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Devonshire theory provides a successful phenomenological description of many cubic perovskite
ferroelectrics such as BaTiO3 via a sixth-order expansion of the free energy in the polar order
parameter. However, the recent discovery of a novel monoclinic ferroelectric phase in the PZT
system by Noheda et al. (Appl. Phys. Lett. 74, 2059 (1999)) poses a challenge to this theory. Here,
we confirm that the sixth-order Devonshire theory cannot support a monoclinic phase, and consider
extensions of the theory to higher orders. We show that an eighth-order theory allows for three kinds
of equilibrium phases in which the polarization is confined not to a symmetry axis but to a symmetry
plane. One of these phases provides a natural description of the newly observed monoclinic phase.
Moreover, the theory makes testable predictions about the nature of the phase boundaries between
monoclinic, tetragonal, and rhombohedral phases. A ferroelectric phase of the lowest (triclinic)
symmetry type, in which the polarization is not constrained by symmetry, does not emerge until
the Devonshire theory is carried to twelfth order. A topological analysis of the critical points of the
free-energy surface facilitates the discussion of the phase transition sequences.

PACS: 77.80.Bh, 77.84.Dy, 64.70.Kb

I. INTRODUCTION

Many of the most important and best studied ferroelec-
tric materials adopt the simple-cubic perovskite struc-
ture at high temperature and undergo structural phase
transitions to distorted ferroelectric structures at lower
temperature. Among the best known simple compounds
of this kind are BaTiO3 and PbTiO3. Upon cooling,
BaTiO3 undergoes a sequence of ferroelectric transitions,
first from the cubic (C) to a tetragonal (T), then to an
orthorhombic (O), and finally to a rhombohedral (R)
phase. Passing through this sequence, the polarization
P first vanishes in the C phase, and then becomes ori-
ented in the [001], [011], and [111] directions in the T, O,
and R phases, respectively. PbTiO3 undergoes a single
ferroelectric transition from the C to T phase.

In a classic 1948 paper, Devonshire1 was able to ex-
plain the observed phases and phase transition sequence
quite naturally in terms of a phenomenological Landau-
type expansion of the free energy in terms of the ferro-
electric order parameter P. Making use of cubic sym-
metry and truncating the expansion to sixth order in P,
Devonshire was able to arrive at a simple model with
only a single temperature-dependent second-order coeffi-
cient, and only three temperature-independent higher-
order coefficients. The polarization P is the primary
order parameter, and the crystallographic labels (T, R,
etc.) refer to the distortions induced by the polariza-
tion and the resulting strain. Despite its simplicity, this
model could successfully reproduce the phase-transition
sequence1 and the piezoelectric and other properties2 of
BaTiO3. With a simple modification of the anharmonic
coefficients, the qualitative behavior of PbTiO3 could be
equally well reproduced.

However, the material that is currently in most wide-
spread use for piezoelectric transducer and related ap-

plications is the solid solution PbZr1−xTixO3, commonly
known as PZT. The standard understanding of the phase
diagram of PZT has been as follows.3 PZT undergoes a
transition from the simple cubic C phase to a ferroelectric
phase at a Curie temperature Tc that ranges from about
490◦C at x=1 to 230◦C at x=0. The transition occurs
to the T phase for x greater than about 0.48, and to the
R phase for smaller x. At T < 150◦C or x < 0.1, some
more complex phases involving antiferroelectric (AFE)
or antiferrodistortive (AFD, i.e., involving rotations of
oxygen octahedra) displacements also occur. The phase
boundary between the simple T and R phases, known as
the morphotropic phase boundary (MPB), is an almost
vertical line in the x–T plane at about x=0.48. Haun et
al.4 have successfully extended the Devonshire model to
the case of PZT by including the AFE and AFD degrees
of freedom in the phenomenological free energy, still in-
cluding only terms up to sixth order overall. This model
successfully described the simple R–T transition that was
understood to occur below Tc at the MPB.

As it happened, a surprise was in store. By working
with highly purified and carefully prepared samples of
PZT, Noheda and coworkers have recently shown5–8 that
a sliver of monoclinic (M) phase actually interposes itself
between the R and T phases in a very narrow composi-
tion range (of order 3-4% in x). That is, at least below
∼100◦C, the transition is first from T to M at an xc2 be-
tween about 0.48 and 0.51 (depending on temperature),
and then from M to R at xc1 ' 0.47, with decreasing x.
The orientation of P is, respectively, along [001], [uuv]
(u < v), and [111] in the T, M, and R phases, respec-
tively. The experiments have not yet clarified whether
or not a direct T–R transition occurs in the higher tem-
perature range 100◦C< T < Tc, or whether the sliver
of M phase instead persists up to the Curie tempera-
ture Tc ' 370◦C. Neither the Devonshire theory,1 nor
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the modification of Haun et al.,4 predicted the possible
occurrence of the M phase. On the other hand, simu-
lations based on a first-principles effective Hamiltonian
approach9 have very recently provided confirmation of
the existence of the M phase in just the observed com-
position range.10

We make a brief aside to establish notation. In the
C phase (space group Pm3m), P = 0. When P is con-
strained to a symmetry axis lying along [001], [111], or
[011], the resulting phase and space-group labels become
T (P4mm), R (R3m), or O (Amm2), respectively. Sim-
ilarly, the M phases arise when P is confined to a mir-
ror plane. We can distinguish three cases: MC (Pm),
in which P is along [0uv]; and MA and MB (both Bm,
sometimes also denoted Cm) in which P lies along [uuv],
with u < v and u > v, respectively. The newly observed
phase of PZT is of type MA.7,8 If P is unconstrained by
symmetry, strain coupling leads to a triclinic phase (P1).
This exhausts the possible reduced-symmetry states of a
cubic perovskite crystal generated by the emergence a
single non-zero ferroelectric order parameter, although
other phases can occur if AFE and AFD distortions are
also present.

