lone~-pair band
edges. Thisg is shown in Fig. 2(b), where the model of Fig. 1(b)
is solved exactly using Green's-function techniques. If the
defect is neutral, the 7*(NBO) state above the valence-band
maximum is half f£illed (i.e., contains a hole). This defect
state will be localized strongly to at most two sites. At this
reint the existence of leocalized states at the onefold defeact
is a consegquence of the unique direct 1 interaction between
NBEC's on neighbcring sites.

Consider now the threefold defect shown in Fig. 1(c). The
geometry has been chosen such that there is an exact symmetry
of 120° rotation about an axis passing through the threefold
site. The decoupled systems of ¥®,y, and z orbitals are once
again identical, restoring the threefold degeneracy. We

observe a behavior analogous to that at the onefold site. This
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time there is a pair of o* crbitals (and a pair of ¢ orbitals)
shown by arrows which are connected by a direct m interaction.
Once again the splitting exceeds the band width and we expect a
pair of threefold~degenerate localized states {n*(o*) and 7{c*)
in our notation] teo emerge from the antibeonding band edges, and
similarly for the bonding band. Figure 2{c) shows that this is
indeed the case. The threefold degenerate 7m(o*) state below
the conduction-band minimum contains a single electron if the
defect is neutral. Note that this state will be highly delo-
calized, sharing its character among at least the seven central
atoms near the defect.

At this point we have seen that onefold defects will tend
to produce highly localized defects at the lone-pair band
edges, and that threefold defects will give rise to much more
delocalized (but still nonhydrogenic) gap states at the bond-
ing and antibonding band edges. Before carrying the discussion
further, it becomes essential to improve drastically upon the
simple model presented above. We will extend the above dis-
cussion by using a much more realistic tight-binding model, but
in doing so a fundamental guestion emerges: How can we be sure
that a tight-binding model which has been fit to the bulk den-
sity of states will be valid in the neighborhood of the defasct?
The only way to answer this question is to appeal to realistic
first-principles calculations on defect structures. This has
been done in Sec. II(c¢), where we have applied self-consistent

pseudopotential (SCPSP)calculations to crystalline Se and to
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periodic superlattice structures containing defects. We fit a
tight-binding Hamiltonian to the bulk crystal and then deter-
mine what modifications to the TR model are necessary to give
accurate results for defects. We find that it is only neces-
sary to adjust the diagonal Hamiltonian matrix elements on the
defect sites themselves. The onefold atom has its self-energy
shifted upward by 1.25 eV, while the threefold atom is shifted
downward by the same amount.

The SCPSP calculations are used to verify the existence of
these self~energy shifts in Sec. II(c), but they can be under-
stood physically in the following way. Suppcse we break a sin-
gle bond in an infinite Se chain, preducing two onefold
defects. The two electrons which were shared in the o-konding
orbital each singly occupy a new NBO on the cnefold sites. In a
simple picture of atomic corbitals, one would then have a hole
lecalized completely on one of the two NBO's on the defect
site, and each atom would be individually charge neutral. How-
ever, we have shown above that one of the NBO's at the defect
interacts strongly with an NBQO on the neighboring site, so that
in fact the hole is shared between the tTwo sites contributing
to the 7% (NBQO) defect state. This would lead tc a charge of
~+0.5 e on the second-to~the last and last atoms, respectively.
Now the Coulomb interaction shifts the self energies upward on
the terminal atom (and downward on the penultimate cne), caus-
ing the 7(NBC) state to reside mostly on the neighboring site

andé the 1*(NBC) state to reside mostly on the defect site. The



charge transfers and self-energy shifts now adjust themselves
self-consistently. When a realistic calculaticn is done [in=-
cluding, for example, the fact that the 7*(NBC) defect state
decays into the bulk], the net result is that the charge trans-
fers are small and the self-energy shift is large only on the
defect site itself [see Sec. II(c)].

The situation for the threefold defect is again analogous.
The defect atom shares three of its electrons in o bonds; if the
fourth eleciron could be localized to the defect site, each
atom would be individually neutral. Instead, the electron is
shared in the highly delocalized n(o*) defect state. The
self-consistent process leads to a lowered self-energy on the
threefold atom which strongly reduces the amount of charge
transfer from the defect site.

wWhen these self-energy shifts are included, we obtain the
realistic tight-binding Hamiltonian presented in Table I. The
TB model includes s as well as p states with s-p interactions,
overlaps between orbitals on neighboring sites, and
self-energy shifts of £1.25 eV on cnefold and threefold sites,
respectively. The defect structures to be considered are iden-
tical to those of Fig. 1 except for the distortion necessary to
obtain the experimental bond angle of 102.54° and the dihedral
angle of 100.270.31’32

These structures have been solved within the TB
Hamiltonian. The introduction of overlaps introduces subtle-

ties which are discussed in Appendix A. The results are shown
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Tight~binding EHamiltonizan

matrix element,
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for selenium.

is diageonal

V is nearest-neighbor interaction, and & is
nearegt-neighbor overlap. Am is change is ES and ED at m=-Zold
site.

By Ep Al A3
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-2.27 eV -2.07 &V -2.97 &V -1.19 &V
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for *the bulk chain, cnefold defect, and threefold defect in
Figs. 2{(d), 2(e), and 2(f), respectively. The affect of the
self-energy shift can be seen dramatically in Fig. 2(e). The
7({NBO) and n*(NBO) states both have substantial character on
the defect site and so are strongly influenced. The former
moves up in energy and becomes a resonance just above the
lone~pair-band minimum, while the latter moves deep into the
gap, forming a state near midga?. This state is highly local-
ized to the defect atom, having 68% of its character there and
21% on the neighboring site. Remarkably, there is a second
state emerging into the gap just above the valence-band
maximum. This corresponds to the terminal nonbonding ¥ orbital
of Fig. 1(b) which is also severely influenced by the
self-energy shift.

Consider now the threefold site, Fig. 2(£f). Recall that
the simple model of Fig. 2(c) gave rise to rthreefold~degenerate
defect states above and below both the bonding and antibonding
bands. Now taking the bond angles and dihedral angles differ-
ent from 90° breaks the threefold degeneracy of these states.
The w(o*) state in the fundamental gap, for example, spiits
into a ncndegenerate (A-like) staia deeper in the gap and a
twofold-degenerate (E-1ike) resonance above the concduction-
band minimum. The self-energy shift tends to move these states
further downward in energy, but the effect is not dramatic
because nc state is primarily localized to the defect atom.

The defect state occurs 0.55 eV below the conduction-band edge
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and is highly delocalized, having nc more than about 15% of its
character on any one site.

In order to appreciate the unigqueness of these defects in
chalcogenides, consider for a moment the corresponding defects
in pnictide or tetrahedral semiconductors, e.g., a-As or a-S5i.
First of all, overccordinated sites are not expected at all in
8i. If they exist in a-As, thelr properties would be deter-
mined by the excepticnal Sps hvbridization at the defect site.
Pollard and Joannopou}.oss3 nhave shown that the central of bond
orbitals, composed of sp, and ? orbitals on the fourfold and
neighbering sites, respectively, are split by the
dehybridization interacticn into a Tzwlike rescnance in the
conduction band and ~an A-like gap state near  the
conduction-band edge. The gap state is essentially localized
to the fourfocld site and its immediate neighbors and has no p
character on the defect site. This state is thus completely
different form the overccordinated a-Se defect state in
origin, character, and symmetry. Thus the chalcogenides are
the only systems where one finds such an elegant correspondence
between the propertiees of under~ and overcoordinated defects.

Secondly, even the undercoordinated defects are unigque in
+the chalccgenides., The situation is sketched in Fig. 3. In
a~As or a-35i, cne finds neighboring p or 5P orpitals split

into ¢ and o* bond orbitals, which are then broadened into

valence and conduction bands. A dangling beond simply gives

H

ise toe a p or sSp., orbital which is not bonded away by the ¢
3
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Figure 3

Sketch of the gap region for undercocrdinated defects in
group 1V, V, and VI semiconductors. The wvalence bands are
shown schematically. Dashed lines correspond to defect states

oY resonances.
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interaction and which, therefore, remains sitting near midgap.
Because there are no such nonbonded orbitals on neighboring
sites with which to interact, these defect states are initially
strongly localized to the defect atom. Thus no self-consistent
charge transfers or self-energy shifts are expected. This is
in complete contrast toc the case of the chalcogenides, where
the availability of neighboring NBO's and the unigue © inter-
action give rise to the rich structure described above.

Bishop, Strom, and '.T.'a;,.rlor,S have identified the
rhotinduced electron spin resonance (ESR) center in selenium
as a gap state localized primarily to a single nonbonding
orbital. This fits in nicely with our picture of the onefold
defect and indicates therefore that onefold defects may ke pre-
farred to threefold defects in the glass. This would be
surprising, however, in the light cf the suggestion by Kastner
et al. that the lowest-energy neutral defect would be threefold
coordinated.14 This was based on the observation that the
threaefcld defect has an extra bond compared to the cnefold, and
that conseguently the electronic energy of bond formation
would favor the threefold. From elementary models based on
discrete Dpond-orbital energy levels, the energies of the
onefold and threefold defects were estimated to be ~3-4 eV and
~1 eV, respectively.ls

However, such an analysis omits the ion-ion repulsion
which stabilzes the bonds and fazils toc take intc account the

broadening of molecular-orkbital levels intc bands and the



existence of gap states and resonances near defects. The cal-
culated density of states in Fig. 2(e) or 2(f) contains all the
information necessary to sum correctly the latter one-electron
energies, and the additional repulsive term can be empirically
modeled as a constant correction per bond. This is carried out
in detail in Appendix A.

The resulting total energies of the onefold and threefocld
defects are estimated at 1.17 and 1.36 eV, repectively. Three
effects are responsible for this remarkable lowering of the
energy of the onefold site. Firstly, the icn-ion repulsion
largely compensates for the loss of electronic binding energy
when a bond is broken. Secondly, the hcle which is constrained
to lie at the NBO level in the simple models rises from midband
to the wvalence-band and beyond in our calculation. Thirdly,
the partial 7 bond between the defect site and its neighbor
alcng the chain stabilizes this defect even further. The net
result is that the onefold defect has its energy lowered by
about 3 eV. The first and the second effects have analogs for
the case of the threefold defect which raise and lower the
~otal energy, respectively. The net result is a slight
increase ¢f ~0.5 eV in the defect formation energy.

The energy estimates given here arply To neutral defecis.
In order to address such guestions as the negative U or the
luminescence Stokes shift, it will be necessary to identify the
lowest-energy charged defects as well. On the cone hand, i1t may

be that the defect retains its basic bonding configuration upon



change of charge states, with only modest changes in bond
iengths and bond angles (bond relaxations). On the other hand,
the large Stokes shift would argue that a bond-switching or
coordination can take place. This would be the case, for exam-
pie, if the lowest-energy positively charged defect were
threefold coordinated.

Because bond relaxations away from the crystalline bond
lengths and angles could cause reductions in the
neutral-defect energies (on the order of a tenth of an eV), and
because of our rough model foz'AUo, the energies reported above
are not final and merely point out the need for more realistic
calculations. In particular, lower defect energies are needed
if ~1O17 cm-3 defects are to be frozen in at the glass transi-
tion temperaﬁure. We have recently extended the
self*consistent pseudopotential calculations to the evalu-
ation of neutral-defect total energies and relaxation energies
[see Sec. II(d)]. We find sufficiently low energies to give
~1015 meS coordination defects. However, here we wish to
emphasize the inadeguacy of simple models which are based on
bond-orbital levels, or which neglect repuléive interatomic
terms, and to point out the plausibility of having the onefold

be +he favored neutral defect in the glass.
So far, the discussion has been limited to individual
onefold and threefold sites, the simplest structural defects.

However, once the TB Hamiltonian has been established, it is

straightforward to make the extension to more complicated
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defects and interacting defect pairs. In particular we shall
discuss nearest-neighbor onefold and threefold pairs ("inti-

. . - 14
mate valence alternation pairs,” or IVAR's),

the transition
from threefold to onefold coordination, and dihedral-zangle
variations for the simple defects.

Because onefold and threefold defects are expected Lo be
oppositely charged, the resultant Couleomb attraction will tend
to favor close defect pairs.l4 The extreme form of this pair-
ing is the IVAP shown in Fig. 4(c) [together with isclated
onefold and threefold defects in figs. 4(a) and 4(b) for com-
parison]. EHere the onefold and threefcold defects are nearest
neighbors. The defect states associated with the two defect
sites remain, but are shifted closer to the band edges. For the
ocnefold defect, this occurs because the strong direct 7 inter-
action which previcusly pushed the defect state deep into the
gap, disappears due to the lack of an available NBO on the
neighboring threefold site. Similarly, the electron trap
state becomes more shallow in the IVAP because the strong
direct 1 interacticn ccnnects only one pair of ¢* orbitals,
rather than three, in the neighborhcod of the threefold site.

For an overall neutral IVAP the defect states near the
valence-band edge are occupied and the state near the con-
duction-band edge is empty. Thus, when a pair of isolated neu-
tral onefold and threefold defects are brought together in this
fashion, an electron transfer from the threefold to oneiocld

state occurs. Surprisingly, all sites remain individually
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Figure &

Tight-binding density cof states for (a) onefold defect,
(bithreefold defect, and (c) IVAP. The structures are shown

schematically. Dashed lines represent the gap edges.
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almost neutral. This is a remarkable conseguence of the
self-energy shifts, together with the fact that the defect
gtates are not strictly localized to the defect site.

From experiments con transport properties during thermal
cycling kbelow the glass transition temperature, Abkowit234 has
found a close correlation between a population of electron
traps 0.33 eV below the conduction-band edge and hole traps
0.25 eV above the valence-band edge. In light ¢f ocur results,
these experiments can be plausibly explained by assigning both
states to IVAP's, whose density in the glass presumably varies
with temperature according to the free energy of defect forma-
t:’.on.14 The method of Appendix A gives a total energy of 1.22
eV for this defect. (Recall that the total energies of the
onefold and threefold defects were 1.17 and 1.56 eV, respec-
tively.) This indicates that the IVAP (which is really a
defect pair) is comparable in energy to an isolated cnefold or
threefold site and may therefore occur at comparable
densities. The energy of 1.22 eV is still too large to allow a
sufficient number ¢f defects to be frozen in at the glass tran-
siticon, but it could be reduced substantially by minimizing
with respect toc bond relaxations in the defect vicinity. In
any case, a gquantitative comparison with <the results of
Abkowitz would require a more realistic calculation than we
have performed.

An interesting feature of glassy Se is the pessibility of

interconversion of onefold and threefold defects. Figure 5
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shows the density ¢f states in the defect regiocon as a onefold
atom swings over and bonds with an atom of a neighboring chain,
creating a threefold defect. As one creates the threeiold
defect, two NBO’S interact and contribute a ¢ and o* state. One
of these can be clearly seen moving from the lone-pair te the
bonding band in Fig. 5. In the fundamental gap, however, the
deep defect state simply changes from being an NBO-derived
state to being a o*-derived state while shifting only very
slightly in enexrgy.

Finally, in Fig. & we show the energy location of the deep
defect level as a function of dihedrzl-angel variations for
isolated onefold and threefold defects. This case has been
chosen as a likely example c¢f possible relaxations at the
defect site because the constraint cn dihedral angle is not
expected to be as strong as that on bond length or bond angle.
Note that the cnefold level is not strongly affected, while the
threefold level 1s guite sensitive. In both cases the
eigenvalue has a minimum near the crystalline dihedral angle.
For neutral defects these levels are singly occupied, suggest-
ing that the dihedral angel probably does not deviate greatly

from the unrelaxed value.

(c) Self-Consistent Pseudopcotential Calculations

To rovide a realistic foundation for the tight-bindin
g

Hamiltonian of Table I, we have carried out self-consistent
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Figure S

Change in the density of states as a onefold site bonds o
a nearby twofold site. sz is the cnefold-twofcld interacticon
in units of +the normal nearest-neighbor interaction. (a)
Onefold defect and intact chain, (b) weak interaction, (c) mod-

erate interaction, and (d) threefold defect.
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5

F"

re 5

Energy levels of defect gap states as a function of
dihedral angle on {i) the next-to-last bond for the onefold
defect, and (ii) the three bonds connecting to the defect site

for the threefold defect.
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pseudopotential (SCPSP) calculations on a variety of pericdic
structures containing bond-coordination defects. We describe
the structures which have been solved, briefly discuss the
method, review the results of these calculations, and present
the fitting of the TB Hamiltcnian te the SCPSP results. A num-
ber of details regarding the method have been deferred to
Appendix B.

In Fig. 7 we show trigonal Se and two periocdic structures
containing defect pairs. The defect structures have unit cells
containing six atoms, instead of the usual three, and ars made
simply by adjusting some of the atomic positions so as to break
bonds or form new bonds. The structures are chosen so that all
of the bond lengths and bond angles match exactly those of
trigonal Se (which we take to be 2.39C)R and 102.48° respec-

31,32 In model &, each unit cell contains a onefold

tively).
defect and a threefold defect as third neighbors along a chain;
model B represents the IVAP. We have also sclved structures,
shown in Sec. II(d), which contain 11 atoms per unit cell such
that each cell contains two‘identical onefold defects {or two
identical threefold defects). The latter results merely veri-
fy that +the coexistence of onefold and threefold defects
together in model A has no influence on the important physics
{e.g., the existence of selfi-energy shifts). For our purposes

here, it will be sufficient to focus only on a comparison

between the results for the trigonal crystal and for model A.
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Figure 7
Pericdic structures to which  the self-consistent
pseudopotential methed (SCPSP) can be applied. Dotted circles

represent unperturbed lattice positions.
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The self-consistent pseudopoctential approach has been

. . - 5 . . .
described in detaill elsewhere. Here the selenium cores are

represented by a lccal ionic pseudcopotential which has been

chosen conce and for all suck that when self-consistently
screened, the valence levels match the published
c s . . 36 X .
Herman-Skillman eigenvalues for the atom. (Throughout this
‘ . . , . . 1/3
section, screening 1s calculated by using Slater o

exchange, with a coefficient ¢=1, for the exchange-correlation
term. For a discussion cof this choice of screening, and the
choice of local vs. non-local pseudopotentials, see Appendix
B.) Once fit to the atom in this way, the pseudopotential is
used without modification for all subsequent crystal calcu-
lations; in this sense, these are first-principles
calculations.

The drystalline pseudcpotential is just the sum of the
ionic pseudopotentials on each atomic site plus the screening
from the valence electrons. These electrons are representead
using a plane wave basis. All plane waves with g<3.67 A-l have
been included, and those with g<5.93 A-l have been included in
Lowdin perturbatiocn theorya? when solving for the wave func-
tions. For trigonal Se, this corresponds to 70 and 300 plane
waves, respectively; for medel &, 140 and €00. The charge den-
sities are averaged over the Brillouin zone using Chadi's
special-points scheme,38 with 3 and 8 k-points in the irreduc-

ible Brillouin zone for trigonal Se and model A, respectively.



Figure 8

Theoretical electronic density of states for periodic
structures: (a) SCPSP applied to trigonal Se, ()
tight-binding fit for trigonal Se, (c) SCPSP applied to model

A, and (4d) tight~binding £it for model A.
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The density of states for trigonal Se is shown in Fig.
8(a). One finds filled s, p bonding, and p lonepair bands, and
an unfilled p antibending band. In Fig. 8(b) we show the densi-
ty of states for the tight-binding Hamiltonian ¢f Table 1. The
fitting has been done by artificially reducing the SCPSP band
structure to a 1-d band structure EmEn(k“), by averaging over
all k;, for each kﬂ (the orientations are with respect te the
chain axis). 7The TB Eamiltonian was then adiusted to match the
band edges of the 1-d band structure as ¢losely as possible. As
can be seen from Figs. 8(a) and 8({b), this results in satisfac-
tory agreement between the full SCPSP and TB densities of
states.

Figure 8(c¢) shows the SCPSP density of states for model A.
Because of lowered symmetry, the s-like band has broken into
three subbands. In the p region, gap states have been broad-
ened into defect kbands (by interdefect interactions), and the
gaps nave thus been obscured. In Fig. 8(d) we show the corre-
sponding TB calculaticon on *the same structure. Now the
self-energy shifts in the Hamiltonian of Table I come into
rlay. These were chosen by actually integrating in real space
to calculate the diagonal matrix elements of the converged
self-consistent potential between atomic (Herman-sSkillman)
orbitals centered on each atomic site. The calculated
self-energy shift on the onefold site was 1.27 eV, on the
threefold site ~-1.24 eV, and the other four sites ranged from

-0.38 to 0.28 eV. For simplicity we have ignored the
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self-energy shifts on twofold coordinated sites and approxi-
mated those on the defect sites as *#1.25 eV. A compariscn of
Figs. 8(c¢) and 8(d) indicates that this fitting is adequate.
Note, in particular, the agreement in the s region; without the
self~energy shifts, there was little resemblance here between
the SCPSP and TB results.

An approximate measure of the charge on each site in model
A was obtained by integrating the SCPSPF valence charge density
over a sphere, with radius egual to half the bond length, cen-
tered about each atomic site. (Such an estimate is somewhat
arbitrary, but should at least reveal any large charge trans-
fers.) Each site was found to be individually neutral <to
within ~0.06 e. This is surprising because a charge transfer
from the threefold to the cnefold site would have been expected
on the baéis of simple chemical arguments. The lack of charge
+ransfer is a result of the compensating effect of the
self~energy shifts, which tend to attract electrons to the

threefold site and repel them from the onefcld site.

(d) Total Energies

As pointed out in Sec. II(a), there has remained consider-

able controversy within the defect model,

H
o
®

garding the nature
2

12,14-16,23-24

of the lowest-energy neutral defects. Since Se
is normally deoubly coordinated, the interesting defects are
the 1-fold (dangling bond) and 3-fold sites. Here, we resolve

this controversy by performing self~consistent



pseudopotential (SCPSP) calculations ¢f the total energies of
various possible bonding configurations for the neutral
defect.

This pseudopotential total energy calculation is the first
of its kind to be applied to defects. Initial estimateslé of
defect energies were based upon simple models which considered
only discrete bond-orbital energy levels. The more sophisti-
cated approach of Sec. II(b), which sums over all filled band
and gap states and includes repulsive intercore terms in an
empirical fashion, demonstrates the inadeguacy ¢f the simple
models. I%f becomes evident that a truly realistic calculation
is needed. Recently, there have been promising reports in the
literature indicating tentatively that a SCPSP approach could
be developed into a viable tool for calculating total energies,
and thereby equilibrium bond lengths, relaxation energies, and
vibrational fregquencies, in bulk and surface siiicon.39-44 We
have therefore developed a SCPSP scheme to calculate defect
energies in Se. To examine the accuracy of our approach we must
first study trigonal Se as a test case.

We choose a local ionic pseudopotential so that the ener-
gies and wave functions of the Se atom are very accurately
reproduced.45 It is then used without medification for all
subsequent self-consistent crystal or superlattice calcu-
1/3

lations. Screening is computed using Slater 2

exchange~correlation, with a coefficient of a=2/3. For a fur-
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+her discussion of +the choice of pseudepotential and
exchange~correlation, refer to Appendix B.

The +otal energy is calculated as a sum of three terms.
These are: +the sum of filled one-electron levels, the cor-
rection for Hartree and exchange-correlation overcounting, and
the repulsive interaction between ion cores (see Appendix B).
The latter two terms are crucial in order to obtain correct and
meaningful resuits. To determine the lowest energy (equilib-
rium) configuration of trigonal Se we have studied a variety of
structural parameters. The results are very satisfying, giv-
ing a bond length of 2.33 31{, 2 bond angle of 104.50, and a
frequency for the Raman active Pl(Al) phonon mode of 204 cm_}'.
These are to be compared with experimental wvalues of 2.39 3.,

- 4
102.40, and 235 cm l, respectively.Bz’ +6

If the energy of the
isolated 'constituent atoms 1is c¢alculated within the same.
formalism for comparison we find the binding energy of the
crystal to be 3.60 eV/atom. However, the isolated atoms can
lower their energy by relaxing into the spin-polarized 313‘ state
(Hund's rule), gaining ~0.76 eV each (see Appendix 3). The
resulting crystal binding energy is 2.84 eV/atom. in rough
agreement with the experimental value of 2.25 +10 eV.47 The
calculated equilibrium configuration 1is used as the unper-
turbed structure for calculations cf defect energlies.

The extension to the study of defects is made by choosing a

supercell, or a large unit cell, containing the defect of

interest. The choice of unit cell is dictated by the necessity
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of keeping the defects as far from each other as possible (%o
minimize Iinteractions); maintaining the crystal bond length
and bond angle throughout; and keeping the cell small enocugh or
symmetrical enough to make the calculation tractable. This is
accemplished for trigonal Se by removing every twelfth atom of
each chain in such a way that the positions of the resulting
vacancies in neighboring chains are staggered. There are now
two 1~fold defects in each unit cell. If each 1-fold atom is
allowed to swing over and bond to an atom of a neighboring
chain, the structure of Fig. 9 results containing two 3-fold
defects per unit cell. Finally, the total energy of a single
defect is calculated as half the energy per unit cell of the
super-lattice structure, minus the energy of the same number of
normally cﬁordinated atoms as given by an identical calcu-
lation on the trigonal structure.

The relevance of such a structure to the case of defects in
the glass might be questioned on two accounts. The first con-
cern is that the super-lattice structures contain a high densi-
ty of defects, and the interactions between defects cannot be
eliminated entirely. Such interactions can take two forms:
direct interactions caused by overlap of atomic crbitals on
different sites, and effective interacticns which precrogats
along chains. However, in neither structure do the defects
ever lie closer than the crystal third neighbor distance (1.59
bond lengths), nor are they ever separated by fewer than three

intervening atoms along a chain. The average splitting of the



Figure 9

Superlattice structure containing two 3-fold defects per
unit cell. Starting with the trigonal structure, atoms are
removed (dashed circles) to form 1-fold defects, and then
extracrdinary bonds are formed (dashed lines). Some of the
extraordinary bonds connect to atoms in neighboring layers,

not shown.






gap levels due to these interactions is ~0.3 eV, and such lev-
els are summed over, eliminating to first order any error from
this source in the total energies. The second concern is that
+he super-lattice structures derive from a vacancy in the
trigonal crystal, rather than a truly glassy structure. Howev-
er, the leocal chemistry is expected to be the principle factor
in determining the total energy, so that these models can be
taken as giving reasonable estimates for defect snergles in the
glass,

In Fig. 10{a) we show the energy of a single 3-fold defect
as the lengths of the three bonds adjoining the defect are
varied equally. We find a minimum when the bonds have been
extended by ~6%, at a defect energy of ~1.3 V. Hewever, con-
sider Fig. 10(b) where only one bond is lengthened, to study
the transition from a 3-fold to a 1-£fold defect. We notice that
+the 3-fold defect is not even metastable, but immediately
relaxes to the 1-fold configuration via the breaking of one of
the three bonds. Moreover, we find no evidence £f£o the
proposed23 energy minimum midway between the 1-fold and 3-fold
configurations. These are perhaps the central results. The
energy gained is a very substantial 0.8 eV. Figure 10(c) and
10(d) show that relaxations of the l-fcld defect play a very
minor role, saving an extra C.03 eV by a 4% contraction o the
bond adjoining the defect site. They also verify that the
relaxed 1l-fold defect is indeed at a local energy minimum in

configuration space.



Figure 10

Calculated total energles for neutral defects relative to
the normally coordinated bulk. (a) 3-fcld defect with bond
length relaxations. (b) Bond weakening transition from 3-fold
to 1-fold. Abcissa is length of dashed bonds in Fig. é; at
point marked 3-fold (l-fold) it is crystal £first (second)
neighbor distance. (¢) Length relaxation of the last bond of
the chain, and (d) relaxation of the bond angle between the
last two bonds of the chain, for l-fold defect. C.° and C;°
correspond %o unrelaxed 3-fold and 1i-fold configurations
(i.e., with trigonal Se pond lengths and bond angles). Scale

.. . s . < = . . -3 _.
at the right gives equilibrium defect density 1n cm at Tg.
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0Of special note is the energy of the l-fold defect, only
~0.5 eV. Considering that previous estimates have ranged as
high as ~3-4 eV,lS this is extracrdinarily low. Two factors
are responsible for this difference. Firstly, the repulsive
energy of inter-core interactions is reduced when breaking a
bond. Secondly, an inspection of the defect states reveals a
subtle pecint: the dangling lone-pair electron on the l-fold

site can form a partizl vet strong 7-bond with the lcone-pair

electrons of the neighboring atom along the chain. This effec

ot

can lower the energy by as much as 2 eV. Moreover, one might
also expect this to occur for positively charged defects.
Thus, even the conventional wisdom that the positively charged
defects are overcocordinated may break down in these materials.
Finally, it is interesting to note that the low snergy to cre-
ated the 1-fold defect is also in line with recent magnetic
susceptibility measurements on ligquid Se, which indicate an
activation energy of 0.66 eV for creating unpaired spins in the
melt.48

The scale at the right of Fig. 10 converts defect energies
to densilties,14 assuming defects are frozen in st the glass
transition temperature Tg231OOK. This gilves ~1015 cmm3 neu-
tral dangling beonds (and therefores spins) in the material. O0fF
course, if the system exhibiis an "Anderson negative U"7 as
proposed in the defect model, charge transfer betwesen defects
would occur, removing the neutral defects and creating larger

numbers ¢f charged dafects (VAP'S),l4 Whether this occurs, and
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what density of diamagnetic defects would result, are
questions which await the formidable task of applying the above
technigques to charged defects. In any case, our calculation
sets a lower limit on the number of bond-ccordination defects,

thereby supporting the suggestion that structural defects

. c . . 3 4
exist in high densities in these materzals*z’}'

and lending
plausibility to the defect model.

The super-lattice calculations by themselves are not a
sensitive probe of the electronic gap states associated with
defects, because of the inevitable interactions between
defects in neighboring cells. However, the present calcu-
lations are consistent with, and lend support to, the previocus
work which has been detailed in Sec. II(b) and {(c). The
location of defect bands in the gap, and the self-energy shifts
found at defect sites, are essentially unchanged. The bond
contraction relaxation at the 1-fold site strengthens the lone
pair mw-interaction, but lowers the self-energy shift of the
1-fold atom by ~0.3 eV. The result of this competition is that
the defect band shifts very slightly deeper (~0.06 V) into the
gap.

Finally, it is straightforward to extract charge density
information from the converged SCPSP calculation. This is done
in Fig. 11 to illustrate the nature of the gap state associated
with the onefold defect. It clearly confirms our earlier find-
ing that this defect state is a 7-antibonding combination cof

lone-pair orbitals, with most of the weight on the defect site.
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Figqure 11
SCPSP charge densities. (a) Lone pair.band of crystalliine

Se, plotted in a plane containing three atoms along the chain,
for referrence. (The non-bonding p-crbital of the central atom
is not visible because it is directed normal to the plane of the
plot.) (b) Defect band for onefold defect of Fig. 9. GCecometry
is the same as in (a), except lower-right atom has been removed

to create the vacancy.
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(&) Summary and Conclusions

We have developed an approach to the study of structural
defects in chalcogenides which makes use of flexiblg
tight-binding technigues while remaining grounded in realistic
self-consistent pseudcepotential calcualtions. A wvariety of
defect structures are studied. The neutral onefold coocrdi-
nated defect gives rise to a deep hole trap state near midgap.
This state is highly localized near the defect site, as it
derives from a 7w-antibonding combination of nonbonding
orbitals on the defect site and its neighbor along the chain.
The neutral threefold defect produces a less localized but
nonhydrogenic nondegenerate electron trap state below the con-
duction-band edge, which derives from a 7v-ponding combination
of antibonding orbitals. The IVAP gives rise to both of these
defect stétes, but they are closer in energy to the band edges.

The results emphasize the unigue nature of defects in
chalcogenides as opposed to other amorphous semiconductors.
In particular, the availability of nonbonding orbitals on
sites neighboring the defect atom allows the formaticn of an
anomalous t bond at the undercoordinated defect and gives rise
to the positive self-energy shift. We find a remarkable degrese
of analogy between the behavior of the onefold and threefold
defects. The latter has an anomalous 7 interaction between
antibonding orbitals which gives rise to an electron trap and a
negative self-energy shift., This parallelism can occur only in

+he chalcogenides, where overcocordinated defects can form



freely because no s-p hybridizaticn is regquired. We expect
that defects in a-As, a-31, and even a~A528e3 will be gquite
different in electronic structure than those in Se.

FTinally, we have developed an acgurate pseudopotential
approach to the calculation of total energies in trigonal Se.
We then extended this method to the calculation of defect ener-
gies in glassy Se by choosing super~cells to contain structural
dafects in relative isolation. Tc¢ our knowledge, this is the
first calculation of structural defect energies in a semicon-
ductor using an appreoach of <this kind. We find the l-fold
defect to be lowest in energy, and the 3-fold defect to be

non-existent.
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CHAPTER III ARSENIC SELENIDE

(a) Introduction

Theory and experiment have nct yet combined to give an
unambiguous picture of the defects responsible for the proper-
ties of chalcogenide glasses. In large measure, this is due To
the fact that the experiments are usually more conveniently
done on As-Se and As-S glasses, whereas the theory tends to
focus on the simpler case of glassy Se. Experimentally, some
of the properties of heteropolar and homopolar glasses appear
similar, and the distinction between the two is often blurred.
However, there are important differences. For example, both
the photoluminescence efficiency and photoinduced ESR intensi-
£y are much lower in Se than in ASZSe3, and both experiments
show quite different dopant dependencies in the two cases.d'9
Moreover, it is now becoming clear that the preperties of indi-
vidual defects in A52533 and Se are expectad to be guite
different. As we saw in Chapter II, the coordination defects
in glassy Se have deep gap states whose origin can be traced to
an anomalous m-bonding mechanism which does not carry over to
the case of hetercpolar glasses. Thus the corresponding deep
gap states are not expected in Aszses. On the other hand, the
heteropolar glass allows for anomalous Dbond orbitals
(like-atom bonds and nonbonding As orbitals) which will give

rise to deep gap states having no counterpart in pure Se.
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Clearly the two kinds of systems must be freated quite differ-
ently.

In this paper, we will attempt to bridge some of these gaps
by applying the ideas developed in the study of glassy Se to the
case of A325e3' Because the structures are more complicated
and the defect possibilities more numerous in AszseB, serious
theoretical calculations are still in their infancy. Never-
theless, by using some simple medels, and arguing by analogy
with the case of Se where appropriate, we will be able to say
quite a bit about the nature of intrinsic structural defects in
the heteropolar glass. The discussion will be carried ocut
using A528e3 as a model system, but many c¢f the conclusions may
be applicable to sulfide or telluride glasses as well.

In Sec. II1I(bk), we discuss various methods for classifying
defects, and attempt to identify those defects which are most
likely to occur. Section III(c) provides a detailed
discusssicn of the electronic structure of the various
defects, with an emphasis on similarities and differences with
respect To Se. In Sec. IIf(d) we present a speculative dis-
cussion of defect total energies, and discuss the structural
equilibrium at Tg which determines the defect densities in the

glass. Finally, we summarize our results in Sec. III(e).