Relatively few examples are known of low-symmetry
ferroelectrics in which P is only constrained to a symme-
try plane, or in which P is unconstrained by symmetry.
The discovery of the MA phase in a cubic perovskite is
thus of considerable note, even aside from the fact that
it had been missed for so long and aside from the poten-
tial importance of this phase for understanding the large
piezoelectric response in PZT.6

The failure of the phenomenological theories of Devon-
shire1 and Haun et al.4 to describe the existence of the
observed MA phase raises an interesting question: What
is the simplest and most natural phenomenological model
that does predict such a monoclinic phase? Recent work
of Souza Filho et al.11 confirms that the sixth-order De-
vonshire expansion does not allow for the occurrence of a
monoclinic phase and suggests instead a model in which
the vanishing of a shear elastic constant at the critical
temperature drives the transition to the MA phase. How-
ever, this requires the introduction of an additional in-
stability that is unrelated to the ferroelectric one.12 That
this is unnecessary is demonstrated by the work of Bel-
laiche, Garćıa and Vanderbilt.10 In their simulations, the
shear moduli are taken as temperature-independent, and
yet the transition to the monoclinic phase still occurs,
driven by the tilting of the ferroelectric polarization away
from the symmetry axis.

Suspecting instead that the problem is simply related
to the truncation of the expansions of Devonshire1 and
Haun et al.4 to sixth order, we consider the addition of
terms of eighth and higher order to the Devonshire model.
The following questions then arise. At what order in the
expansion do monoclinic phases first appear in the phase
diagram? And, for that matter, at what order do triclinic
phases first appear?

The phase diagram of such a model consists of fields

in the parameter space of the model (labeled C, T, O,
R, M, etc.) within which the order parameter has the
specified symmetry (that is, the absolute minimum of
the free energy occurs at a point in the order-parameter
space of that symmetry). On a trajectory in the phase
space which crosses a phase boundary, that global min-
imum can change into a local minimum, a saddle point,
or a maximum, or simply disappear. Understanding how
the set of critical or stationary points of the free energy
(its minima, saddle points, and maxima in the order-
parameter space) varies with the parameters of the model
can thus be an important aid in understanding the phase
diagram. So, in addition to searches for the global min-
ima by direct computation, we use here a topological
analysis of the Devonshire theory to elucidate the critical-
point structure of the free energy and answer the above
questions.

We show here that the simplest extension of the Devon-
shire theory, to eighth order in the ferroelectric order pa-
rameter, naturally admits all three kinds (MA, MB, MC)
of monoclinic phases. Moreover, the eighth-order model
makes specific and testable predictions for the types of
phase boundaries that can occur. For example, it pre-
dicts that the R–MA and T–MA transitions should be of
first and second order, respectively. On the other hand,
we find that the model has to be extended all the way to
twelfth order in order to describe a triclinic ferroelectric
phase.

We therefore suggest that the most natural explanation
for the occurrence of the MA phase in PZT is that the
free-energy surface is unusually anharmonic in this mate-
rial, such that the eighth-order terms play an important
role. It is not difficult to speculate why this might be
the case. First, PZT is a disordered material; averag-
ing over the chemical disorder, which plays the role of
a quenched random field, may tend to generate higher
orders in the phenomenological energy expansion. Sec-
ond, as will be discussed in Sec. V, there is considerable
evidence that the ferroelectric transitions in PZT have
a strong order-disorder character; mapping onto a dis-
placive picture may then also tend to generate higher-
order terms. And finally, of course, thermal fluctuations
and coupling to strain may play some role. In any case,
we show below that once one accepts this simple hypoth-
esis of the importance of eighth-order terms in the free-
energy expansion, then the behavior of the monoclinic
phase observed in experiments5,7,8 and simulations10 can
be understood quite naturally.

This paper is organized as follows. Section II estab-
lishes the notation used for the expansion of the free en-
ergy, and reviews the symmetry considerations that lead
to a simplified form of this expansion. The rules gov-
erning the numbers and types of stationary points that
may occur in the order-parameter space are reviewed in
Sec. III. The behavior of the models obtained by trun-
cating the expansion at higher and higher order (fourth,
sixth, eighth, tenth, and twelfth) are then carefully elu-
cidated in Sec. IV. Section V gives a brief discussion of
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a microscopic model in which the T and R phases can be
regarded as arising from fluctuations among neighbor-
ing, symmetry-equivalent local MA states. Finally, we
conclude with a brief summary and discussion of future
prospects in Sec. VI.