(bY Classification of Defects

In order to intreduce the concept of defects, we must £irst

define what is meant by a glass that has no defects. To visual-
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Figure 12

Schematic diagram of a random netwerk with (2) no defects,

(b) many like-atcm bonds, (c) many malccocrdinated atoms but no

like~atom bonds, (d) many malcoordinated atems but no

like-coordinated-atom bonds. Solid circles represent As, cpen

circles Se.
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ize such & perfect glass, consider a contlnuocus random network
such as the one shown in Fig. 12{a). Every As atom has its pre-
ferred threefold cocrdination satisfied, every se atom has its
preferred itwoifcld coordination satisfied, and every bond ié
heteropolar. We will adopt the peint of view that the perfect
glass is the lowest-energy disordered structure, and that
every deviation from the perfect-glass structure costs energy.

Such deviations take the form of various point defects in
the glass. Figure 12(b) shows an amorphous network in which As
and Se atoms retain their preferred coordination, although a
large number of "wronggl“ or like-~atom bonds (LAB's) occur. On
the other hand, Fig. 12(c) depicts a structure containing many

malcoordinated16

atoms (MCA's), but no LAB's. If the system
tries to lower its energy by minimizing the number of LAB's and
MCA's present,sz then we expect the material to consist of a
bulk network having the perfect-glass structure, interrupted
cccasionally by a defect containing one or more LAB's or MCA's.

A sampling of possible defect configurations is given in
Fig. 13. The defects have been categorized according to the
number of MCA's and LAR's they contain. Thus, our energy min-
imization principle implies that the defects in the upper
ieft-hand region cf the chart are the most likely ones. We have
developed a notation which uniguely designates each defect;
these are shown to the right of each configuraticon. The let-

ters C and P correspond to <chalcogen and pnictide,

respectively, and the subscript denctes the coordination, fol-
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Figure 13

Defect topclegies organiéed according to number of
malcoordinated atoms (marked by arrows) and number of
like-atom bonds. 8Sclid circles As, cpen circles Se. External
bonds are understood to connect to a chalcogen atom of the bulk

glass structure.
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lowing many previous authors. Each superscript prime
indicates one LAB connected to that site, and multiple MCA's
are represented using a molecular notation for the smallest
cluster of sites which includes all the MCA's.

Obviously there are many more possibilities for defects
than are shown in Fig. 13; we have attempted to include the sim-~
plest and most interesting ones. The most elementary defects
are the single MCA's {Ci’ Cy, Pyu Py) and the single LAB's (PS',
CZ‘). (Pé has been left out because the s-p hybridization puts
it in a class by itself.) The simplest close defect pairs {"in-

. : ot 14
timate wvalence alternation pairs" or IVAP's)

are the
nearest-neighbor pairs P2C3 and.cl’cs' and the second-neighbor
pair CIPSCB' If a Se is substituted for an As (or vice veréa) a
CB"' (or Pz'*) center results; an interchange of neighboring
Se and As atoms gives rise to a P2’CB" IVAP. Phillips's
ocutrigger containsaicz" (Ref. 19).

Note that the substitutions and interchanges have the
property of conserving the structure of the bulk glass, as can
be seen by comparing Figs. 12(a) and (d). In particular, they
allow the system tc aveid bonds between like-coordinated
atoms. (That is, twofold coordinated sites are always bonded
to *hrsefold sites, and vice versa.) We shall use the term
like-coordinated-atom bond (LCAB) for a bond connecting two
“gites with +the same ceoordination number, in analcgy to

like-atom bonds (LAR's). If it is energetically favorable for

the glass to avoid LCAB's, we say the LCAB principle is in
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force. This possibility provides an alternative to the LAB
principle, assumed earlier, which supposes that like-atom
bonds are unfavorable. In the absence of MCaA's, a LCAB is a LAB
and vice versa, but different coordination defects will be
expected depending on which principle is in force.

The LAB principle can be given a physical motivaticn,
based on the fact that the partial ionic character of a
heteropolai‘ bond makes it stronger than the average of the two
different homopolar bonds. The diffaerence AE in bond energies
D can be estimated from the As-Se electronegativity difference

AX (Ref. 21):

AE = D(As-Se) - [D(As-As)+D(Se-Se)l/2

= (ax)% = 0.2 ev (1)

Thus the fraction of like-atom bonds frozen in at the glass
transition temperature is expected to be on the order of
exp(—AE/kTg) + 5x10°2. Put another way, this argues that a
defect with n LAR's is at least 100 times as likely as a similar
defect with n+l LAR's. However, the foregoing assumes that the
energy cost of a LAB is independent of its local environment.
It probably is not; for example, one could argue that a C3 atom
will be more electropositive than a normal Cz, and may there-
fore allow chalcogen neighbors at nc extra cost in energy.

Moreover, an argument can be made in favor of the LCAB princi-

ple if one assumes that the continuous random network consists
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of a disordered arrangement ¢f layvers with the internal struc-
ture of those in the crystal. In that case, defects which
preserve the layer structure will be favored. The LCA3-free
defects {basically As-3e substitutions) are cf this
structure~-preserving type.

The same argument applies much more certainly tc struc-
tural defects 1in crystalline A525e3. Alternative defects
(e.g., vacancies, or interstitials covalently bonded to neigh-
boring layers) introduce a minimum of two MCA's, while a simple
substitution has only one MCA and is entirely strain free. In
fact, the assumption that the LCAB principle dominates the
crystal while the LAB principle dominates the glass may'prgvide
a natural explanation for the higher'photoluminescence quantum
efficiency and absence of fatigue in crystalline A525e3 (Ref.
€) if the dominant nonradiative center in the glass contains a
LCAB. For definiteness, we will proceed on the assumption that
the LAB principle dominates in the glass, but will pay special
attention to the substitution and interchange defects as we go
along.

Table Il shows an alternative classification scheme which
is also instructive. Defects have been categorized according
to two preperties: (i) The *natural charge state" (the charge
on the defect when all the valence like states are filled with
electrons and all the conduction like states are empty; that
is, when no carriers are trapped), and (ii) the "chalcogen

excess.”" The latter is defined as the number of Se atoms, over
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Table 11

Classification of defects according to chalcogen excess

and natural charge state.

NATURAL CHARGE STATE

+2 +1 0 -1
3/2 '
/ ¢
1 Cp', Cy'Cy'
w . '
@ 1/2 Parly < > O
[
3
]
L] 1"t o
z 0 P,'C," <€ C,P4C4
[}
<@Q
o2
= 1/2 C
& 30 Py
— - 1
1 Py P,C, € > P,
—-— ¥
3/2 | P,




and above the usual A525e3 ratio, introduced by the defect.

For example, 1f an As-Se bond in the bulk is broken and an sextra

2

chalcogen excess of this defect is QC(CZ') = +1, Similarly, a

Se atom inserted, a C.' (Se LAB) defect results; thus the

Se atom removed from the bulk creates two Pz defects, so that
QC(PZ) = =-1/2. The chalcogen excess c¢f any defect can be
obtained in this way. The glass can thus become Se rich (As
rich) by incorporating defects with QC>O (QC<O) .

This stcoichiometry dependence is not the only interesting
feature of the chalcocgen excess. The defect model has been
able +to explain Fermi-level pinning in the absence of
paramagnetism by the interconversion of defects from one

12,14 For exampla,‘ the

natural charge state to ancther.
reaction (Cl)— > (C3’ )+ is accomplished by Dbreaking
(reforming) a bond. However, the reaction Cl_ A C3+ is impos-
sible because breaking a bond adjoining the 03 results in a PZ’
not a Cl’ We can systematize these considerations by noting
that Qc(cl) = +1/2 while QC(CS) =«1/2, so that the reaction Cl

«+ C_. can only occur if a Se atom is physically removed from the

3
vicinity of the defect. Thus, such a reaction is forbidden, no
matter what local relaxations take place, because atoms are not
free tc migrate at temperatures below the glass transition Tg

The charge state of a defect may easily be changed by trapping
or emitting carriers, but the chalcogen excess of a defect is

permanently fixed. Therefore, Fermi-level pinning reactions

must be accomplished by horizeontal transitions in Table II.



This "selection rule" greatly restricts the number of allowed
defect interconversion processes in heteropolar glasses.Sl

It may come as a surprise that the Pz and Pl defects are
assigned positive natural charge states. This is a consegquence
of the fact that a nonbonding As p corbital is more correctly
identified as a conduction-band state than a valence-band
state, as will be discussed in Sec. III{(c). If cne then consid-
ers Ttransitions between the relatively favorable defects in
the upper left-hand region of Fig.13, one finds very few simple
candidates for the pinning mechanism. These are shown by
arrows in Table II. The most prominent candidates are almost
certainly Cl* - (CB’)+ and perhaps Cl- — F4+. The others
involve bond switching, not simply bond breaking and forming;
they require a compensating population of some other negative-
ly charge)d defects to maintain charge neutrality, and they
involve the relatively unfavorable P2 and Pl defects [see Sec.
III{(c)].

Above Tg, atoms become free to migrate, and an equilibrium
is set up among the populations of defects of differing
chalcogen exXcess. The establishment of this eguilibrium,
which determines the defect densities frozen in at Tg’ will be

discussed in Sec. III(d). We turn now to a discussion ¢f the

electronic states associated with the defects of interest.
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(c) Electronic States

As a starting point, we consider crystalline Aszses.
Because the short-range crder, or local chemicaL
configuration, is expected to be the most important factor in
determining the density of states, we expect the perfect glass
+o have bands and gaps similar to those in the crystal. Aszse?J
forms into a layvered orpiment structure with 20 atoms per unit
cell. Figure 14 shows the theoretical density of states for
this structure, as calculated by Bullettso using chemical
pseudcpotentials. I+ is in good agreement with xX-ray
photoelectren spectroscepy (XPS) measurements.sz The =Se
non-vonding states near -1 eV overlap the g=-bonding-like
states near -4 eV to form the principle valence band, and the
g*w-like conduction band is centered near 2 eV. There are also
two lower-lyving s bands.

In order to make a simplified model, we consider a
first-neighbor tight-binding Hamiltonian with just three p
orbitals per site. Moreover, each layer is distorted slightly
to make all bond angles precisely 900, so that the structure of
Fig. 15(a) results. Since all bonds are now parallel to the x,

y, or z axis, the systems of Py P and P, orbitals decouple

v’
inte three noninteracting subsystems which may be solvad inde-
pendently. The interaction diagram for any one such subsysten,
in terms of ¢ and 1 bonds, is shown in Fig. 15(b). Next, the

pulk perfect glass will be represented by a Bethe-lattice ver-

sion of this interaction diagram, which is shown in Fig. 16(a).
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Figure 14

Theoretical density of states for crystalline A525e3 as
given by Ref. 50. The zero of energy is the valence band maxi-

mum.
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1}

F

re 15
(a) Right-angle version of A525e3 layer. Solid circles
are As, open circles Se. (b) Ceorresponding interaction diagram

for Py orbitals; double lines represent VG, single lines Vﬂ.



(b)
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Figure 16

(a) Interaction diagram for Bethe-lattice structure. Sol-
id circles As, open circles Se; double lines Vc’ single lines
Vﬂ. The semi-infinite trees BLl‘ BLE’ and BL3 are defined by
+he arrows. (b)) Interaction diagram for the Py: py, and e,
orbitals of the Pz cluster-Bethe-lattice structure. Notations

a+ As bonds indicate which semi-infinite tree 1is tTo be

attached. {c) Same for C2' . (d) Same for C,.
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Finally, we will use the cluster-Bethe-lattice method
(CBLM}53 to meodel defects. For example, a P2 defect results
from breaking a bond in Fig. 15(a); the corresponding CBLM
interaction diagrams are shown in Fig. 16(b). Similarly, thé
interaction diagram for over-coordinated defects on like-atom
bonds can be modeled as shown in Figs. 16{c¢) and 16(d).

The resulting model is an elementary example of the CBLM,
and is easily solved using Green's~-function technicues.
Before proceeding, however, it is necessary to comment upon the
many simplifying assumptions which went into this model. We
have effectively omitted interlayer interactions by choosing a
nearest-neighbor Hamiltonian; we have chosen 30° bond angles
and omitted s and d orbitals; and we haye obscured the:ring
topology by introducing the Bethe lattice. We nave been moti-
vated in these choices by the fact that the interliayer
interactions are wea}c;sé that the s-p hybridizaticn does not
dominate the bonding (average As and Se bond angles are 100°
and 940, respectively, in the crystal)ss; and that the rings in
A52$e3 are large and are presumably randomized in the glass
anyway. Moreover, we are guided by the philescphy that we are
looking for trends when defects are introduced into the glass;
it is expected that perturbations due to s states or interlayer
iﬁteractions will act equally, to a first approximation, upon
the defect and bulk states.

A more sericus problem is the fact that the calculations

are not self-consistent. For this reason, the location of gap
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states in this model cannot be taken at face value. We will
rely here upon the lessons of our earlier study on glassy Se in
Chapter II, where we carried out much more thorough calcu-
lations. In addition to a simple tight-binding model for Se,
exactly analogous to the one just described for A528e3, we car-
ried out more sophisticated tight-binding calculations on iso-
lated defects and realistic self-consistent pseudopotential
calculations on superlattice structures containing defects.
It was found, you will recall, that self-consistency requires
certain tight-binding parameters to be altered in the vicinity
of defects. We will frequently argue by analogy to Se in order
to predict, in general terms, the effects which would be intro-
duced intec our very simple model by self-consistency or other
complicaticns.

Let us turn now toc a detailed consideration of our elemen-
tary model. It contains two Kkinds of basis orbitals: Se p

orbitals, to which we assign energy level E(pSe) = 0 by conven-

tion, and As p levels at E(pAs) = A. Since As is more
electropositive than Se, A is positive, and we choose A = 1.89
eV following Bul}.ett.ZS These pbasis levels are shown in the

center of Fig. 17. Consider now the bulk Bethe-lattice of Fig.
16(a); focusing on the dominant ¢ bonding, we note that it con-
tains three kinds of bond orbitals. These are the hetercopolar
g and o* bonci-orbita}.s and the nonbonding Se p orbital, shown at

left in Fig. 17. Taking VG = 2.42 eV (Ref. 56) we £ind,
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Figure 17

Energy lewvels relevant to a~A528e3, as determined from
simple model of text. ¢ interactions between basis p orbitals
(center) give rise to bulk bond crbitals (left) and defect bond
crbitals {(right). = interactions between the former in turn
give rise to Bethe-lattice bulk bands (extreme left, repeated

extreme right for reference).
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E(o*) = (4/2) + [(8/2)%+v 21Y/% = 3.58ev, (2a)
E(pg,) = O (2b)
E(a) = (8/2) - [(8/2)%+v 21772 = -1.65 ev. (2¢)

When 7 interactions are included [we let VTr = 1.05 eV (Ref.
56)] and the Bethe-lattice meodel is solved using standard
Green's-function techniques,53 the ¢ and ¢* levels broaden into
the bands shown at extreme left of Fig. 17. The lone-pair band
ocecurs at £ = 0 eV but remains unbroadened, a peculiar artifact
of the bonding gecmetry of the model. It therefore aveids
overlapping with the o-bonding band, leaving a secondarf gap
where the real glass has none. The ¢ and lone-pair bands are
valence bé.nds, while the o* band forms the conduction band. In
our model, the fundamental gap occurs between 0 eV and

E(c* band min.) = (&/2) + [(A/2)2+(V6+V1¥)2]l/2

= 2.61 eV (2d)

Also shown at the right of Fig. 17 are the other five sim-
ple bond orbitals which can occur in glassy ASZSeE, but only in
the presence of defects. Note that several of these bond
orbitals {(the nonbonding Pas orkbital and the homopolar O‘*Se and
O’AS orbitals) have energy levels within, or close to, the fun-

damental gap:



B(a*g,) = V, = 2.42 eV, (2e)
E(p, ) = & = 1.89 eV, (2£)
E(o, ) = A-V = -0.53eV. (29)

As we shall see, it is these orbitals which give rise to the gap

states of interest in As.Se,. It is the electronegativity dii-

2773
ference which is responsible for raising the Pas level out of
the lone-pair band, and shifting the Ops and G*Se levels out of
the ¢ and o* bands. ‘

Let us begin our survey of defects by considering the sim-
ple like-atom bonds. This is a class of defects which hés ne
counterpart in glassy Se. In Fig. 18(a) and 18(b) we present
the density of states (as obtained from the Green's function)
for the bulk Bethe lattice and for the CZ' defect (Se LAB),
respectively. The locations ¢f the o, Pger and ¢* bulk bands in
Fig. 18(a) correspond exactly with those shown at the extreme
left of Fig. 17. The new features which at the Cz' defect can
be understocd by referring to the correspond.ing interaction
diagrams in Fig. 16(c). Note that the system of x orbitals con-
tains a new o-bonded pair of Pea orbitals. The resulting U*Se
level falls within the gap at 2.42 eV (see Fig. 17); when embed-
ded in the bulk, it is shifted deeper into the gap by the =

interactions to form the state at 2.02 eV, below the

conduction-band edge in Fig. 18(b). {(The defect is neutral
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Fiqure 18

(a) Density of states for Bethe-lattice structure. {(b)
Local density of states, averaged over sites near the defect,
for Cz’ like-atom bond. (c) Same for ‘93' like-atom bond. Cer-
+ain features discussed in the text are labeled accordiﬁg to
their dominant character. Schematic diagrams show the struc-
ture (solid circles As, open 3e; external As bonds are
understood to have Bethe-lattices attached). The fundamental
gap extends from O to 2.61 V. Note that a Lorentzian broaden~

ing of half-width 0.05 has been introduced by the Green's

function calculaticn.
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when this state is unoccupied.) Similarly, there is a S
state appearing just at the bottom of the bending kand. (There
is also some splitting of states ocut of the lone-pair band due
to slight changes in the interactions near the defect, but this
may be an artifact of the lack of lone-pair bandwidth.) We
expect the situation to be similar for the states of the CZ”
defect, which appears in the raft model of Phillips.lg

The situation for the 93' defect of Fig. 18(c¢c) is similar,

but now a pair of As p orbitals give rise to Sng and G*AS hend

orbitals. Notice from Fig. 17 that the Ins level lies guite

close in energy to the Se nonbonding orbitals. In fact the Ine
bond orbital interacts wvia a direct = interaction with two
neighboring Pge orbitals, giving rise to 7 and 7% complexes.

The 71* complex would occur at

2.1/2

B, (0, -Psa) = E(055)/2 * {[E(0,)/21%+7. )

= 0.82 eV (2h)

if isolated. This is the origin of the gap state 2t 0.87 eV in
Fig. 18(c). (The defect is neutral when this gap state is fully
occupied.) Presumably this state will not be guite so far
above the valence-band edge when a lone-pair band cof nonzero
width is considered, and it may be inhomogenously broadened by
variations in the local environments of the defects. Finally,
notice that a state appears to emerge just at or below the con-

duction~band edge as well. This occurs because the g¢*
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bandwidth results from 7 interactions which couple the Se side
of one g* bond orbital to the As side of the ne#t, while the =
interaction along the As-As bond couples to the As side of both
o* orbitals. The o* orbitals have more As than Se character (a
consequence of the electronegativity difference), so the
effective interaction at the As-As bond 1s atypically large,
resulting in 7(o*-c*) and n¥*(g*-o¥) levels just belcw and above
the conduction~band edges.

Next, we turn to the simple c¢cordination defects. Figures
19(a) and 19(b) show the density of states in the vicinity of an
under- or overcoordinated Se atom, respectively. One finds no
deep gap states, although the additional interactions among o

and o* orkitals in the neighborhood of the £, defect give rise

3
to strong rescnances near the corresponding band edges. The
lack of deep gap states is a consequence of the fact that no
novel bond corbital or interaction has been intrcduced. This is
unlike the case of C1 and C3 defects in amorphous Se, where a
direct w interacticon between nonkinding or o* orbitals gives
rise to deep gap states. In ASZSes, direct 7 interactions
between o* orbitals already occur in the bulk, and no direct 7
interactions between Se nonbonding orbitals (NBO's) are intro-
duced by the C1 defect, because the neighkoring site contains
an As atom.

At this point we must point ocut that the single MCA defects
are not neutral 1in their natural charge states, unlike the

LAB's. The C1 and C3, for example, have charges -1 and <1
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Figure 19

Local density of states for simple malcoordinated atom
defects. {(a) Cl’ {(b) CB’ (<) PZ’ and (d) Pl. Details of Fig. 18

apply.
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respectively, if the valence bands are fully cccupied and the
conduction band empty. This means that while these defects
will not support deep gap states, they will support hydrogenic
acceptcer and donor levels. Consider, for example, the neutral
C3 defect, which has one electron in the conduction band. If
that electron were leccalized to the defect site, each atom
would be approximately neutral, and self-consistency would not
be important. Instead, +hat electron tries to go inte a con-
duction-band state, leaving behind a positive charge which in
fact traps the electron in a hydrogenic orbit. The same
sel f-consistency argument applies to a hole on the neutral C1
defect, which gives rise o a hydrogenic acceptor level.

Unlike the C, and C,, the undercocrdinated P, and Py
defects do introduce a new bond orbital, namely, an As nonbond-
ing orbital. When isolated, +this orbital lies at E = A, below
the conduction-band edge. In the P2 defect it interacis with a
Se NBO via a direct 7 interaction, and moves further upward ~0.3
eV, to form the state at 2.27 eV in Fig. 19{c). In the Pl there
is a second NBO which remains near its unperturbed energy on
the same As site, giving rise to a second defect state in Fig.
18(d).

For a neutral PZ the gap level is half-occupied, and for a
?1 the lower qap_level is fully occupied while the higher one is
empty. Self-consistency would not be important at these

defects, because the gap states are well localized and the

sites comprising the defect are therefore individually
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neutral. Note that if the Fermi Level falls near midgap (as it
is known to do experimentally), the Pz andP1 will carry charge
+1 and +2, respectively. The usual picture of ccordinaticn
defects in chalcogenides considers the underccordinated
defects to be naturally negatively charged, but the conven-
ticnal wisdem fails here because the As NBO level falls closer
to the conduction band than to the valence band. This unusual
state of affairs is due toc the electrconegativity difference,
which shifts the p level well above the Pse valznce levels

“As

(see Fig. 17). Physically, =a PZ" is unfavorable because the
extra electron would be highly localized to an electropositive
As site. Of course, in a lone-pair semiconductor, the unoccu-
pied As p orbitals on the Pz+ will be unstable towards dative
bonding with a neighboring Pee {or even sAs) lone pair.16 Thus
it appears that undercoordinated pnictide defects are unlikely
+to occur at all [see also Sec. III{(d)]. However, if local bond-
ing constraints occasionally forbid such dative bonding, we
expect the resulting defects to be positively charged.

The last class of defectis to be considered explicitly will
be the substitutions and interchanges. As poiﬁted out in Sec.
III(k), these are likely to occur as defects in crystalline
A523e3, or perhaps as a consecguence of the LCAB principle in
the glass. If an As atom is substituted for a Se, the Pz"

defect of Fig. 20{(a) results. The LAB's give rise to the two-

fold degenerate ¢ level near 0.45 aV, and the As NBO ¢n the P

As 2

site gives rise to the level near midgap. (It lies lower in
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Figure 20

Local density of states for substitution and exchange

defects. (a) PZ", (b) C3”‘, and (¢) ?2’C3' '. Details of Fig.

18 apply.
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energy than in the PZ because of an interaction with o*
rbitals. ) The defect is neutral when the As NBO Iis
half-occupied; this state is highly localized and
self-consistency should not be important. The resulting pic-
ture is quite consistent with the work of Bullett,so who has
carried out chemical pseudopotential calculations on the
substitutional defects. {In the latter calculation, the
introduction of the correct bend angles breaks the twofold
degeneracy, giving rise to a pair of cAs—like states above the
valence-band edge.)

Figure 20(b) shows the density of states near the Cs"’
defect, in which a Se atom has replaced an As. The gap state
helow the conduction-band edge is threefold degenerate and has
most of 1ts character on G*Se orbitals at the defect. Just as
for the Cé defect in pure Se, the threefold degeneracy will be
broken when the bond angles are allowed to differ from 900, and
a nondegenerate state will fall somewhat lower in the gap.
Self-consistency arguments suggest that this state will be
lowered further still by the negative self-energy shift at the
defect site which is necessary to restore charge neutrality.
Once again we have good agreement with the previous results of
Bullett,so who finds a triplet of gap states centared ~0.4 eV
below the conduction-band edge.

Finally, the result of interchanging nearest-nelighbor As

and Se atoms is shown in Fig. 20(c¢). The density of states

resembles a superposition ci the C3"' and Pz", except that



- 83 -

the degenerate orbitals have been split by the lowered
symmetry. The defect is neutral when the As NBO state near
mid~gap ceontains two electrons. It would be gquite possible to
go on considering more complicated defects in detail. As the
last examples illustrate, however, once we have understood the
nature of the gap states introduced by indiwvidual LAB's and
MCA's, the essential features of the more complex composite

defects can readily be predicted.

{d) Defect Creation Energies

We shall end this chapter with some brief speculations
about defect creation energies, defined as the ground-state
total energy ¢f a given defect configuration minus that of the
same set of atoms in the bulk. The electronic contribution to

this difference is (see Appendix A):
£
= F _.°
sz, = Zl [ﬂ elng (£)=n°, (¢) Jae (3)

Where ni(s) and noi(s) are the local density of states cn atom 1
for the defect and bulk configurations, respectively. This is
not the entire expression for the total energy, however,
because the latter also includes the Coulomb repulsicn between
cores and other corrections. If these are modeled as a con-
stant repulsive energy R per bond (see Appendix A), the

resulting contributicn is
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SEn = (R/z)éi.' (c;-c%)) | (4)

. 0 . .
where ¢, and ¢ correspond to the coordination number of the

i
th . . . . . -
i site in the defect and bulk, respectively. Finally, the

defect creation energy is
Epor = 9Egy * 8Ep * QMg - Qe - ()

Here Qa is the charge on the defect and Qc is the chalcogen
excess. The chemical potentials L (Fermi level) and u, are
introduced as a reminder that the difference in energies of two
defects with different charge state, oOr different chalcogen
excess, is not uniquely defined. However, +he heat of reactiocon
for any pbysically realizable defect interconversion process
is independent of the chemical potentials, since numbers of
electrons and atoms must be conserved.

Estimates of defect total energies are notoriously diffi-
cult; realistic calculations are available only for pure Se
(Chapter II), and these demenstrate that simple models which
are based solely upon discreet btond-orbital energies, and
which neglect intercore repulsion, give decidely inadeguate
results. Adlar57 has recently modified such a simple model to
include a constant repulsive R per bond, in order to give
reroth-order defect energy estimates. However, such a model

still does not include the effects of nonzerc bandwidths or gap

states and resonances; nor can it account for
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electronegativity differences, charge transfers, or the par-
tial ionic character of bonds in the heteropoclar glasses.

Az was pointed out in Sec. III(b}, the latter effects are
expected toc give the simple LAB defects a creation energy on
the order of C.2 eV. The creaticn energy of MCA's, however, is
undoubtedly larger (20.5 2V for Se in Chapter II) and much
harder to estimate. The electronic binding energy gained
(lost) in forming (breaking) a bond will be at least partly

compensated by the corresponding §E It may be overcompen-

R
sated, in which case the bond will prefer not to form; it is
difficult to predict, a priori, whether this will be so. In the
case of pure Se, we found that the bond prefers to be broken,
i.e., C3O - Clo is exeothermic. However, this is largely dﬁe to
the anomalous 1 interaction which stabkilizes the Cl defact; we

have shown this does not occur at the Cl defect in A52583. In

fact, none of the simple MCA's {C}_, CB’ Pz,'Pl} shows analogous
t bond stabllization, and it is likely that the correspeonding
creation energies are closer than in pure Se. The {Cl‘)o
defect will, on the other hand, exhibit this n-bond stabiliza-
ticn, and it may be lower in enerxgy than the C}_O despite the
necessity of adding a LAB.

There 1s some reason te expect the chalcogen MCA's te be
preferred over the pnictide ones. Ac:i.lersd7 roints out that the
Couleomb U for creating the PZ- {or P2+) involves placing two
electrons (or holes) on a highly localized orbital, and is

therefore larger than for the Cl or C Moreover, the neutral

3"
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Cl or C3 has a hole or electron in a band edge state, rather
than a+ the bond-orbital energy (band center); this lowers the
energy with respect to the zeroth-order model. The correspond-
ing stabilization does not take place for P2 or Pl defects,
again because of the deep gap nature of As NBO levels.

It has been proposedl6 that the electrdnegativity differ-
ence will favor the ?4+ defect over the C3+’ and the Cl“ over
the PZ—' However, this will only be the case if the extra
electron or hole is constrained to reside on the defect site
itself. As shown in Sec. III(c), the PZ— is quite unfavorable
for this reascn, with the extra electron localized predomi-
nantly to a single As NBC. OCn +he other hand, the argument
fails for the C3+, in which the added hole is shared by o*
orbitals which have more As than Se character. (For the same
reason, tﬁe C3o cannot be ruled out as the source of the broad
"As center" seen in optically induced ESR experiments.s} in
rhe absence of compelling arguments to the contrary, we there-
fore follow Adler57 in assuming that the large s-p promotion
energy makes P4 defects relatively unfavorable, although this
may be compensated in part by the increased strength of the
more highly directed tetrahedral bonds.

Of course, defects must occur in pairs {or triplets, etc.)
whose total charge and chalcogen excess are constrained to zero
in pure A525e3. 1f we assume that the defects are frozen in at

&
the glass transition temperature Tg,l“ then the density of each

defect is noaxp(—ﬁtot/kTg), with ng being roughly the density
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of ateomic sites and Etot given by Eg. (5). The chemical poten-~
tizals Mg and u, are then determined by the recuirements of
charge neutrality and the steoichicmetric ratio of the glass.
For example, the estimate of Eg. (1) suggests that the neutral
Cz' and P3' LAB's will be by far the most common defects. In

order to have an A328e3 alloy we require the densities of the

two defects to be equal:
bl 1 - . f
noexp{*utot(cz )/k’I‘g] noexp[ Ltot(P3 )/kTg} (&)

Since GER = Qe =0, Qc: = %1 for these defects, Eg. (5) gives

u, = [8E,;(C, )-8 (P5')1/2 (7)

and

= noeXP{-{éEel(cz' )+5Eel(P3‘ ) ]/ZkTg} (8)
(Note that 1f the defects occur conly in close pairs,21 the
Boltzmann prefactor would be the sum rather than the average of
the CZ' and P3' energies, and a considerably lower density of
defects would cccur, reflecting the loss of the entropy of mix-
:an_:;.}“6 Therefore distant pairs will predominate unless the

binding energy of a pair exceeds the average creation energy,

which is unlikely for neutral defects.)



Mo is plausibly on the order of a tenth of an eV or less, so
that the last term of Eg. (5) is probably never very important
for coordination defects. That is, the chalcogen excess of the
coordination defects in.A525e3 (which.presumablyrpirlaF) is not
constrained to balance, since it can easily be compensated by
LAR's elsewhere in the glass. For the same reason, the concen-
trations of the various coordination defects are not expected
to pe highly stoichiometry dependent.

The picture which emerges of the glass at Tq, then, 1s of a
fairly high density {perhaps ~10%° cm™3) of LAB defects. If
the PB' gives rise to a cAs—like states above the valence-band
edge as expected, the observed intrinsic nole mcbility must be
governed by extended state conduction or fast hopping among
fhis manifold of states, as suggested byiHalpern.Zl Scattered
among thé LAB's would be a smaller numbertdﬁls cm"3) of
charged coordination defects. These would be dominated by the
lowest-energy charge-compensated pair [possibly 01— and C3+,
which would occur, for example, at a density of

noexp{—[GEel(Cl_}+5Eel(C3+)}/EkTq} (9)

in analogy te Eg. (8)]. One or both members of this pair could
then give rise to the neutral excitations responsible for the
photoinduced phenomena, and to the negative-U pinning of the
Fermi level via one of the horizontal reactions in Table IT,

- ¥ +
e.g., Cl +“'(C3 ).
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This picture is admittedly speculative, and the identifi-
cation of those defects actually involved would reguire real-~
istic total energy <calculations or new experimental
information. Morecover, the effects of interactions between
charged defects may be important, and have not been discussed
above. Nevertheless, given our present state of knowledge in
this area, we believe this description to be a plausikle start-
ing point for developing a viable model for defects in the

heteropolar chalcogenides.

(e) Summary and Conclusions

We have developed a scheme for classifying and labeling
defects in terms of the constituent like;atonlbonds (ﬁAB'sﬁ and
malcoordinated atonms (MCA's). The concept of
like-coordinated—atom bends (LCAB's) is also discussed,. and
+he fact that LCAB's are suppressed for defects in crystalline
Aszse3 is offered as a possible explanation for experimental
indications that certain nonradiative recombination centers
occur only in the glass. We have shown that each defect is
éharacterized by a chalcogen excess which characterizes its
contribution to the deviation from an exact 2:3 stoichiometry,
and we have pointed out that conservation of chalcogen excess
imposes a constraint upon the possible defect interconversion
processes which can pin the Fermi level below T .

Next, an elementary Bethe~lattice model is presented and

solved for a selection of simple defects involving LABR's and
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MCA's. While the results of such a simple model cannot be taken
at face value, we know how they are modified in more realistic
{e.g., self-consistent) caleculations for Se, and we can use
+his knowledge to predict the gross features of a realistic
calculation in ASZSe . Our primary result is that defects in

3

ASZSe3 are gquite different from those in Se, and arise for
entirely different reasons. While in Se, gap states arise at
onefold and threefold sites because of unigue 7 bonding between
hond orbitals on the defect and its neighbors, in A325e3 they
are associated with unigue bond corbitals (like-atom bond ¢ and
o* orbitals and As NBC's). Thus, while Cl and C3 defects. give
rise to deep gap states in Se, they admit only hydrogenic lev-
els in ASZSeB. Deep states do exist, nowever, at LAR's and at
undercoordinated pnictide sites. We believe that the latter
defects (fz and Pl) will not be negatively charged, as previ-
ously thought, but rather positively charged due to the
position ©f the As nonbonding p orbitals near the
conduction-band edge in.ASZSeS.

Finally, we discuss the structural equilibrium of the
glass at Tg’ and introduce a new chemical potential Mo which
reflects *he relative abundance of chalcogen atcms with
respect to pnictides. We argue that the creation ensrgies of
the simple LAB's will be low (and will fix u_ ), so that a large

number of LAB's (perhaps ~1020cm_3) will permeate the glass.