II. FORMALISM

We consider the case of a structural phase transition
governed by a single continuous vector order parameter
u, such that the free energy

F (u, σi, T ) = E(u, ηi, S)−
∑

i

σiηi − TS (1)

is symmetric with respect to operations of the cubic point
group. Here σi and ηi are the stress and strain tensors
in Voigt notation, and T and S are temperature and en-
tropy, respectively. We have in mind primarily the case
in which u is the ferroelectric polarization P in a mem-
ber of the cubic perovskite class, such as BaTiO3 or PZT,
but the use of the symbol u serves as a reminder that the
formalism applies to a variety of other cases as well. For
a crystal with stress-free boundary conditions at some
given temperature, we can expand
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xu2
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2
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+C222 u2
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yu
2
z + ..., (2)

where terms up to sixth order in u have been written
explicitly, and the coefficients have been renormalized to
subsume the couplings to strain.

For the ferroelectric phases we simplify matters further
by focusing on the energy as a function of the orienta-
tion of the vector order parameter and introducing the
function

G(û) = min
u‖û

F (u) . (3)

Thus, G(û) represents the ground-state energy subject to
the constraint that the order parameter has given orien-
tation. In most cases of interest, it is reasonable to expect
that G(û) will be a smooth function of û.13 In this case,
and suppressing the uninteresting constant term in the
expansion, it follows that

G(û) = a4g4+a6g6 + a8g
2
4

+ a10g4g6 + a12g
3
4 + a′12g

2
6 + ... , (4)

where

g4(û) = x2y2 + x2z2 + y2z2

g6(û) = x2y2z2 (5)

TABLE I. Values of the cubic invariant functions defined in
Eqs. (5) and (7), evaluated at tetragonal (T), rhombohedral
(R), and orthorhombic (O) orientations of the order parame-
ter û.

F (û) F (T) F (R) F (O)

g4 0 1/3 1/4
g6 0 1/27 0
f4 0 4 3
f6 0 0 1
f8 0 0 0

and û = (x, y, z) with x2 + y2 + z2 = 1. All independent,
symmetry-allowed terms up to twelfth order are explicitly
given in Eq. (4); higher orders will not be needed here.

The particular form of the cubic invariants appearing
in Eq. (4) is largely arbitrary. For example, one could use
the “kubic harmonics”14 instead. In Sec. IVD, we shall
make use of the expansion of Eqs. (4-5) above. However,
for the presentation of numerical results to be given in
Sec. IVC, we find it more convenient instead to use the
expansion

G(û) = c4f4 + c6f6 + c8f8 + ... , (6)

where

f4(û) = 12g4

f6(û) = 4g4 − 36g6

f8(û) = 48g2
4 − 12g4 − 36g6 . (7)

Aside from normalization constants, which are chosen to
make the range of each function roughly of order unity,
this choice can be uniquely defined by the following re-
quirements. (i) The invariant fn contains no terms of or-
der higher than n. (ii) All three invariants vanish identi-
cally for a “tetragonal” (T) value of the order parameter,
e.g., û = (100). (iii) f6 and f8 still vanish for a “rhombo-
hedral” (R) value of the order parameter, e.g., (111)/

√
3.

(iv) f8 alone vanishes for an “orthorhombic” (O) value of
the order parameter, e.g., (110)/

√
2. The values of these

functions evaluated at symmetry directions are summa-
rized in Table I for later reference. Requirement (ii) just
reflects an arbitrary choice of zero; requirements (iii) and
(iv) simplify some later discussion. For example, phase
boundaries at which G(T), G(R), and G(O) become de-
generate in pairs are easily located (see Sec. IVC).

A few comments about the transition from F (u) to
G(û) in Eq. (3) are in order. First, our “reduced” the-
ory in terms of G(û) can only describe the transitions
among the ferroelectric phases, not the transition to the
high-temperature cubic phase (u = 0). Second, the min-
imization over the magnitude of u in Eq. (3) generally
introduces higher orders into the reduced theory. For ex-
ample, truncation of Eq. (2) at sixth order may still lead
to terms of eighth and higher order in Eqs. (4) and (6).
Thus, a statement about what kinds of critical points
can occur simultaneously in an nth-order version of the
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reduced theory does not necessarily carry over to the nth-
order version of the standard Devonshire theory. Nev-
ertheless, a statement that a certain minimum order of
expansion is needed for the existence of a certain kind of
stationary point in the reduced theory does carry over to
the standard Devonshire theory.15 For example, we show
later that the reduced theory must be carried to eighth
order to allow for a monoclinic minimum, i.e., an equilib-
rium u lying in a (11̄0) plane. Then the same statement
applies to the standard Devonshire theory. For, suppose
that u0 is the magnitude of u at the minimum, and let
G0(û) = F (u0û); then G0 must have a monoclinic mini-
mum. But G0 is also of no higher than eighth order, and
so admits only the same type of minima as does G.15

III. TOPOLOGICAL CONSIDERATIONS

The rules governing the numbers and types of criti-
cal or stationary points of a scalar function defined on a
continuous manifold emerge from a branch of algebraic
topology called Morse theory or, equivalently, the calcu-
lus of variations in the large.16 These rules have proved
useful in analyzing lattice vibration spectra17 and the ex-
citation spectra of crystalline materials generally. They
have not, however, enjoyed the broad application in con-
densed matter physics that might have been expected
from these early successes.