1 -
We then suggest that a smaller density (perhaps ~1O‘8 cm 3) of

ccordination defects, predominantly on chalcogen sites, 1s
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responsible for the negative-U properties and the pinning of

the Fermi level.
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CHAPTER IV POLYACETYLENE

{a) Introductiecn

The spectacular increase 1n  the conductivity o

th

polyvacetylene upon dopingss has drawn much attention to this
material.59 Partly as a conseqguence, 1t is being realized that
undoped (CH)X is a fascinating model system in its own right.
It is perhaps the simplest system having a strong Peierls dis-
tortion, and has been proposad to support domain wall {soliton)
excitations between regicns of opposite bond alternation.60’61
Furthermore, it has been suggested that charged solitons may
exist in the ground state of lightly doped (CH)X.

Many guestions about the undoped material remain contro-
versial | or unanswered. Cptical absorption and
photoconductivity measurements consistenetly fail to show a
sharp edge at the optical absorption threshold characteristic

62,63

of 1D (one-dimensional) density of states. There is dif-

ficulty obtaining a f£it between +heoretical calculations and
- . . o 64,865
he details of the experimental photoemission spectra.
The explanation of these discrepancies may depend upon gaining
an understanding of the structure; the x-ray data in fact sug-
. . . P . s 66 | ..
gest a distribution of interchain distances, but Little else
is known. What is the microscopic £ibril structure? What is

the typical size of a polymeric unit in the (CH)X £ilm? Is
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there significant bending, twisting, splaving, and crosslink-
ing of the polymer chains? )

While we cannot unambiguously answer such guestions, we
have investigated thecretically the consegquences of Varicué
kinds of strutural disorder in (CH)X, and find that consider-
able disorder is consistent with the experimental work done to
date. In Sec. IV(b) we discuss topological discrder, including
chain ends and c¢rosslinks, and discuss solitons and the gques-
tion of soliton binding to these sites. In Sec. IV{(c) we
restrict ocurselves to infinite chains whose bond alternation
remains intact, but consider various kinds of structural dis-
order which can nevertheless exist. These include regicns of
CiS*(CH)X, bending and twisting of chains, local interactions
between chains, and bond-length disorder. Finally, in_Sec.
IV(d) we present a summary and conclusions, with some specu-

lation about the experimental anomalies mentioned above.

{b) Tonological Defects

If it could be synthesized, crystalline trans—(CH)x would
consist of infinite zig-zag chains made up of CH units. The
structure is shown in Fig. 21 for a terminated chain, a defect
which will be discussed shortly. The system is planar, with
each carbon forming sp2 hybrids in order to bond with its
neighbors. There afe two filled bonding crbitals per CEunit,
and a half filled 7 band. The theory of the Peierls transition

predicts that the system will undergo an asymmetric distortion



Figqure 21

Structure of a trans-polyvacetylene chain terminating on a

radical B.
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ip order to double the periodicity and open a gap at the Fermil
energy,67 thus explaining (at least qualitatively) the alter-
nation between long (weak) and short (strong) bonds which is
sketched in Fig. 21.

By symmetry, the P, orbitals decouple rigorously from all
other orbitals in the system and may be treated independently.
This is very useful because it is the 7 orpbitals which contrel
quch of the interesting physics of the systen, including the
optical gap and the possible existence of solitons. The inter-
actions petween the 7w orbitals are shown schematically in Fig.
22{a) for the structure of Fig. 21. A defect of this kind will
be designated le because the last 7 bond connecting ta the
one-fold site is a weak bond. (The rad;cal R, which may be H,
CHS’ etc., 1s assumed to have no states of odd-z parity in the
neighborhood of the Fermil energy and is therefore ignered.) In
Fig. 22(b) we show a chain containing a scliton (S) and termi-
nating on a strong bond (1E‘S defect); we will show presently

that the reaction
™ 1
1.w - lES~+S (10)

js exothermic. This spontaneous emission of a soliton by the
1Fw surface configuration has the remarkable conseqguence that
all odd-membered chains must contain a soliton somewhere in

their interior.
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Figure 22

(a) Schematic interaction diagram for 7 orbitals of a chain
which terminates on a weak 7 bond (ZEW site). (k) Same for
chain containing a soliton (8) and terminating on a strong 7
bond (11'“5 gite). The circles represent P, orbitals, single
lines represent weak bonds {interaction Vw)' and double lines

represent strong bonds (interaction Vs) .
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We now turn to a consideration of the electronic structure
of such defects. Before presenting the results of the detailed
calculations on these structures, we can learn a great deal
about the nature of the electronic states, particularly the
existence ¢f the midgap states, by some general arguments.

ALl topological defects (chain ends, crosslinks,
solitons) can be characterized by a bond-alternation parity
(BAP) which is defined in the £following way. For each
semi~infinite chain leaving the defect, sever the chain on a
weak bond: then count the atoms remaining in the finite central
cluster. If this number is even (odd) the defect has even (odd)
BAP. Now if one takes an elementary one-electron Hamiltonian
whose zero of energy is at the center of the Peilerls gap, it can
be shown that the density of states is an even function of ener-
gy for ali such defects, and that as a conseqguence, all defects
of even {odd) BAPF have an even (odd) number of localized midgap
states. Thus, for example, the 1E’w defect and the soliton both
have odd BAP, and consequently both have a defect state at
midgap. The 1Fs defect has even BAP and has no defect states
(only midband rescnances). Note that BAP is a conserved guan-
£ity in reactions such as Eq. (10) above.

The existence of midgap states can be understood intu-
itively in the limit iVs! >> }Vwi. In this case cne can think
of clusters (usually pairs) of atoms connected by strong bonds
as "molecules" which then interact slightly with cone another

via weak bonds. In Fig 2(a), for example, each strongly bonded



- 98 =

pair of sites gives rise to bonding and antibonding molecular
orbitals at Emtvs; these are then broadened into bands whose
width is on the order of‘ﬂq. The last m orbital of the chain has
peen left out, however, and gives rise to a midgap state at EmO;
In the case of Fig. 22(b), the "triatemic molecule"” at the
soliton gives rise to an E=0 midgap state, as well as states at
E=tVSJ2. A glance at the planar crosslink defects of Fig. 23
indicates that the 3?555, Sgssw’ 3stw’ and EEwww_defects will
have 2, 1, ©, and 1 midgap states, respectively, these being
the numbez'of E=C eigenvalues of the corresponding central mol-
ecule. (Of course the assumption ;vs1 >> lvwl is unphysical,
put the existence of midgap states 1is symmetry related and
remains invariant as long as ]VS! > IVw].)

It is straightforward to use Green's function techniques
to solve for the electronic structure of the defects shown in
Figs. 22 and 23. However, this is somewhat pointless because
we have no guarantee that any of these defects, in their'ﬁres~
ent form, will be stable in the material. Firstly, we expect
distortions (relaxations) of the system in the neighborhocd of
the defects; for example, it is well known from previous the-
oretical work that the soliton will not remain confined to a
pair of strong bends, as shown in Fig, 22{b), but will spread
out over many sites, creating a region in which the degree of
bond alternation is reduced.61 Secondly, and more drasticly,

we will show that several of these defects are unstable against

the emission of a soliton down one of the chains. Thus our
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Figure 23
Planar crosslink configurations (a) SFSSS, (b) SnSSW, (<)

3F , and (d) 3% . Note that the centers interconvert wvia
SWW WWW _

% I ™
the reactions 3:sss - S+3FSSW, 3E -+ S+3stw, and 3stw+s d

SSW

3F .
WwWW
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immediate task is to develop a means by which fto calculate
total energies of variocus defect configuraticns, and thereby
find stable defects (and their energies) by searching for total
energy minima in configuration space.
- . . - - 61 .
Following Su, Schrieffer, and Heeger, we associate to
th

each site n a coordinate U, for the displacement of the n CH

unit parallel to the chain. The Hamiltenian is then written

HE = - v C C + H.c.
nzs n+l,nn+l,s n,s
I

+ L Rug, w2 - 2T, mu)
n n

+ ZMu sz, (11)
n

Here v is the transfer integral, C the annihilation

n+i,n n,s

operator for spin s on site n, XK the bond stretch spring con-
stant, and M the CH mass. The Hamilitonian is identical to that
of Su, Schrieffer, and Heeger except that the third term has
been added to stabilize the chain against contraction due to
nt-bonding. This term has no effect as long as attention is
restricted to trial solutions of the infinite chain which do
not vary the lattice parameter, but it is important at defect

sites because local contractions can and do occur.

In linear order

Vn+3.,r: = Vg - a(un+1-un) (12)



so that the static Hamiltonian becomes

~ z -
H = - 2 ((1+r)C_,; oCp o * H.C.]

+Zn!<xn2/2+znxxn, (13)

~
where the renormalizations H = H/v X = (v -y v K =
/ o n ( n+l,n o}/ o

2 . . - .
Kvo/a , and ¥ = /e have been applied to cbtain a dimensionless

Hamiltonian. For the undimerized chain one has xn = X = Ccon=-

stant and the energy per CH unit is
~ 2
E = «~(4/1)(1+x) + 2™ /2 + ¥x , (14)

2o that to stabilize the chain we choose ¥ = 4&/7. The dimerized

chain has K, 7 (»1)nx and
~ 2 ’
E = -f(x) +ex"/2 (15)

where £ is obtained by integrating numerically over the density

of states. It has the form62

£({x) = %277t 2 in(d,/x) - 11 + O(x4) ) (16)

Taking 3E/3x = 0 for stabkility determines

k = £'(x)/% . (17)
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Notice that the couplings k and ¢ ¢f Eg. (13) are deter-
mined solely by the dimerization parameter x. Thus, within the
model, x alone determines the length of solitons (in units of
the lattice constant), the relaxatioﬁs which cccur at defects,
the relative total energies of wvarious relaxed defects, etc.
For completeness, however, we now derive estimates for the real
spring constant K and coupling «, cobtaining results somewhat
different from those reported previously.

We have chosen a 7 bandwidth of 12 eV (vo = 3 eV) and
Peierls gap of 1:4— eV, which leads te x = 0.117 and x = 3.255.
To proceed further, we make use of the experimentally
observed68 Ramon-active mode at 147C <:m«1 which corresponds to
a zone~center optical phonon in which CH units move primarily
parellel to the chain axis, with neighboring CH units 180° out
of phase.ég To simplify the analysis we consider the
undimerized geometry, and find the screened spring constant KT

2

Q.
is given by KT = {1/4)Mw~ = 25.9 eV-A 2 for M=13 amu. This is

related to the unscreened spring constant X of Eg. (11) by
K, = K+K 2(a2/v)[n«f"(x)]
scr o

where Ks corresponds to the electronic screening from the

cr

first term in the Hamiltonian of Eg. (11). For x = 0.117 we

find k = £'(x)/%x = 3.255 and £' (x) = 2.028, so that «2/v_=21.1
Q

2.2 22 . e o
eV=4 and K = 88,.6-A °. Thisz differs from the estimates of 3u,
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..
Schreiffer, and Heeger, who give az/vo = 6.8 eV-A 2 and K/2 =
8-2
10.5 eV-A “(Ref. &1}.

L -
Taking Vo T 3.0 eV, we find ¢ = 8.0 eV-A 1, in agreement

with Mele and Rice’” who give a = 6.9 ev-87%. Then from Eq.
{(12) we cbtain 0.02Z2 K for the horizontal displacement of the
CH units, and 0.038 A for the pond-length change. S5Su et 31.61
give a = 4.1 e:V—!?a“ZL and a bond-length change of 0.073 2. we
beleive our smaller estimate of the bond-length alternation to
be in better agreement with bond-length estimates from other
work.71

For each defect configuraticn, Gresen's-function tech-
niques are used to determine the local density cf states Nn(E)
at each site n. The formalism used is a straightforward spe-
cialization of the cluster Bethe-lattice method72 £o the case

of twofold coordination (see Appendix A). The contribution of

each site to the defect creation energy is, from Eg. (13),

g
E 2 ~
SE_ = j-; an(s)ds + g{ (a:xn, +Exn| V/2 - EO (18)

where the sum is over sites which are nearest neighbors to n,
and g; is the total energy per site of the uniformly dimerized
chain. The sum Enégg converges rapidly and serves to unigquely
define the defect total energy. Note that the Hamiltonian of
Eg. {(13) does not include the changes in ¢ bonding as cne goes

to onefold or threefold defects. Therefore, it will only give

total energies which are valid for comparing defects of the



- 104 -

same coordinaticn. For each defect configuraticn, the elec-
tronic part of Eg. (13) is solved using Green's-function
techniques and the lattice energies are simply summed. As a
test case we have calculated the ground-state soliton with

trial function u = (vox/Zu)wn given by

w, = (-1)" tanh(n/1) (19a)
to have length 1 =9 and E = Vog = {.442 eV, in agreement with Su
Schrieffer, and Heeger.61

It now becomes necessary to choose trial functions for the
atomic positions in the neighborhood of defects. One wants a
trial solutien which {i) heals to the normal chain with
dimerization x far from the defect site, (il) allows for
regions of decreased {or increased) dimerization near defects,
and (iii) allows the defect site to relax in toward (or ocut awvay

from) any chain connected to it. We choose

n wo+tanh(n/l)
wy = (-1) i+w_tanh(n/1] _ (18k)
where the labeling n=0,1,2,... proceeds from the defect down

the chain. The position of the defect site W, and decay length
1 are the two free parameters. Several examples are shown in
Fig. 24. [For le|<l these are truncated sclitons since Eg.

(19) can be rewritten as wn={-1)ntanh(n/}.+tanh_lwo) .] We have
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Figure 24
Trial solutions for the order parameter (-) W, as a func-

tion of n, following Eg. (19). In all cases l=2; three choices

of wo are shown.
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experimented with other +rial solutions, but the essential
features are cbtained with Eg. (19).

In Figs. 25 and 26 we show the calculated total energies of
the H‘S and 1Ew defects as a functicen of W, and 1. The lES
defect has an energy minimum at 1=5 and woz}..’?S with E=0.808
eV. The result wo>1 indicates that the final site relaxXes in
roward +the rest of the chain compared to the uniformly
dimerized case, and there is a region of increased bond alter-
nation near the defect. The lE‘w defect, however, shows a
remarkable behavior: no stable configuraticn exists, but the
system wants to relax tow.ards wo-—-—l. As can be seen from Fig.
26, this corresponds to the emission of a spoliton, leaving
behind an unrelaxed IFS defect. Furthermore, by counting bonds
it becomes clear that any finite chain with an odd number of CH
units musyt contain either a IE'W chain or a soliton; we have
eshown that the latter is energetically favorable, and thus all
odd chains must contain a sclitoen.

Tor the three-fold defects of Fig. 23 we used trial sol-
utions with a common 1 for all three chains and different w_ for

o]
diffarent kinds of outgoing chains. We found that the decays

BFSSS g SESS +3 and SES$ - BE‘S +S are excthermic, and that the
1 Z 3
1 1 Yok b = = t b/ ] 1 s
only stable defects are 3“5 {1 4, w o LA 1.3, w o
1 2 3
5 = 4 = = = = o=
0.35, E C.743 V) and 3F {1 S,wo W o W o 0.5, B

-0.447 V). As in the case of the one-fold defects, the config-

uration with no midgap state is, not surprisingly, lowest in

]

energy. However, note that E(3F y - E(3

< E i
WWW } (soliten) so

SWW
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Figure 25
Total energy in eV of lFS defect as a function of W and 1.

The + marks the energy minimum.
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Figure 26

Total eneragy in eV of lb"'w defect as a function of W and 1.
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that the 3F is stable and will nct decay into BES by

WW
soliton emission. This contrasts with the situation for
one-fold defects, where we found that only the lES was stable.
Since the 3Fwww defect has a midgap state, we have the remark-
able result that there is a stable threefcld defect which is
either paramagnetic (if half cccupied) or charged (if fully
occupied or empty). In the latter case, it is possible that
such a defect would show up as a broad IR-active feazture at
phonon freguencies. Of course, if free solitons are available,

the reacticn 3F +s = SFS will purge such defects from the

WW
material.

In summary, the stable bond-ceocrdination defects identi-
fied to date are the 1Fs, BEsww’ and BEwww defects. Figure 27
shows the local density of states averaged over a cluster of
sites near the defect for each of these three species. Figure
27(a) shows that the lEs defect causes a considerable shift of
weight from the sharp 1D Peierls edges deeper into the bands.
This is suggestive in terms of the experimentally observed
absence of a sharp optical edge, but the effect has been exag-
gerated in Fig. 27(a) by averaging the lccal density of states
cver a small cluster {(four atoms) and consequently a very hich
density of broken chains would ke needed tTo explain the exper-
imental result. Notice in Fig. 27(k) that the 3Fssw defect
gives rise to shallow trap states C.06 eV from the Peierls

edges, but no deep gap states. Finally for the 3F defect,

the formation of the midgapr state subtracts a great deal of
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Figure 27

Calculated densities of states near stable defects (solid
curves) and bulk densities of states (dashed curves) for com-
parison. (&) lFs defect, (b) 3stw defect, and (c) 3E

WWW
defect.
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weight from the Peierls edges [the effect is underestimated by
Fig. 27(c) due to averaging the density of states over a small
cluster], but any reasonable density of such defects in the
pristine material should give rise to noticable midgap optical
zbsorption (which has not been reported to date). Similar con-
clusions about the relative stability of the 1FS and iFw have
recently been discussed by Su.73

A variety of other topological defects could occur, such
as nonplanar crosslinks or benzenenriﬁq chain terminations,
but the list of such possibilities is too extensive to pursue
here. We prefer to turn our attention at this point to a class
of nontopological defects in which we consider only infinite

chains with no reversals of bond alternaticn. There remains

considerable variety to be explored in this realm.

{c) Structural Discrder

Even if every pelymeric unit in the polyacetylene film
were infinite and contained no solitons, there could still be
various kinds of disorder present, including regions of
cis—(CH)X, bending and twisting cf chains, local interactions
between touching chains, and variations in amplitude of bond
alternation. This discrder could affect the density of states
at the Peierls edges or deeper in the valence bands, with con-
sequences for the interpretation of optical and photocemission
experiments. We shall consider each of these forms of struc-

tural discrder in turn.
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In crder to do so, we have developed a tight-binding model
by fitting to a first-principles calculation on trans—-(CH)x.
The calculation of Karpfen and Patkovse was chesen for £itting
because its bandwidths appear to agree with photoemssion bet-

4
ter than other calculations ;:Wa.i].&ﬂ::le.6"’74

The resulting
tight-binding Hamiltonian is detailed in Table III. Briefly,
the basis consists cf three sp?' hybrids, the P, and the H
orbitals in each CH unit. Interactions between all hybrids on
nearest neighbors are included.

Figure 28 shows the resulting density of states for trans,
in cis~transoid, and trans-ciscid polyacetylene. The P,
orbitals continue to decouple rigorously, so that the regicn of
the Peierls gap is unaffected (assuming the degree of bond
alternation is unchanged). However, there are clearly consid-
erable changes deeper in the ¢ valence bands. If many chains in
the film retain'regions of cis-isomerizaticn, the resulting
density of states would resemble a wieghted average of Figs.
28(a)~{¢c). However, it was found that such averaging wculd not
materially improve the fit to photoemissicon by the
trans-isomer alone.

In Fig. 29 we show what is meant by the terms bend and
twist. Both kinds of disorders involve dihedral angle vari-
ations only; the sense ¢0f the dihedral angle is contanst for
twist and alternates for bend. ("Splay," or ceplanar bending,
involves bond angle rather than dihedral angle variations and

was therefore dismissed as a less likely possibility.) We have
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Table III
Tight-binding Hamiltonian for (CH)X. Insert shows basis
orbitals:

a, are carbon spz hybrids, a, {(not shown) is

a1, 2y,
P, ag is a hydrogen s orbital. Ho gives the form of the
on-site part of the Hamiltonian, V gives the nearést—neighbor
coupling, 8 is the dihedral angle. Parameters arse given in the

C>°5

bottom panel.
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Figure 28

Tight binding densities of states for crystalline isomers
of polyacetylene. (a) Trans-(CH)x, {(b) c¢is-transoid (CH)x’
(¢) trans-cisoid (CH)X. Insets show the geometries of each

isomer.
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Figure 29

Structures resulting from dihedral angle variations may be
constructed by folding a strip of paper. Each vertex repres-
ents a carbon atom and each heavy line represents a
carbon-carbon nearest-neighbor C-C kbend. A flat strip of paper
corresponds to undimerized trans—(CH}x. {a) A strongly
twisted chain formed by uniform dihedral angle variations of
#]

45 (b} A strongly bent chain formed by alternating dihedral

=0
angles of 457,



{a) TWIST

{(b) BEND
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calculated the density of states for structural models with
constant bend or twist. These give rise to the circular or
helical patterns of Fig. 29 and have the property of being
periodic in interacticn space. Therefore the simplest
appreoach is just to calculate the 1D band structure as a func-
tion of the "wave vector" ¢ which specifies the relative phase
cf the wave function on neighboring 0232 units. The results
are shown in Figs. 10(a) and 1l0O{(b). While in principle the
bonding and antibonding hybrids could interact strongly with
the pz orbitals, this deces nct occur for twist at ¢=0 or for
bend at ¢=1, because the interactions along the strong and weak
honds are cocut of phase and almest cancel. For bend the inter-
action near ¢=0 is strong and opens a gap near -8 eV where the 7
band prev;ously crossed a bonding band. For twist near ¢=7m it
manifests iiself weakly as an asymmetry in the Peierls edges
because tThere are no bonding or antibonding states in that
region of the sprectrum.

It is quite easy to imagine virtuzlly every chain in the
material having some modest amount ¢f bend. We have calculated
the density of states for different dihedral angles (in 5°
increments). Figure 30(a) shows the results of superposing
these densities of states according to a Gaussian weighted
average with an rms dihedral angle of 10°. Also shown are the
density of states without bend and the experimental
photoemission of Duke et al.64. Inciusicon of some bend allows

a modest improvement in the £it to experiment.
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Figure 30

(a) Tight-binding densities of states for trans-(CH)x with
congtant twist of 15°, (b} Same for bend of 15°. {c)} Light
solid line: tight-kinding p-state projection of density of
states for trans-(CH}x without twist or bend broadened by a
1-eV-wide Gaussian. Dotted line: same feor rms bend of 10°.

Heavy solid line: experimental photoemission of Ref. 64.
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In a search for interactions which might show a strong
influence on the Peierls region of the spectrum, we have con-
sidered the c¢ase of local interchain interactions and of
bond-strength disorder. The interaction configquration and the
resulting density of states for one model of local interchain
interactions between crossing chains is shown in Fig. 31, with
an exaggerated value of 1.5 eV for the interchain interaction
w. The P, orbitals once again decouple. Because of the pres-
ence of oddfold rings in interaction space, the density of
states is not constrained to be even in energy. We find that an
electron trap state has been pulled cut of the conduction band.
A 90% rotation of both chains about their axes induces a simi-
lar effect at the valence-band edge. Thus a distribution of
interchair; interaction along a pair of chains would be expected
to induce a slight broadening of the band edges, suppressing
the one-dimensional 1/VE singularities at each edge. Such an

effect has been described by Grant and Batra74

who have per-
formed calculations on an idealized three-dimensional model of
cisﬁ(CH)x. Since there is arguably a distribution of inter-
chain separations in these quasicrystalline gamples, this
broadening is probably more appropriately described as the
pand tails of an otherwise unperturbed 1D spectrum than the vE
SD threshold cbtained in Ref. 74. The former interpretation
requires that the interchain conductivity occur via hopping

between localized tail states.
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Figure 33

Density of states in the vicinity of a localized inter-
action between a pair of crossing (CZE-I)X chains. Insert gives a
schematic interaction diagram; single lines denote Vg dotted

lines v .
n W
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Finally, we consider the possibility that bond lengths
vary randomly away from uniform bond alternation. Bond-length
discrder should be considered less probable than stochastic
variations in bond angles or interchain separations. However,
anticipating that local wvariations in the packing density of
contiguous chains may introduce significant fluctuations in
the total c¢rystal potential experienced by the valence
electrons, we will consider beond-length fluctuations as well.
According to our estimate the bond-length change responsible
for the gap in crystalline (CH)x is only £2.7%, so it is guite
easy to imagine that static bond-length disorder cf only 1-27
could begin to wash ocut the gap.

We have tested this idea by constructing a chain segment of
5200 CH units with site positions given by x, = (*l)n(l+sn},
where S, is chosen independently according toc a Gaussian dis-
tribution with 0=0.5 and zero mean. (For =0 this would be the
perfectly dimerized chain.) Then the bond lengths also follow
a Gaussian distribution, with o' = (o/V2)x2.7% or 1% of the bond
length. We then connected uniformly dimerized chains to either
end of this segment, and averaged the calculated local density
cf states over the central 5000 atcms of the segment. Since
this is a cne~dimensional model, all states are Anderson local-
ized, so that the total density of states is really a sum of
delta functions corresponding to each localized state. There-
fore, to obtain a smooth average it is necessaty te study a

segment which is long enough te have many delta functions in
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every energy interval. Even with 5000 atoms per segment, it
was necessary to average the results over four such segments.

The results are shown in Fig. 32. With only a 1% rms
bond~-length change on each C-C bond, we find a very substantial
broadening ¢f the 1D band edges. This effect is perhaps better
expressed following the arguments presented in Ref., 67 and 75
which treat the electronic spectrum near the Peierls gap in
one-dimensiconal systems in which the lattice distortion
becomes uncorrelated over a length §. Although in these fTreat-
ments § is envisioned as resulting from thermal discrder, we
readily generalize I to include static disorder. One cbtains a
lifetime broadening, T, of a "Bloch" state

-1
£ (20)

I = Ry
where Ve is the Fermi velocity in the metazllic (undistorted)
state. [ has the effect of "smearing"” the electronic spectrum
replacing the Peierls gap with a "pseudogap." We estimate hve =
8 eV-A in (CH)X; consequently a mean coherence length of 40 i on
each chain would be required to explain the cbhserved broadening
of the absorption edge, which is net an unreascnabkly short
estimats.

We believe the results described in Figs. 31 and 32 tc be
the most likely explanzstion for the absence of a sharp =edge in

the experiments. Because there is nc k-selection rule for a

system of localized tail states, this would also explain the



- 122 -

Figure 32
Sclid curve: average density of states near the

valence~band edge for a (CH)X chain with stochastic variations
of 1% rms in bond lengths. Dashed curve: crystalline (CH)X for

comparison.
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observed momentum independence of the absorption edge.76
Because we have only carried out 1D calculations, we have no
way of estimating the position of the mobility edge. However,
the fact that the discrder in (CH)X need only be comparable to
+he bond alternation (which is already small), together with
the quasi-1D nature of the system, suggests that this material
mav be a model system for severe Anderson localization, with an
unusually large tail of localized states. Finally, we point
out that the degree of breadening of the Peierls edges may be
highly sample dependent since the amount of disorder is likely
to depend upon preparation conditicns. We should note that
while the present results suggest mechanisms which broaden the
absorption edge, a complete description of the optical spec-
frum below 2 eV should include a treatment of the excitoenic

=

final state. In particular, photoconductivity
measurement563 may be taken as evidence that optical absorp-

tion is excitonic within ~0.1 eV of threshold.

(d} Summary and Conclusions

We have studied many different kinds of disorder which can
occur in polyacetylene £ilms. The results indicate that moder-
ate structural disorder, including twisting, bending, cr local
touching of chains, could be virtually universal without hav-
ing a major impact on the electronic properities of the £ilm.
There appears to be a minor improvement in the fit to

photcemission when some bend is included. Admixtures of
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cis-isomerized (CH)X chains at levels approcaching 10% cannct

be ruled out by photoemision. Note that Raman73’?5

scattering
has been shown to be a more sensitive probe of the cis-trans
ratio on (CEE)X,

By studying the stability of various possible topclogical
defacts to soliton emission and relaxation, we have identified
one stable chain termination and two species of stable planar
crosslinks. One of the latter has a midgap state, which is not
seen in the IR absorption. The other two defects could occur at
large densities (on the order of a percent) without having any
dramatic effect on the density of states.

Finally, since the bond alternation is already weak,
stochastic variations of conly 1% in bond length can strongly
broaden the 1D Peierls edges. This effect and interactions
between ramdomly packed chains are thought to be the most like-
ly explanations for the observed absence ¢f a sharp edge in

" some samples.
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APPENDIX A BETHE LATTICE rORMALISM

In Chapters II-IV, we have repeatedly sclved systems in
which a tight binding Hamiltoniazn 1s applied to a
cluster-Bethe~lattice structure. In Chapters II and IV, cne
has twofold coordination, so that a Bethe-lattice simply cor-
responds to a semi-infinite chain, whereas in Chapter III we
must deal with a true Cayley tree.

The cluster-Bethe-lattice method (CBiM) solution using
Green's function technigues has been detziled previously. 77-78
However, in this Appendix we report two new extensions of this
method. Firstly, we have generalized the solution to allow for
nonorthogonal basis orbitals. To our kXnowledge, such a gener-
alization has not been previcusly reported. Because there are
many systems for which the inclusion of nearest-neighbor over-
laps is natural and useful, we outline the method here. The
discussion will specialize to systems of twofold coordination,
but the generalization to higher cocordination is
straightforward. Secondly, we have used the CBLM density of

states to calculate estimates of defect total energies.

We begin by defining the Green's-function cperator
D

h >«
te ><v_|

A A _
Gm) = (E-B)Th = 2 2 (A1)
=4 a
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Pl
H is the Hamiltonian, the |[¢> are energy eigenstates with
eigenvalues Eu, and the energy E=e+if§ 1is taken to have an

infinitesimal imaginary part. Then

-(1/7) Im tr G = 3 §(s-E) = n(e) (A2)

21
[+3

gives the density of states. Now choose basis vectors [i>,
linearly independent but not necessarily orthcocnormal, and con-

struct the duals |1i*> such that

<i*|j> = 513‘ , (A3}

and therefore

2 ji#e<i| = 1. (%)
1

Define the generalized Green's-function matrix elements as

o~
Gys = <i*IG13>. (A5)

Using Egs. (Al) and (A4), one easily shows

- {(i/7) Imtr G = n(s) , (AB)

so that the natural definition of the local density of states

is



- (i/7n) Im tr Gii = ni(a} . (A7)

Taking matrix elements, Eg. (Al) can be recast intc the

form
~
2 <i|E-H|j><i*1Glk*> = & . (A8)
] }
We define
Sij = <ii{j>,
- A o«
Hl} - <liH|J) v
~ . A .
Gij = <i|G|3i>, (AS)

where the bagis is assuned to have been chosen such that the Si ,

]
and Hij are real. Eguation {A8) now becomes
JZ (ES; =Hy ) Gy = 6y (A10)
~d
G is related to G by
Si3 7 gsikskj : (A1l)

~
We will proceed by solving first for G, then G.

In typical applications we label cocrbitals by a site lzbel

"i" and an internal label "a" which runs over the N atomic

crbitals on sach site. In this notation, sach matrix element
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(Hij’ S{j, etc.) is itself an NxN matrix in the internal space.
We adopt this convention and furthermore restrict ourselves to
firgtenaeighbor interactions and overlaps for the purpose of

this discussion. Thus for bulk Se, which corresponds to a 1-d

chain ¢f sites, the inputs are the matrices

S =ES.. .,
o ii
SESi,iﬂ’
= @ —
EO"E“ii Hll'
vzH ES, ,,, - (AL2)

T

Note that So and Eo are symmetric and that 5, sT, etec.

i+l,1i°
When attached to a defect, the chain segment under consid-
eration will extend uniformly to infinity in one direction

(i++e) and will be attached to a defect at i=0. If we define the

fields Xy and Xy by

"
o
<

G, . . _Ex.NVTG, .
i+l,3i-n 1 i,i-n

H
=4

Ci-1,1+n "%V Ci 54n (A13)

for n>0, Eg. {ALIQ) gives, e.4g.,

o~ ~r Tn.r

£ G
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leading to
T -
= E - -
X501 = (BgmVx Vo) 7 |
Xi41 = (EO v xiV) . (A14)

By means of these recursion relations, it can be shown that Xy
and ?i are symmetric matrices and are independent of n, as
implied in Eg. (Al3). Furthermore, because the chain is
semi-infinite in one direction, we have X; =X = constant; this
does not held true for the Yi. The latter must be calculated
indiﬁidually, starting at the defect and moving down the chain.

In order to calculate the local density of states on each

site, we need

Fa A~ T -~

Giy = G438, %Gy 3495 * Gy ;S (A15)
From Eg. (AlC),

EG..-VG Vg =1

o ii i+1,41 i=-1,1 d

cr

pd - - T _ ,T- -1

Gii = (Eo VXV v xiV} . (A1B)
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g = (& T - (w7 )T = &,.v
Gy ge1 = (Gyuq )7 = (XWIG )7 = G5V
Gy yo1 T (Gyp, 407 = XV Gi)7 = CyyVixy
so that finally Eg. {AlS5) beccmes
G.. = &.. (5. +VxVT + VK. S) (AL17)
1i ii o} i :

The generalizaticn to the calculaticn of GOO at the defect site
itself is stfaiqhtforward.

Once we have cbtained the density of states in the vicinity
of the defect from the realisitic tight-binding calculation,
it is relatively straightforward to find the band-structure
energy EBS’ which is just +the sum of filled one-electron
levels. However, the total energy is not simply EBS’ but con-
tains the‘ repusive Coulomb interactions between ion cores and
other corrections.

in order to write down +the total energy, we adopt the
Hartree~Fock-Slater point of view and consider the system to be
composed of valence electrons and frozen ion cores of charge

Z=+6 for Se. Then the total energy is79

Ep = % J’dr z,bi*(r) {—(hz/Zm)V2+ViC;n(r)] W

l,.J.

L

/2y 3 fer gy vy 01
1

 (3/8) I [ar v (n) v, ()12
1



2.2
P12y 2-2F -5 v (A18)
= TR -R_| BS
nm
where VE and an are <The Hartree and Slater exchange

potentials. The corrections to EBS have been lumped together

in the term U. Since
Ege = izsi = 12 J’dr vy *(r) x
[-W%QmW2+V (r) + V. (xr) +V_ ()] . (z) (Al9)
ion'” H Xa iv” e

we can write

- 2
u = }1: Idr [-(1/2)Vy(x) - (L/8)V, ()] v (217
2,2
L (12) 2 -SF (220)

nm [Ry=Rp |

The term U thus contains corrections due to overcounting of the
Hartree and exchange-correlation energies {the Coulomb
repulsion between each pair of electrons was counted twice in

=1

-t

Eg. (Al9)] and the repulsive ion-ion interaction. There
little hepe of evaluating this term directly within the
tight-binding medel, so we turn instead to a rough empirical
appreach.

In Fig. 33 we sketch the dependence of ET, EBS’ and U as =&
function of bond length for a uniform exXpansion or centraction

of the trigonal crystal. Here we have taken the atom as the
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Sketch of contributicns AEBS and AU to the total energy per

bond AET, as a function of bond length 4.



AET

\\\\._\\

e, s Wap N AW T WS AR

Abgg

'
!
i
I
1
!
1
!
'
1
]
O

E

o)
<

(situn que) AOHANI

o



- 133 -

zero of energy. This corresponds to taking the bond length d7?=.
The cchesive energy of the crystal Eb is given by the minimum of
ET which occurs at the equilibrium bond length do. We can

expand AU as a functicon of d about cio (Ref. 8C):

AU = AU_ + a(d-d_)

+ 8(d-d_)?/2 + higher terms. (A21)

Since AEBS can be calculated as a functionof d, it is possible
to obtain the constants AUO, e, and B if the binding energy and
bulk modulus are known experimentally.