The rules take the form of a set of inequalities and one
equality. The latter is the most powerful, and we confine
ourselves to considering only it explicitly. G(û) is an
analytic function defined on the surface of a sphere, a
closed two-dimensional manifold of genus zero, for which
the equality becomes

N0 −N1 + N2 = 2 , (8)

where N0, N1, and N2 are the number of minima, saddle
points, and maxima, respectively. This formula assumes
only analyticity in G(û) and that its Hessian has no van-
ishing eigenvalues at the critical points.

Because the function G(û) has cubic symmetry, any
stationary points that occur must be members of
symmetry-related families of stationary points. Thus, it
is natural to focus attention on an irreducible wedge cor-
responding to 1/48 of the unit sphere, in terms of which
Eq. (8) can be rewritten as∑

j

njγj = 2 (9)

where j runs over the stationary points located in the in-
terior or on the boundary of the irreducible wedge, nj is
a degeneracy factor counting the number of images of the
stationary point generated by the cubic symmetry group
operations, and γj is +1 for a maximum or minimum and
−1 for a saddle point. Symmetry requires only that there
be stationary points at T, O, and R; those at T and R

(a)

(b)

T

O

R

MC

MB

MA

Tri

(c)

6

12

8

24

24
24

48

(d)

FIG. 1. (a) Contours of constant G(û) = −f8(û) on the
unit sphere. (b) Labels for symmetry points and lines of the
irreducible wedge. (c) Corresponding degeneracy factors n
indicating number of images on the full unit sphere. (d) Sum-
mary representation of the behavior of G(û), in which open,
shaded, and filled symbols represent maxima, saddle points,
and minima of G, respectively. Arrows indicate “downhill”
flow lines.

must be maxima or minima while that at O can be of any
type. Such a symmetry set of stationary points may or
may not be large enough to satisfy the Morse relations as
well. A set which contains the smallest number of criti-
cal points satisfying both the topological and symmetry
requirements is denoted a minimal set.17

This type of analysis is illustrated in Fig. 1. Figure 1(a)
shows an arbitrarily chosen function G(û) corresponding
to c4 = c6 = 0 and c8 = −1 in Eq. (6), having maxima
at T, R, and O; saddle points on the lines connecting T–
O and O–R; and a minimum on the segment connecting
T–R. Figure 1(b) specifies the notation that we shall use
to identify the symmetry points and lines. These are
chosen to correspond to the labels of distorted crystal
structures (tetragonal, rhombohedral, or orthorhombic
for the symmetry points; monoclinic of type ‘A,’ ‘B,’ or
‘C’ for the symmetry lines; and triclinic for the case of û
pointing to the interior of the wedge). The corresponding
degeneracy factors n are given in Fig. 1(c). The overall
behavior of the function inside the wedge is summarized
in Fig. 1(d), in which the stationary points are marked
by symbols that are open, shaded, or filled for maxima,
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(a) T (b) T (c) T/R

(d) R (e) R/O (f) O

FIG. 2. Sample topologies giving rise to tetragonal (a-c),
rhombohedral (c-e), and orthorhombic (e-f) phases. Open,
shaded, and filled symbols represent maxima, saddle points,
and minima, respectively.

saddle points, or minima, respectively. In this particular
example, it can easily be seen that Eq. (9) is satisfied
(6+8+12−24−24+24=2).

Using Eq. (9), one can begin enumerating the possi-
ble topological diagrams for the cubic system. Figs. 2(a)
and 2(d) show the two possible diagrams in which there
are only three stationary points in the irreducible wedge,
the only possible minimal sets. In Fig. 2(a) the function
has a unique minimum at T, so the crystal ground state
would be tetragonal. A similar situation holds for the
rhombohedral case of Fig. 2(d). Figures 2(b-c) and (e-f)
show four of the six configurations that can exist when
there are exactly four stationary points in the wedge.
(Two others, similar to 2(b) and 2(e) but with the the
role reversals T↔R and MB↔MC, are not shown.) In
Fig. 2(c) there are two local minima, so that the ground
state could be of type T or R depending on which min-
imum is deeper; a first-order transition between T and
R may occur by a crossing of the minima. The simplest
configuration leading to an orthorhombic ground state is
shown in Fig. 2(f).

In order to arrive at configurations corresponding to
monoclinic or triclinic phases, more than four stationary
points are required. Figs. 3(a-c) illustrate possible con-
figurations for monoclinic phases of type A, B, and C,
in which the order parameter lies on the T–R, R–O, and
O–T lines, respectively. Figure 3(d) illustrates a possible
triclinic phase. It is straightforward to check that Eq. (9)
is satisfied for each configuration in Figs. 2 and 3.

Of course, if the expansion of Eq. (4) or (6) is trun-
cated at a certain order, the possible types of topological
behavior will be limited by the enforced “smoothness” of
the functions allowed at that order. The purpose of the
following Section is to explore precisely this issue, i.e.,
to clarify what types of phases and phase transitions can
occur at each order in the expansion. With this infor-
mation in hand, one can then easily determine what is
the minimal model needed to study a particular physical
phenomenon of interest.

(a) MA (b) MB (c) MC

(d) Tri (e) SL (f) SP

FIG. 3. (a-d) Sample topologies giving rise to monoclinic
phases A, B, and C, and the triclinic phase, respectively. (e)
Degenerate minimum (heavy solid curve) that can occur when
β = 3π/4. (f) Degenerate minimum (heavy solid line) that
occurs for α = tan−1(3) and β = π. Open, shaded, and
filled symbols represent maxima, saddle points, and minima,
respectively.