Since it is very difficult to calculate U for an arbitrary
structurzal configuration, it is necessary to introduce a sim-

plifving assumption at this point. Follwoing Chadiao Wwe assume
U = ZAU(dl) , (A22)
L

where 1 labels first-neighbor covalent bonds in the material

and d., is the corresponding bond length. This approach has

1
been used previously *to estimate the relaxed bond length at

. 8C
semiconductor surfaces

where only ¢ and 8 need be known. In
the present context, however, we assume bonds are either normal
(d=do) or completely broken. Thus we need only find a way to
estimate the equilibrium value AUO. Having dene so, we calcu-

late the total energy of any defect structure by integrating

over the density of states to cbtailn EBS and correcting by iAUO
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for each broken or extra bond in the structure. (From now on,
ET and BBS will always be referred to the energy of an egual
number of atoms in the normzlly ¢coordinated bulk as the zero of
energy.) We will describe the calculaticon of EBS in detail-
shortly, but let us first estimate AUO using the case of
selenium {(Chapter II)} as an example.

The most straightforward way to determine a value for AUO
would be to imagine the dissociation of trigonal Se into sepa-
rate atoms. The ET is the experimental cohesive snergy per
atom Eb = 2,35 ev,al and U = ET-EBS = ~»AU0, The determinatiocn
of EBS is complicated, however, by the fact that in our
Hamiltonian, the atomic~orbital energy levels on each atom are
shifted as a function of the cocordination of that atom. The
self~energy shifts for threefold, twofold, and onefold sites
are A3 = -1.25 eV, A2 = 0 eV, and A} = 1,25 V. If there were no
self-energy shift on the free atom, we would find E = 4,47 aV.

BS
A simple extrapolaticon gives Ao = 2.50 eV, E = 19,47 eV, and

“BS
AUO = 17.12 eV. However, we have little confidence in such an
extrapolation, and we prefer instead to find an experimental
reference which does not involve free atoms.

This has been accomplished by considering the dissociation
of the trigenal crystal inte I{ree Sez molecules instead of free
atoms. To be precise, we proceed conceptually in the following
stages: (1) dissociate the crystal into free atoms; (ii) com~
bine free atoms tec form Sez dimers; and (iii) adiust the bond

length of the dimer to be do' The corresponding energy gains cof
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the system, per twc atoms at OOK, are (1) ZEb = 4.70 eV {Ref.

81); (ii) -72.96 kcal/mecle = ~-3.18 eV (Ref. 82); and (iii) 0.486

eV from vibrational data.83

Thus for the entire process ET =
1.98 eV. The calcualtion o¢f the correspondind EBS is
straightforward. Applying the Hamiltonian of Table I to the

i E = + £ = F - =
dimer, we calculate Epg 17.83 eV and, therefore, U Ep-Exg
-15.85 eV. Since this corresponds to breaking one bend, we

E

have finally AUO = 15,85 eV. It is this value we will use for
all subsequent calculations of defect total energies,

Cur gecal now is to determine EBS and ¥ for the cnefcld
defect, threefold deifect, and IVAP of Fig. 4. Becuase two
onefold (threefold) defects are required to break (form) a sin-
gle bond, we have U‘:iAUO/Z and 0 for these three cases, respec-
tively. We turn now to a detailed discussion of the evaluation
of EBS'

Recall that EBS is now defined with respect te an equal
number of atoms in the normally coordinated bulk, as az zero of
energy. Thus if Nn(s} is the local density of states on the nth

site and No(a) is the local density of states at any site in the

bulk, we can write

fr
as = > f e BN_(c) de (A23)
bl -

)l

where tp is the Fermi level and éNn(s)=Nn{z)~No(s}. The energy
integral is carried out numerically, and the sum over sites is

typically well converged (within -0.0C1 eV) with the inclusiocn
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of the first 10 sites extending down each of the semi-infinite
chains attached to the defect.
There is one fine point which arises in the evaluation of
*he energy integral. In the Green's-function formalism, the;
density cf states is
N(e) = - (ym 2 Lmlel® (A24)
n o g-g +1i8
o
where ¢ are eigenstates of the system and § is a small imaginary
part which must be included in the calculation. Thus each

eigenstate contributes to the total density of states as

8
(/™) G T

This is a Lorentzian which goes to a delta function in the limit
§&rarQ. For calculational purposes, § is chosen to be compara-
ble to the energy mesh spacing and is typically C.04 eV. The
fact that a2 nonzero § must be employed in the calculaticn has
two unfortunate consequences. Firstly, the density of states
does not guite dreop to zero in the gap regions (see, f{or
example, Figs. 3-5), so that it can be hard to decide where to
put the Fermi level in the gap. Seccondly, and more seriously,

the energy integral over the tail of the Lorentzian goes as

T 5 5 X -1
ﬁ” (s/ﬂ)mds = {(§/7m) ‘[m g “de ,
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and is therefore logarithmically divergent.

We have corrected these problems by deconveoluting the
Lorentzian out of the density of states, and subseguently
broadening by a Gaussian of the same width. Using standard
fast~Fourier-transform routines, we numerically transform the
density of states, divide and multiply by the transforms of the
Lorentzian and Gaussian, respectively, and then reverse trans-
form back to energy space. Because the Gaussian falls off much
faster in the tail regions, the divergences disappear and the
density of states in the gap typically falls to a value several
crders of magnitude lower than it did previocusly. This appears
to be a simple yet general techingue for cbtaining an accurate
energy integral.

The above program has been carried out to calculate the
total energies of the onefold, threefold, and IVAP defects of
Fig. 4. The results are show in Table IV. The last three col-
umns represent total energy estimates of increasing sophisti-
cation. Egp, refers to "simple-bond-orbital" estimatest?
which are based on discrete bond-~orbital electron levels and
which neglect inter-ion repulsion entirely. The guantity
B!

EBS—ZAl or 3 1S essentially our calculated ET axcept that

BS

only that portion of U necessary to cancel the strong effects

of the self-energy shifis in is included. Thus ET effec-

Eps

tively includes the ion-ion repulsion, while E!BS does noct.

Note the striking reversal in the relative onefold and

threefold energies in the last three columns. The physical
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Table IV
Tight-binding total energy calculation for defects. First
two columns are contributions to EBS' or E,; last three are

total energy estimates of increasing scphistication. See

text.

EBS(EV) T{eV) ESBO(eV)EBS'(eV)ET(eV)
1-fold 9.09 -7.92 3 -4 1.59 1.17
3-fold -6.36 7.92 1 1.14 1.56

Ivarp 1.22 0.0 ? 1.22 1.22
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significance of these results is discussed in Chapter II of the

text.
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APPENDIX B SELF~-CONSISTENT FSEUDOFPCTENTIAL METHOD

In this appendix, we describe in detaill some features of
the self-consistent pseudopotential (SCPSP) method used in
Secs. II{c¢c) and (d). The plan is as follows. TFirst, we will
discuss the choice of local~density functional, paying special
attention to the tail region and the spin-multiplet splitting
in free atoms. Next, we will review the relative merits of
local and nonlocal psesudopotentials. Then, we describe cer-
tain features of the crystalline calculations, including the
implementaticn of the Lowdin perturbation theory and other
convergence aids. Finally, we discuss the calculation of total
energies and demonstrate that it is possible to obtain accurate
equilibrium geometries and cohesive energies in crystalline
Si, Ge, and Se.

We begin with local-density theory. In a series of seminal
papers8é-86, Hohenberg, Kohn and Sham considered a system of
interacting electrons in an external poctential, and proved
that the many-body ground state wave function is a (universal)
functional ©f the electronic charge density p alone. It fol-
lows that the ground state energy E of the system is zlsc a
functional of p. They then defined the exchange-~correlation

energy functional Exc[g] by

o)
o

(Bl)

Elo] = f[vext(r) * e (r)ldr + Tlp] + E__



- 141 -

where Ve is the external potential, T[p] is the kinetic ener-

xt

gy of a non-interacting electron system, and g is the Hartree

energy
EH(r) = (1/2)fdr' p(x') / |x-r'| (B2)

(Atomic units, au and Hartree, are used in this Appendix except
where otherwise specified.)
The only assumption that enters local density theory is

that Exc[p] can be approximated as a local function of p:

E__lel = fdr p(r) e (p(T)) (B3)

Then, since E{p] has its variational minimum at the true p, one

can take the functional derivative §/86p of Eg. (Bl) to show that
¢ = jﬁp(r) [V (¥) ¥ uglr) +u, (¥) * 6T/8p(r)] dr (B4)
where uH(r) = 2sH(r) and
B (x) = 8lpe_ (p)]/8p - (BS)

XcC

To obtain the p which solves Eg. (B4), cne need only sclve for a

non-interacting system with poter‘ztzal Vext + My + LI this is

now correctly done using a one-electron solution of the

Schroedinger equation:



2 . -
[=V9/2 + Vo (x) +ug () +u ()] e, (x) = e,9.(x) (B6)
This must be solved self-consistently using

p(r) = Z ju ()17 (87)

i

Finally, the ground state energy is given by

£ = Sey e [0 CO/2ug(0) e () S ar (38)
1

In order that Exc(p} have the correct value in the limit of
slow density variations, it is natural to set Exc(p) equal to
the exchange~correlation energy density in a uniform electron
gas of density p. The exchange contribution is defined as the
portion ﬁhat would be present in a non-interacting uniform

electron gas. It is easily given from Hartree-Fock as

e le) = =3 (30/87) Y/ Rya (B9)
with the corresponding potential from Eg. (B5) being

() = - & (3p/8m)"> Rya (310)

The correlatien contribution, e, Fe - contains the phys-

& ®’

ics of many-body interactiocons.
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Some years earlier, Slater had proposed a somewhat ad-hoc
mean-field calculational scheme (known as the "Slater Xe meth-

od")87

which led %o equations identical in form to (B&) and
(B7). The great success of this method was in fact the primary
stimulus for subsequent advances in local density theory. His

approach lacked the rigor of the Hohenberg-Kohn theorem and led
1/3

to a somewhat different coefficlent in front of » in Eg.
{B1Q), namely
1/3
ae (o) = - 6a (3p/8m) 7/ Ryd (B11)
with ¢ = 1. Since ¢ = 2/3 corresponds to pure exchange in the

Hohenberg-XKohn-Sham picture, Slater subsegquently suggested

using Eq. (B1ll) and
ey (7) = = (9/2)a (3p/87) "7 Ryd (B12)

with o a parameter to be chosen between 2/3 and 1, the idesa
being that o > 2/3 effectively includes some ceorrelation in an
approximate way. Ee suggested fittihg ¢ to Hartree-Fcck total
energy calculations on isolated atoms (a procedure which gen-
arally yields Urppe = 0.70-0.72). However, this is hard tec justi-
fy on the basis of first principles, since Hartree-Fock does
not include correlation at all.

The next task of local density theory, then, was to obtain

an accurate correlation functiocon Ec{p) from calculations of the



ground state energy of the electron gas, in order to supplement
Eg. (B9). Unfortunately, the energy of the electron gas has
proven to be extremely difficult to calculate for typical semij
conductor or metallic electronic densities (rS =z 1-2, where r

is conventionally'defined.byp_1

= énrss/B }. The earliest sug-
gested formula is due to %Hgneraa, whe proposed a simple
interpolation between low and high-density limits; as subse-

quently corrected by Pinessg, this leads to the still-popular

"Wigner interpolation formula'":
s_(r ) = -0.88/(r_+7.8) Ryd. (B13)

As more accurate many-body and Monte-Carlo calculaticns of the
electron~gas energy have become available, a large number of
new formulas for the correlation energy have been spawned (for
an extensive recent review, see Ref. 90). Many of these are
A :

generalized for spin-pclarized (p # ¢”) svstems as well. A
31 .

i

common parametrization, due to von Barth and Hedin, ]

fpelTg ) = g, (r,0) *le (rg 1) e, (x . 0)]g(8)
where

g = (00" /)

g(8) = [(1+5)¥ 3+ (1-5)*3 - 21 /2% - 2}
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™
a1
O
i

ex(rs,0)~»cof(rs/ro)

_ ~4/3 _
e {(r_,1) =2 sx(rs,O) cif(rs/rl)

f{z) = (l+z3)in(z+1/z) +z/2 - 32 - 1/3 (Bl4)
A
. . . i ¥ ™
[Eg. (B5) is applied to obtain Moo and w__ . The
commenly-used foermulas of von—Barth—Hedin,91 Hedin-
Lundquist,92 Gunnarsson-&undquist,93and Janak~-Moruzzi-

Williamsgé are of this form, each with different parameters co,
Sy, Ty, and r,.

The Wigner and subsequent formulas for €ee MBY be inter-
preted as given by Egq. (B1l2) with a density-dependent a. For a
typical valence density in Se, rs=2, one finds ¢ in the range
0.80-0.85 for all of them. Since it is pretty clear that the
errors involved in making a local density approximation in the
first place are of this magnitude or greater, it appears not to
matter much which one is used. For exazmple, the best calcu-
lations to date on the ground state properties and structural
excitations of crystalline silicon44 were done using Wigner
exchange~correlation. In fact, leaving correlation cut alte-
gether (e=2/3) appears to give guite adequate results for
binding energies and bond lengths in a number of applications
[Refs. 41-42 and Sec. 11(d)]. While e=1 cften gives better

eztimates of excitation energies {semiconductor band gaps are
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consistently teco small for smaller =), it is clearly incorrect
for ground state total energy estimates.

In order to calculate the cohesive energy ¢ a solid (the
energy to dissoclate the crystal into free atoms), it is neces-
sary to calculate the reference energy of an isolated atom.
This is done in the sperical approxXimation, i.e. using a
Herman-Skillman-type computer program.36 However, two new
complications arise. The first is that the ground state
spin-multiplet is spin-polarized for open-shell atoms. For
example, in Se the ground state is =2 3? configuration, with 3
out of 4 valence p electrons having spin up. Von Barthgs has
shown how to <calculate the spin-multiplet splittings
correctly. In general this is a complicated problem, but it
turns out that the energy of the most spin-polarized state (the
ground stéte, by Hund's rule) is always easily calculated via a
normal local-spin-density calculation. One simply ceontinues
to do a spherically-averaged calculation with unequal occupa-
tions for spin up and spin down electrons, using, e.g9., Ed.
{B14) <to calculate £ e and LI We have calculated this
spin-;polarization energy cerrection using Gunnarsscn-
Lundguist exchange-correlation, and cobtain, for example, 0.7&
eV/atom in Se.

A gecond complication arises in the fact that the local
density mean fileld pctential has the wrong form in the tail
region of the atom, decaying exponentially instead of having

the corrsct 1/r algebraic decay. Slater suggested simply



altering the potential in this region to the correct form, but
it azppears impossible to define a corresponding € e which pre-
serves +the variational relationship between € e and He
expressed in Eg. (BS). Moreover, even in the hydrogen atom,
the "worst-case" system for a mean field theory,
Gunnarsson-Lundquist exchange-correlation gives a binding
energy of 0.984 Ryd, in error by only ~0.2eV. Errors in heavier
atoms are probably not significantly greater. At this point,
we prefer to live with the wrong form of the tail, taking the
peint of view that it is an.intrinsic and unavoidable conse-
quence of the local density approximation.

Once one has chosen a local-density exchange-corrslation
function, one can in principle do a calculation on a real crys~
talline sqlid by simply expanding in an appropriate basis set
0f Bloch functions, e.g. plane waves. However, to make the
calculation tractable, one needs to appeal te methods which
focus on valence electrons only. We have chosen to use a
pseudopotential approach.

For self-consistent calculations, one needs to chocose a
pseudopotential to represent the ion core (charge Z=+56 in Se).
One general approach is to use an empirical pseudopotential,
i.e. cne which has been parametrized to £fit experiment, usually
optical properties. A well-known example is the
Appelbaum-Hamann pseudopotential for silicon.96 However,
pseudopotentials fit to optical properties may give good

excitation energies, but are not necessarily optimized to give
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good ground state total energies. In fact, experience has

shown that in general they do nct.39’4o

Since this will be one
of our primary applications, we prefer to adopt zan alternatg
approach in which the pseudopotential is obtained from first
principles in some way, usually by extracting information from
an all-electron calculation on the free atom.

To see how this works, consider the case cf the Se atom.
The ionic pseudopotential, which represents the Z=+& 1ion,
should have the property that, when self-consistently screened
with six valence electrons, its 1s and 2p eigenvalues match the
4s and 4p eigenvalues of the all-electron atom. Furthermore,
the corresponding wave functions should ke the same outside the

core region. Such a pseudopotential was proposed by Starkloff

and‘Joannopculos.QS They adepted the analytic form

U, o (F) = - E(rihr) Z/r (B15)
where
£(zih,x,) = (1-e” 2] s [1+e M (F7TL) (B16)

is a steplike pseudizing function with core radius T, and a
reciprocal length )} characterizing the smoothness of the step.
In principle, Z/r in Eg. (B15) should be replaced by the "base

potential" obtained from the all-electron calculation by sub-

tracting the screening due to valence electrons from the total
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mean field potential. However, since this potential is already
rapidly appreoaching Z/r at r.. Eg. (B1S) is generally perfectly
adeguate.