IV. RESULTS

A. Fourth-order theory

If the expansion (6) is truncated at fourth order, the
only non-constant cubic invariant is f4 of Eq. (7). The
T or R phase is favored as in Fig. 2(a) or 2(b) if c4 > 0
or c4 < 0, respectively. A transition between T and R
phases occurs at c4 = 0, but this transition is unphys-
ical because the energy surface is perfectly flat at the
transition. This degenerate behavior is an artifact of the
truncation to fourth order.

B. Sixth-order theory

At sixth order in the expansion (6), the behavior is
governed by the two coefficients c4 and c6. Clearly a
common rescaling of the coefficients by a positive scale
factor is irrelevant, so without loss of generality we may
set c2

4 + c2
6 = 1. It is then convenient to let

c4 = cos(α) , c6 = sin(α) . (10)

By doing numerical calculations and making plots such
as that shown in Fig. 1(a), we find that only three phases
exist at this level. For − tan−1(3) < α < π/2, the system
is in the T ground state; for π/2 < α < 5π/4, the system
is in the R ground state; and for 5π/4 < α < 2π −
tan−1(3) the system is in the O ground state. Fig. 2
illustrates the sequence of topologies traversed as α is
increased. Starting from α = − tan−1(3), one finds T
phases corresponding to Figs. 2(a-c) consecutively, until
a first-order transition occurs to the R state at α = π/2.
Then one finds R phases as illustrated in Figs. 2(c-e)
until a first-order transition occurs to the O phase at
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α = 5π/4. Finally, O phases corresponding to Figs. 2(e-
f) are found as α is increased further up to 2π−tan−1(3).
The transition from the O to the T phase is degenerate
in the sense that the energy surface becomes exactly flat
along the entire MC symmetry line at the critical α (this
being an artifact of truncation to low order).

It is important to emphasize that that no monoclinic
phase is possible in the sixth-order model. In the range
π + tan−1(3/2) < α < 2π − tan−1(3) (i.e., 1.3128π <
α < 1.6024π) in which such a 1D local minimum appears
along the MA symmetry line, it is always unstable in the
second dimension (i.e., it is a saddle point), and the true
minimum is at the O point as in Fig. 2(f).

Further details of the sequence of topologies and the
boundaries between them is given in the Appendix.

C. Eighth-order theory

When the model of Eq. (6) is carried to eighth order, it
no longer becomes profitable to enumerate every possible
topology, as was done above for the sixth-order theory.
Instead, we choose to focus just on the “phase diagram”
that is generated by finding the ground-state symmetry
as a function of the parameters c4, c6, and c8. A common
scaling of the magnitudes of these coefficients is again
unimportant, so we can describe the phase diagram in
terms of two dimensionless parameters that we may take
as

c4 = cos(α) ,

c6 = sin(α) cos(β) ,

c8 = sin(α) sin(β) , (11)

where 0 < α < π and 0 < β < 2π. From this point
of view, the “parameter space” is just the unit sphere
determined by polar and azimuthal angles α and β re-
spectively.

Figure 4 shows the phase diagram that emerges from
a careful numerical study of the minimization of Eq. (6)
as a function of α and β. The plot is a mapping of the
unit sphere onto the page. The points at the “north” and
“south” poles (α = 0 and α = π) are the only ones acces-
sible in the fourth-order theory (Sec. IVA); the dotted
vertical lines at β = 0 and β = π correspond to the locus
of points in parameter space that were explored by the
sixth-order model (Sec. IVB).

As can be seen from Fig. 4, six of the seven possi-
ble phases (i.e., possible symmetries of a non-zero order
parameter) are accessed by the eighth-order model. In
addition to the T, R, and O phases that appeared al-
ready at sixth order, all three monoclinic phases (MA,
MB, and MC) are now stable in some region of the phase
diagram. However, the areas covered by the MC and es-
pecially MB regions are relatively small, so these phases
may be harder to find in real systems than the MA phase.

π /43

π /2

π /4

0 π /2 π π /23

α

β

T T

R R

O

MA

MB

MC

FIG. 4. Phase diagram in the space of parameters α and β
of the eighth-order theory as defined in Eq. (11). Solid and
dashed lines are first-order and second-order phase bound-
aries, respectively. The vertical grey line and the grey dots
indicate cases for which degenerate minima occur. Fine verti-
cal dotted lines indicate the domain of the sixth-order theory.