The idea now is toc choose the two free parameters, \ and T
to exactly fit the two eigenvalues, =g and :-:p. This can be done
for Se; with Wigner exchange-correlation, we obtain A = 10.1986
au”l  and r, = 0.92278 au. The corresponding ionic
pseudopotential is shown in Fig. 34. The self-consistently
screened pseudopotential has been constructed so that i1t con-
verges rapidly, outside the core, to the all-electron mean
filed potential; this, together with the egquality of the
eigenvalues, also insures that the pseudo wave functions con-
verge rapidly to the all-electron wave functions outside the
core. (In principle, this equality is only insured up to a mul-~
tiplicative constant, but we £ind in practice that this
constant is generally within ~1% of unity. To a good approxi-
mation, then, these are "norm-conserving“97
pseudopotentials.)

The Starkloff-Joannopoulos pseudopotential has been used

with success in a number of l':z:mc:ls*l:w_f'uct‘.u::'ea35’gg

and total energy
[Refs. 40, S8, and Sec. II(b)] calculations. However, it has
certain drawbacks. Firstly, it is not always true that } and .
can be adjusted to fit £ and ap exactly. In Si and Ge, for
example, the bkest £it is given with =~ and r. chosen for a

least-sguares fit of £ and £y The method is therefore of

rather limited utility in these cases; for example, we find
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Figure 3&
Ionic pseudopoientials for Se. Solid line: local poten-
£ial of Ref. 45 with A = 10.196 au”~ and r_ = 0.92278 au. Dashed

lines: non-leocal potential of Ref. 97 with *C(s} = 1.18 au,

rc(p} = 1.24& au, rc(d) = 1.18 au.
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that trends in bond lengths and cohesive energies in going from
crystalline Si to Ge are not even gualitatively correct. Sec-
ondly, even in Se we require a fairly sharp cut-off, which con-
tributes high Fourier components toc the pseudopotential. This
in turn regquires that we use a larger basis set (higher Fourier
components) to expand the wave functions. Since computer time
goes up roughly as the third power of kasis size, or the ninth
poser of the cutoff wavevector, the abruptness of the cutcff
may sharply increase the expense necessary to obtain a
well-converged result.

These problems can be overcome by using a "non-local”
pseudopotential, i.e. one in which we specify a different Vi{r)
for each angular momentum component 1. Ameng the non-local

pseudopotential schemes suggested recently,97’loO

we prefer
the methoa of EHamann, Schluter and Chiang97 because it appears
te give much smoother potentials. These authors start with the
all-electron valence s, p, and d wave functions and pseudize
them s¢ that they are nodeless, smooth, and identical to the
all~electron wave functions cutside the core. Then, using the
known all-electron sigenvalue €, they invert the Schroedinger
equation to obtain Vl(r) for each 1. The resulting non-local
pssudopotential (again using Wigner exchange-correlation) is
shown along side the above-mentioned local potential in Fig.
34, It is clearly much smcother.

The implementation of non-local pseudcopotentials in a

crystal calculation is fairly straighforward.101 It substan-



tially increases the time necessary to set up the Hamiltonlan
matrix, a procedure which usually dominates the computer time
for these calculations. Luckily, some time can be saved by
storing the non-local part of the Hamiltonian for each R-point,
since only the local part of the potential (the screening)
changes from iteraticn to iteration in the self-consistency
preocess.,

We tTurn now to a discussion of certain features of the
self-consistent crystal calculations. These fall into two
categories: (i) ways to improve the accuracy and efficiency of
the Lowdin perturbation method, and (ii) tricks for minimizing
the number of iterations necessary te cocbtain convergence.

We begin with the former. The Lewdin perturbation
schemes7 is a way of reducing the size of the Hamiltonian which
must be diagonalized by including some higher Fourier basis
vectors’in first order perturbation thecry. Let Roman letters
label plane waves 1n set A with energy O<an<EA, and Greek let-

ters label plane waves in set B with EA<Ea<E Then we

5"
construct a rencrmalized Hamiltonian for set A which includes
set B in perturbation theory:
H H
o pe me an
Unn = Fmn * :E g - ¢ (817)
[+ a
This is sometimes called "folding in" of the higher-energy com-

ponents. The new Hamiltonian.Umn_has more accurate eigenvalues

then H .
mn
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Once Umn has been diagonalized, the eigenfunctions nmust be
constructed in order to cobtain the charge densities for the
next self-consistent iteration. On the one hand, it is possi-
ble to simply use the sigenstates of Umn {that is, the wave
functions would have no Fourier componsnts in set B). On the

other hand, it is better to use the perturbed wave functions.

if wo = chn¢n is the sigenvector, Uwor=s¢°, then the perturbed
p is
u
b=+ 2 (2= c 1 (B18)
o
=4 I o

While the latter procedure (scmetimes called "folding ocut" +the
wave function} is indeed preferable, it substantially
increases.the computer tTime recuired to compute and Fourier
transform the chafge densities. In practice, we find that if
EA and EB are chosen large encugh to be close tec convergence
(i.e. the cohesive energy is within ~1 eV/atom of the converged
value}, the folding~-out procedure provides very little
improvement in the total energy (~0.05 eV/atom), although the
charge densities are indeed substantially betfter. On the other
hand, if EA is low enough, the folding-out dces substantially
improve the total energy.

Before leaving the topic of Lowdin perturbation theory, we
wish to make a final comment. In the denominator of Eg. (B17),
it is necessary to replace the energy & by some representative

or average value £§. For bandstructure or optical calculations,



it is often custcmary to set % at or near the Fermi level, to
give a good description of the gap. However, for ground state
total energy calculations it is important to set T at the cen-
ter of gravity of the filled valence levels (well below EF).
Otherwise, the energy denominater is systematically too small,
so that the resulting eigenvalues and total energies are sys-
tematically too deep. We find that the correct choice of & sub-
stantially improves the effectiveness of the Lowdin method in
reducing the cost of total energy calculations.

We now comment upon two tricks for minimizing the number of
iterations necessary to cbtain convergence. This is important
for two reasons: {a) when calculating total energies, the vari-
ous contributions to ETOT in Eg. {B8) are not well converged
until a very high degree cof convérgence is reached, well after
the eigenﬁalues are converged; and (b) for large unit cells
with low symmetry, charge sloshing medes give rise to instabil-
ities which must be carefully damped to cobtain convergence at
all.

The first of these problems is greatly reduced by making
certain that ETOT.iS calculated at the end of each iteration
according to the variationally correct version of Eg. (B8).
For example, one should replace («1/2)1ﬁiby'sH from the prasent
iteration minus Vg from the previous one. This insures the

variational property of E i.e. that deviations in ¢ cocnly

TCT?

. , - _ . . . - L7
give rise to second-order deviations in ETOT‘ Then Eror will

be converged well before its individual contributions.
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be the mean field potentail obtained on the n = iteration,

p(n) +he the charge density ocbtained by sclving the
Schroedinger eguation for V(n), and U(n) be the new petential

(n)

constructed by screening with If V(n) were the converged

potential Vo, we would have U(n) = V(n) = v, Now suppose we

add a perturbation
v(®) () = vO(r) + 8V cos(Ger) (B19)

Then we expect, by the definition of the dielectric constant

A

£(q), that

i

o) 5y = vO(r) + [1oe(G)] 6V cos(3e2) . (B20)

Here the perturbing potential 6Vcos(3°;) is the sum cf the
external perturbatiocn V(n)*U(n) and the induced perturbkation
U(n)_vc_ Clearly for £>2, the perturbation has an oscillatory
divergent behavicr. Since =£{g’C) = 10-20 in many semiconduc-
tors, this is a severe problem for small reciprocal lattice
vectors. We have solved the preblem by emploving .a
wavevector-dependent damping parameter a{g) in the con-
struction of the new potential:

LA e

v ey = () U () + [1-a(6)1 VI (o) (821)
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From Eg. (B20), the best ¢ is a(q) = s—l(q}. We use a

=

Fermi-Thomas dielectric function with a small-g cutoff:

2 2 2
s(@) = 1+ kpt/(g%+a,

) (B22)
By treating kE"I’ and q, as adjustable parameters, it is usually
possible to £ind values which give fast convergence.

Finally, we turn to our method of evaluating the total
energy for crystalline solids. The formalism for doing this in
mementum-space was first worked out by Ihm, Zunger, and
Cohenzoz. While the treatment provided by these authors gives
the right answer, it appears tc be somewhat lacking treatment
of the divergent Coulomb sums at g=0. For example, they refer
to a "formal" expansion of the potential or charge density in
the viciﬁity of g=0; the meaning of such an expansicn is
unclear since these functicns have delta-functions at ¢=0 and
are zero for finite g # G.

To avoid these problems, we introduce a new derivation
which makes use of a powerful and physically appealing trick.
We write down the total energy for a crystal in a universe whose
Coulomb interaction has the Yukawa form

£(r) = e M-, (B23)

- . . . .
and *then show that Eror + constant as X » 0. The true ETOT is

then just this limiting value.
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To see how this works, define the pseudo core charge densi-

ty to ke

ops(f) = = (1/41) Vv, PS(r) (B24)

n

The fictitious potentials due to electrons and icons respec-

tively are
By lT) = der' o(r') £{r-x") (BZ23)
V. {r)y = fdsr' p__{r') f£f(r-r'} (B26)
Ps ps
We want to calculate the total energy per atom to assemble
electrons and frozen cores from infinity inte a crystal. Using
Eg. (B8) this is
E = (Z/N)ZE- + fd3rp(r){-(1/2)u +e_ _=u__1{r)
TOoT e Q H "®c "Xc

+ (l/2)fd3r pps(r) [zR#O Vps(r—R)] (B27)

To convert to momentum space, note that Eg. (B25) for exam-

ple becomes

(G = p(G) £(G) (228)



- 158 -

with £(q) = 4n/2(g°+\%). DNote that 1 (G=0) = arz/0% is
well-defined, and is cancelled by an identical term in the ion
potential. Thus we are required to calculate the eigenvalues
e; using a mean field potential ¥V chosen so that V(G=C) =

ﬁxc(C;:O) . The total energy per atom becomes

Eror = (1/1‘3)%55_ - (2/2) cgo p(G) 1y(G)

+ gp(m te, -1, 1(G)

s (2/2) 2 e _(G) Vo (0)

Gio P° S

- (1/2) Jdar Pos(F) Vpg(T) (B29)

We have déleted G=0 in the second and fourth terms since they
give rise to cancelling centributions of ﬁZﬁzz/ka. Now there
are no divergences for A0 in Eg. (B29), so this is a rigorously
correct expression for the total energy.

However, the utility of (B29) is somewhat limited because
pps(G) and VpS(G) are often poorly converged until very high G.
We can solve this problem by making a transformation to cores
consisting of Gaussian-shaped charge packets Fg of half-width ¢
and containing charge +Z. We choose ¢ small enough so that the
charge clouds pps and pg do not overlap for first neighbers, but
large enocugh sc that pg(q) converges quickly for large ¢. Once

again we resort to our Yukawa potential; the fictitious poten-
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tial Vg(r) due to pg(r} is defined in analogy to Eg. (B26}.

'Z'hen_
B = (L/N)D e, - (2/2) 2 0(G) 1y(G)
TOT 1 i G£0 H
2 8 2 6(0) [e,_-u, 1(G)
G

+ (8/2) 2 5_(G) V_(G)
G20 Pg S

(.3
- (1/2) jd rpg(r} vg(r)
*oagd B (B30)

To evaluate agz, note that
g2 = (1/2) jd3r fd3r’ £(z-r')

. 2 lepg(T)ogg (' =R)=p (r)p (r'=R}]
= der' aV(r') [Ig.qp(xr'-R)] (B31)

ra = - d % = - .
Qhe_\, AV vps Vg and ¢ (pps pg}/z

1£ Gauss's law were valid, then we would have AV{(r')=C for

r' outside the charge cloud 4Ap £ p_ -p_. Since we assumed

Ps ¢
nen-overlapping charge clouds, ag would wanish. However,

Gauss's law is not valid for a Yukawa potential. The potential
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at a distance r' from the center ¢f a sphere of radius r con-

+taining unit charge is

(1 + r232/8) e M ! (B32)
for

r<<r' 5 r<<)T? (B33)
Using (B32Z), ¢cne obtains

AV(r') = fd3r so(r) (r222/8r') e *F (B34)
Thus

ez = [(21/3) |&3r £ aa(r)

xfd3r' h(r') [Egaipr(r'-R)] (B35S)

where we have defined h{(r') = kzeukr'/éwr'. Note that this

envelope function h integrates to unity for all . Moreover,

it extends smoothly over a larger and larger regicn of r'

~-sSpace
as A»*0. Thus the r' integral just gives Z/R, the average charge
per atomic volume, in this limit. Note that Eg. (B33) is valid

for all but a vanishing portion of the integral as 170,

Finally, czg is now well-defined as 3*0.
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ag = (2w/3§2)fd3r r2 Ap{r)

_ 3
= fd r[Vps(r)- Vg(r)]/SZ . {B36)

The second line was cbitained by integrating by parts and using
Gauss's theorem.

102
. wWe

To make the connecticon with Ihm, Zunger zand Cohen
simply take the limit of a small Gaussian charge packet, ¢*0.

The third and fourth terms of (B30) become the Ewald sum

! i} 1t "

'KEwald’ and oy becomes % Since one usually calculates
XEwald by replacing the delta-function potentials by Gaussians
anyway, we prefer to use Egs. {B30) and (B36) directly to cal-
culate the total energy. (Of course, certain integrals and
Fourier t;ansforms invelving Gaussians are performed analyt-
ically.) These eguations were in fact implemented in our
computer program.

We conclude this Append;x by giving some sample results
for total energy calculations on crystalline 3i, Ge, and Se.
Here, we use Wigner exchange~-correlaticn, and the
Hamann~Schluter-Chiang non-local pseudopotentials. As a con-
sistency check on ocur method, we begin by reproducing the pre-
vious calculation of ¥Yin and Cohen44 on crystalline 351 using a
basis set cut-cff cf EA = EB = 11.5 Ryd (i.e. no Lowdin pertur-
bation set). Cheoosing their thecretical egquilibrium Dbond

length, and using the same set of 10 special k-points, we

reproduce their calculation o©f the cchesive energy (we find
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4.68 eV/atom compared tTo their £.67 eV/atom). Clearly this
validates the fact that both programs are working correctly.

Table V shows that the application of Lowdin perturbation
theory, Zfollowing the prescription given earlier in this
Appendix, gives equally accurate results while allowing the
cost of the calculation to be cut in half (compare cases 2-3).
Moreover, it shows that the calculation has not yet converged
at EA = EB = 11.5 Ryd; we find that the solid gains about 0.2 eV
in additional energy as one goes to full convergence (sese cases
3-5).

We have alsc reproduced the calculation of ¥Yin and Cohen on
germaniunﬁﬁ3, which was done in exact analogy to their calcu-
lation of Si (using the same cutoffs etc.). Moreover, we have
extended the calculations to Se, where cne must minimize with
respect to three degrees of freedom in the unit cell instead of
one. Our total energy was minimized for a first neighbor bond
length of 2.567 ﬁ, a pond angle of 102.60%, and a second neigh-
bor (interchain) bond length of 3.104 R. These differ from
experiment32'46 by -1.0%, +0.2%, and =-9.3% respectively.
These can be compared with the Yin and Cohen errors for the bond
lengths of Si and Ge (+0.5% and +0.1Y% respectively). Clearly
the first neighbor bond length and bond angle are cbtained with
comparable accuracy. The error in the interchain distance is
not surprising, since this represents an interaction having

largely van der Waals character. In fact, the previous set of

calculationé [Sec. (II(d)] using local pseudcpctentials gave
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Table V

Tests for convergence of the cohesive energy with respect
to basis size for Si. Calculations were done at 1 k-peoint,
scaled to 1C k-points, and then corrected by a constant for
zero-peint motion and spin polarization. Wave functions were
folded out whenever Lowdin perturbation sets were used. Com-

puter time per iteration per k-pcint is shown in the last col-

umn.

Case EA {Ryd) EB {(Ryd) Ecoh (eV) Time (sec)
1 7.5 7.5 3.85 21

2 7.5 11.5 4.70 30

3 11.5 S 11.5 4.68 o4&

4 11.5 15.0 4,83 85

5 11.5 25.0 4.39 160
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the neighboring chains to be weakly unbound; in that case, we
fixed the second neighbor distance at the experimental value.
On the whole, we consider the theoretical value of the inter-
chain distance to be quite acceptable.

As can be seen from Table VI, the errors in the calculated
cohesive energies are much larger than the errors in the egui-
librium geometry. Furthermore, they are systematically too
large {(when fully converged), and the deviations appear to
increase as one goes to heavier elements or elements containing
more valence electrons. For Se, some of the error may be due to
excessive interchain binding, as would be indicated by the fact
that the equilibrium second neighbor distance is too short.
However, ever for Germanium the error is almost half an eV per
atom.

Of course, in almest all calculations of interest, cone is
interested in the relative energies of different structural
configurations. As indicated by the accurate equilibrium
structures predicted above, these are very accurately
reproduced. Therefore, we suggest that the method as it now
stands, with the time-saving technigques discussed in this
Appendix, can be applied to the study of many interesting phys-

ical problems.
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Table VI

Calculated cohesive energies for Si, Ge and Se compared to
experiment. "Previous" calculations are from Refs. 44 and 103
(using E, = E; = 11.5 Ryd). "Present" calculations were per-
formed by going to EA = 11.5 Ryd, EB = 25.0 Ryd for Si and Ge; E

A
= 8.91 Ryd, EB = 20.15 Ryd for Se.

Experiment Previcus theory Present thecry
31 4.63 eV 4.67 eV 4.89 eV
Ge 3.85 eV £.02 eV 4,31 ev

Se 2.25 eV ———— 3.13 ev
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