Solid and dashed phase boundaries indicate transitions
of first and second order, respectively, as determined nu-
merically. According to Landau theory, there are two
necessary conditions for a transition to be of second or-
der: (i) the symmetry group of one phase must be a sub-
set of the symmetry group of the other, G ⊂ G0; and (ii)
from the order-parameter displacements that lead from
the high-symmetry to the low-symmetry phase, it should
be impossible to construct a third-order invariant of G0.18
Transitions of type T–R, T–O, and O–R are necessarily
first-order because of condition (i), and transitions from
the R phase to MA or MB are first-order because of (ii).19
As can be seen from the figure, these are precisely the
boundaries that were found to be of first order. All oth-
ers are found to be of second order, with the exceptions of
the MA–MB and MA–MC boundaries, which form a ver-
tical line at β = 3π/4 indicated by grey shading in the
figure. Along this line, one finds a degenerate minimum
connecting MA and MC phases as shown in Fig. 3(e) for
0.259π < α < 0.640π, and a similar degenerate minimum
connecting MA and MB phases for 0.640π < α < 0.740π.
The degenerate behavior can be traced to the fact that
a6 = 0 along the line β = 3π/4. The triple point connect-
ing the T, O, and MC phases at α = tan−1(1/3) = 0.102π
and β = π is also a point at which a degenerate minimum
occurs, as shown in Fig. 3(f). The degenerate behaviors
are artifacts of the eighth-order truncation, as will be
explained more fully in Sec. IVD. Finally, the reader
is reminded that because the theory is based on a sin-
gle polar orientational order parameter, Eq. (3), we do
not have the ability to describe transitions to or from
the paraelectric C phase, nor can we describe the more
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complex AFE or AFD phases.
The variation of some physical variable, such as tem-

perature, composition, or pressure, will correspond to a
variation of the parameters α and β of the model in a
way that is not easy to predict a priori. For BaTiO3

and KNbO3, for which the observed phase transition se-
quence is R–O–T–C with increasing temperature, it must
be the case that the system traverses a roughly vertical
trajectory on the phase diagram of Fig. 4, somewhere
in the range π < β < 3π/2. (Insofar as eighth-order
terms are small for these systems, the trajectory should
be near β = π.) The R–O–T sequence can be visualized
as traversing Figs. 2(d-f) and 2(a), in that order.

On the other hand, systems such as PZT
(PbZr1−xTixO3) that exhibit a morphotropic phase
boundary (MPB), i.e., an R–T transition as a function
of composition x, evidently cross the first-order R–T
phase boundary in the vicinity of β = 0 with increas-
ing x. If this trajectory passes to the right of the triple
point connecting R, T, and MA phases at α = π/2,
β = tan−1(1/3) = 0.102π in Fig. 4, then the phase tran-
sition sequence becomes R–MA–T, as recently observed
experimentally.5,7,8 The narrowness of the range of MA

phase, only a few percent in x, suggests that the tra-
jectory passes rather close to the triple point. In fact,
there are strong experimental indications of the possible
existence of a triple point in the x–T phase diagram of
PZT near x ' 0.47 and T ' 100◦C.5,7,8 Thus, it may be
that the behavior near the triple point can be explored
experimentally in the PZT system.

Using the topological analysis introduced earlier, we
can now clarify the nature of the T–MA–R transition se-
quence near the triple point. Referring to Fig. 5, we imag-
ine traversing a downward trajectory of increasing α at
fixed β, slightly to the right of the triple point. Starting
deep in the T phase, Fig. 2(a), a saddle point detaches
from the O point and traverses the MB line toward the
R point, Fig. 2(b). After it passes through the R point
and emerges on the “other side” (on the MA line), we
find ourselves in the situation of Fig. 5(a), the R point
having been converted to a local minimum. Up to this
point, the global minimum remains at T. Next, the T
point converts from a local minimum to a local maxi-
mum, with the simultaneous emission of a saddle point
along MC and a local minimum along MA, as shown in
Fig. 5(b). This event corresponds to the second-order
T–MA transition. The first-order MA–R transition then
occurs by the crossing of the energies of the local minima
of Fig. 5(b). Once in the R phase, the local minimum
and saddle point on the MA line annihilate one another
to give Fig. 5(c). Finally, deep in the R phase, the MC

saddle point eventually arrives at O, giving rise to the
situation of Fig. 2(d).

It should thus be emphasized that the present theory
makes a definite prediction about the nature of the tran-
sitions that occur in the T–MA–R transition sequence.
We can predict that, if it were possible to scan with de-
creasing x at a temperature below that of the triple point,

(a) T (b) M  /RA (c) R

FIG. 5. Topologies encountered in the T–MA–R transition
sequence near the triple point. (a) Topology of T phase near
the second-order T–MA transition. (b) Topology of MA phase
and, as well, of R phase near the first-order MA–R transition.
(c) Topology occurring deeper in the R phase.

one would first find a continuous rotation of the polariza-
tion from [001] into the (11̄0) plane starting at a critical
xc2, and then a discontinuous jump to the [111] direction
when there is a crossing of the free energies of the MA and
R phases at xc1. Unfortunately, the fact that the T–MA

and especially the R–MA boundaries lie almost vertically
in the experimental x–T plane may make it difficult to
test this prediction, since x can only be varied by prepa-
ration of multiple samples. Nevertheless, this scenario
seems to be supported by the numerical simulations of
Ref. 10.

It is important to note that a triclinic phase does not
occur anywhere in the phase diagram of the eighth-order
model. However, we do note the possibility of observing
new monoclinic phases of types MB and MC in a region
near β ' 0.8π. In fact, the sixth-order model (verti-
cal dotted line at β = π) comes very close to yielding a
monoclinic MC phase near the triple point (grey dot at
α=tan−1(3), β=π) where the MC, T, and O phases are
in equilibrium. If a system such as BaTiO3 or KNbO3

could somehow be perturbed so that the variation with
temperature would carry the system on a trajectory pass-
ing to the left of this triple point in Fig. 4, then a novel
R–O–MA–T–C (or even R–MB–O–MA–T–C) transition
sequence might be observed. However, to our knowledge,
no MB or MC phase has ever been observed in a cubic
perovskite system.

D. Higher-order expansions

We have seen that the eighth-order expansion still does
not allow for the appearance of a triclinic equilibrium
phase for any parameter values. It is natural, then, to
ask at what higher order in the expansion a triclinic phase
can first occur. The answer is that the expansion must
be carried to twelfth order before a triclinic phase can
appear.

For, suppose that a triclinic phase is the ground state.
Then the minimum of G occurs at a point û0 located
in the interior of the irreducible wedge, as illustrated in
Fig. 3(d). Letting

G̃(û) = G(û)−G(û0) ,

g̃4(û) = g4(û)− g4(û0) ,
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g̃6(û) = g6(û)− g6(û0) , (12)

the expansion Eq. (4) can be rewritten

G̃(û) = ã8g̃
2
4 + ã10g̃4g̃6 + ã12g̃

3
4 + ã′12g̃

2
6 + ... , (13)

where the ãn are trivial linear combinations of the an.
To drop the ã4 and ã6 terms, we have used the fact that
G(û) must be stationary at û0. (For this we also need
that the gradients of g4 and g6 never vanish or become
parallel at an interior point of the irreducible wedge; this
is straightforward to confirm.)

It is now evident that if expansion (13) is truncated at
eighth order, then point û0 is not an isolated minimum.
Instead, it belongs to a degenerate locus of minima cor-
responding to g̃4 = 0, i.e., to a contour of the function
g4(û). This is the situation illustrated in Fig. 3(e). It oc-
curs when a6 = 0, i.e., when c6 + c8 = 0, corresponding
to the grey vertical line at β = 3π/4 in Fig. 4.

If the expansion is carried to tenth order, then it is
clear from Eq. (13) that G̃ still vanishes on this same
contour. The two-dimensional Hessian matrix Hµν =
d2G/dûµdûν then takes the form

H =
(

0 d
d e

)
, (14)

where indices µ=1 and 2 correspond to the directions
parallel and perpendicular to the g4 contour, respectively.
d 6= 0 as long as ã10 6= 0, in which case detH < 0.
Thus, at tenth order, the stationary point û0 cannot be
a minimum; instead, it is generally an isolated saddle
point.

Finally, it is clear that the point û0 can be a local
minimum if the expansion is carried to twelfth order. For
suppose ã10=ã12=0, and ã8 and ã′12 are positive. Then
G̃ = ã8g̃

2
4 + ã′12g̃2

6 is obviously positive definite, and û0 is
a true isolated (global) minimum.

Concluding this section, we find that it is necessary to
go to surprisingly high order in the free-energy expansion
in order to stabilize a ferroelectric state in which there
are no symmetry constraints on the order parameter P.
Specifically, we find that cubic invariants of twelfth or
higher order have to be included to to stabilize such a
triclinic phase. We conclude that the discovery (or syn-
thesis) of a material having such behavior may be chal-
lenging, but is by no means impossible.

V. A MICROSCOPIC MODEL

When structural transitions have some order-disorder
character, a model free energy (e.g., (2) or (6)) ex-
pressed as a function of a macroscopic order parameter
(e.g., u or û) provides little insight into the local struc-
tural fluctuations that underlie the transitions. In such
a case, a more appropriate microscopic picture of the
high-symmetry phase may be one in which local regions

have undergone a symmetry-lowering structural distor-
tion, but in such a way that long-range order has not set
in. For example, the description of the phase transition
sequence of BaTiO3 and KNbO3 in terms of the well-
known “eight-site model”20 assumes the presence of ran-
dom local rhombohedral displacements in the orthorhom-
bic, tetragonal, and cubic phases. In the present case,
Noheda et al. have concluded from their own structural
analysis of PZT5,7,8 and that of Corker et al. of rhom-
bohedral PZT,21 that there may be random local mon-
oclinic displacements which order variously to yield the
tetrahedral, rhombohedral, or monoclinic phases near the
morphotropic phase boundary. One could then describe
the system in terms of fluctuations between minima of a
“24-site model.”

To make these ideas more precise, suppose that the
local displacements of Noheda et al. arise from an optical
branch of the phonon spectrum, and let ul be the vector
“local mode amplitude” for that branch within the lth
unit cell.9 Take as a model of the free energy

F [u] =
∑

l

f(ul) +
1
2

∑
lm

′
flm(ul,um) . (15)

The in-cell energy f is presumed to be strongly nonlin-
ear; the inter-cell coupling flm may either be bilinear in
ul and um, or of higher order. f is also presumed to dom-
inate the flm so that, to a good approximation, its global
minima establish the possible magnitude and orientations
uα

l of ul. f(ul) can be subjected to precisely the same
methods of analysis as applied to F (u) in Secs. II-IV
above, with parallel results. The uα

l so obtained can
then be substituted into F in Eq. (15), yielding.

F [α] = F0 +
1
2

∑
lm

′
flm(uα

l ,uβ
m) . (16)

This can be regarded as a 24-site version of the q-state
Potts model,

A statistical analysis can be carried out for vari-
ous forms of flm (e.g., bilinear) to capture the cu-
bic (completely disordered), tetragonal (partially disor-
dered), rhombohedral (partially disordered), and mono-
clinic (fully ordered) phases of the case where uα

l takes
on all of the 24 symmetrically equivalent monoclinic dis-
placements. This type of analysis has already been car-
ried out for orientational order-disorder transitions and
plastic crystals.22

VI. SUMMARY AND CONCLUSIONS

The original Devonshire theory1 gave a natural expla-
nation for the appearance of tetragonal, orthorhombic,
and rhombohedral phases in materials such as BaTiO3

based on a sixth-order free-energy expansion. Here, we
have confirmed that these ferroelectric phases, in which
the order parameter P is confined to a symmetry axis,
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are the only ones permitted by the sixth-order version
of the theory. Moreover, we have clarified the nature
of the phases that may be expected to appear at higher
orders in the expansion. In particular, we have shown
that the extension of the theory to eighth order allows
one to describe, in addition, three kinds of monoclinic
phase in which P is confined only to a symmetry plane.
To obtain a triclinic phase in which P is unconstrained
by symmetry, we have shown that a twelfth-order ver-
sion of the theory is needed. A topological analysis of
the critical points of the energy surface has been used to
facilitate the discussion of the relevant phases and phase
transitions.

The present theory may provide some added insight
into the phase behavior of conventional ferroelectrics such
as BaTiO3, but the principal new results concern cases
in which the eighth-order terms are important. In par-
ticular, the theory provides a natural explanation for the
monoclinic MA phase recently observed experimentally
in PZT.5,7,8 It also predicts that if a triple point of equi-
librium between T, R, and MA phases occurs, then it will
be one at which first-order R–T and R–MA boundaries
meet a second-order T–MA boundary. That is, P will
rotate into the (11̄0) mirror plane continuously from the
T side but discontinuously from the R side.

Noheda et al.8 have shown such a triple point in their
Fig. 6, in agreement with our analysis. However, they
also show a region of coexistence of the T and MA phases
in the same phase diagram. In a homogeneous sample,
such a coexistence region can be due to hysteresis aris-
ing from nucleation barriers to a first-order phase transi-
tion. The eighth-order theory predicts the T–MA phase
boundary to be of second order, in which case there
can be no hysteresis or nucleation barriers. In princi-
ple, higher-order contributions to the free energy could
be large enough to change the order of the T–MA tran-
sition. However, a more likely explanation is that the
samples studied by Noheda et al. may be inhomoge-
neous. We note that these authors did not report hys-
teresis but did report a two-phase coexistence region near
the R–T boundary between 500 and 575K in Fig. 5 of
Ref. 8 Attributing this to inhomogeneity, we estimate
that the concentration variation may be of order 1% from
the slope of the R–T/M–T phase boundary in Fig. 6 of
Ref. 8. Composition inhomogeneity of that magnitude
would be sufficient to account for the T–MAphase coex-
istence shown in that figure.

Finally, the work may provide some guidance in the
search for even more novel MC, MB, and triclinic ferro-
electric phases. It also may be of utility in other kinds of
cubic systems with other kinds of vector order parame-
ters, e.g., ferromagnetic systems.
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APPENDIX A: DETAILS OF SIXTH-ORDER
THEORY

The purpose of this Appendix is to give further details
about the sequence of transitions that occurs in the sixth-
order model of Sec. IVB. Recall that the behavior in this
model is governed by a single dimensionless parameter α
defined via Eq. (10).

There are ten critical values of α that we can define as

α1 = −0.3976π = − tan−1(3)
α2 = 0.2256π = tan−1(6/7)
α3 = 0.25π

α4 = 0.3128π = tan−1(3/2)
α5 = 0.5π

α6 = 0.6024π = π − tan−1(3)
α7 = 1.2256π = π + tan−1(6/7)
α8 = 1.25π

α9 = 1.3128π = π + tan−1(3/2)
α10 = 1.5π (A1)

The sequence of phases can be followed on Fig. 4 by trac-
ing the vertical dotted lines, first from top to bottom at
β = 0 for 0 < α < π, and then from bottom to top at
β = π for π < α < 2π.

In the T phase, the system exhibits the topology of
Fig. 2(a) for α1 < α < α2; Fig. 2(b) for α2 < α <
α4; and Fig. 2(c) for α4 < α < α5. At α2, point O
converts to a local maximum and simultaneously a saddle
point appears along the MB symmetry line. There is an
irrelevant crossing of the R and O maxima at α3. At
α4, R becomes a local minimum, and the saddle point
switches from the MB to the MA symmetry line. The
transition from T to R is first order at α5.

The system falls into an R ground state corresponding
to Fig. 2(c) for α5 < α < α6; Fig. 2(d) for α6 < α < α7;
and Fig. 2(e) for α7 < α < α8. The MA saddle point
disappears and T is converted to a maximum at α6, and
a new MB saddle point emerges with the conversion of O
to a local minimum at α7. The transition from R to O
is first order at α8.

Finally, an O phases occurs as illustrated in Fig. 2(e)
for α8 < α < α9, and as in Fig. 2(f) for α9 < α < α1+2π.
The saddle point at MB vanishes and R is converted to
a local maximum at α9. There is an irrelevant crossing
of the T and R maxima at α10. The transition from O
to T at 1.6024π is singular, in that the energy surface
becomes exactly flat along the entire MC symmetry line.
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