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A review is given of recent developments in which �rst-principles electronic-structure calculations
have been used to determine, with chemical speci�city, the structural properties of cubic perovskite
materials. Direct application of these methods can be used to determine the ground-state (zero-
temperature) distorted structure, the lattice vibrational properties in harmonic and anharmonic
order, and dielectric properties such as Born e�ective charges and piezoelectric constants. By the
indirect construction of model e�ective Hamiltonians and the �tting of these to the �rst-principles
results, one can obtain (in most cases) the correct sequence of ferroelectric and/or antiferrodistortive
structural phase transitions, with predicted transition temperatures typically within 30% of the ex-
perimental ones. Prospects for the application of these approaches to solid-solution ferroelectrics, to
the study of �nite-temperature piezoelectric properties, and to ferroelectrics in con�ned geometries,
are brie
y discussed.

I. INTRODUCTION

It is clearly of great importance to develop a funda-
mental theoretical understanding of the intrinsic phys-
ical properties of the ferroelectric perovskite materials.
The experimental and theoretical study of these materi-
als, and of their structural phase transitions, has a long
history; much of this is reviewed in several standard ref-
erence works [1{3]. However, virtually all of the early
theoretical work was of an empirical character. Typi-
cally, a Landau model, spin model, or empirical lattice-
dynamical model is �tted to reproduce certain experi-
mental features, and then used to predict new features
or systematize the experimental results. While this has
been an extremely valuable approach, the development of
computational methods in the electronic-structure com-
munity has made possible the application of a new class
of �rst-principles approaches. These methods are based
upon a full solution for the quantum-mechanical ground
state of the electron system within the local-density
approximation (LDA) to Kohn-Sham density-functional
theory (DFT) [4], and in principle they take as their only
inputs the atomic numbers of the atomic constituents.
Such methods hold the promise for providing chemically-
speci�c information and understanding about the struc-
tural and electronic properties of the various perovskite
materials. In fact, the work of recent years has con�rmed
that this is the case, showing that many details of the lat-
tice dynamics and dielectric properties, the sequence of
structural phase transitions, and even the transition tem-
peratures can be predicted using �rst-principles calcula-
tions directly, or using models based on such calculations.
The purpose of the present manuscript is to review

the development and application of �rst-principles cal-
culations for perovskite ferroelectrics and related mate-
rials. The discussion will focus �rst on properties that
can be computed directly from the �rst-principles cal-
culations, and then on indirect calculations carried out
using e�ective Hamiltonians that have been �tted to a
�rst-principles database. The main emphasis is on the

intrinsic properties of pure bulk materials, but in the
last section some discussion will be given regarding the
prospects for application of the methods to some \real-
world" complexities: solid solutions, ferroelectric domain
boundaries, surfaces, and piezoelectric response.

II. DIRECT FIRST-PRINCIPLES

CALCULATIONS

The simplest direct applications of the �rst-principles
approach involve computing the total energies, and ide-
ally also the forces on each atom, as a function of the
atomic coordinates as the system undergoes distortions
from some reference cubic perovskite structure. Such dis-
tortions include displacements of one of the ionic sublat-
tices, linear combinations of these (\frozen phonons"),
or variations of lattice constant and other lattice strains.
By mapping out the energy landscape using such an ap-
proach, it is possible to check for instabilities and identify
the distorted ground-state structure (although strictly
only at T = 0 and for a classical treatment of the ionic
coordinates).
LDA-DFT calculations of this type were �rst carried

out for FE perovskites using the linear augmented plane-
wave (LAPW) method [5{14] and shortly afterwards by
ultrasoft pseudopotential (USPP) [15{17], linear mu�n-
tin orbital (LMTO) [18{21], and norm-conserving pseu-
dopotential (NCPP) methods. The LAPW and LMTO
methods use radial basis functions inside atom-centered
spheres and other basis functions outside, while the pseu-
dopotential methods use a plane-wave basis throughout;
the former methods are (at least in principle) all-electron
methods, while the latter approach facilitates the e�cient
and accurate calculation of forces. Generally the expe-
rience has been that the LAPW and USPP calculations
are of high quality and are in very good agreement with
each other where they have been carefully compared, and
both are probably making errors that are small compared
to the intrinsic errors of LDA-DFT.
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These calculations quickly proved their applicability
to this class of compounds by con�rming the existence of
FE instabilities for such prototype materials as BaTiO3

[5,6,8,15,16], KNbO3 [7,9,10,13,16,18{21], and PbTiO3

[6,8,16,17], and successfully predicted the correct sym-
metry of the ground-state structure in each case. Re-
cent work has extended these studies to a wider vari-
ety of materials, including KTaO3 [12,13,18,19], PbZrO3

[13,16,22], LiNbO3 [14], LiTaO3 [14], and others [16].
Generally, the agreement between the �rst-principles

theory and experiment has been good, but two limita-
tions should be noted. First, DFT being a theory of the
electronic ground state only, one �nds that band gaps of
virtually all insulators are seriously underestimated, by
up to �50%. (This is an intrinsic limitation even in ex-
act DFT theory, and is not arising from the LDA.) Thus,
band gaps and optical properties cannot be taken directly
from the DFT-LDA theory. Second, it is well known that,
as a result of the LDA, the theory tends to underestimate
the equilibrium lattice constants by roughly 1% (see, e.g.,
Ref. [16]). As a result, quantities that depend sensitively
on lattice constant, such as the ground-state distortion
amplitude or the spontaneous polarization, can be seri-
ously in error if one works at the theoretical equilibrium
lattice constant. Generally, the experience of the above
works is that the results are more accurate if one works
instead at the experimental lattice constant. This will be
discussed further at the end of the next section.
The long-range Coulomb interaction obviously plays a

crucial role in ferroelectric materials. It is therefore crit-
ical to be able to calculate the spontaneous (i.e., zero-
�eld) electric polarization P as a function of structural
degrees of freedom. Recently it has been understood how
to calculate P directly as a Berry phase of the Bloch
states [23,24], and when this calculation is carried out for
the experimentally determined ground-state structure,
one obtains satisfactory agreement with the experimen-
tal spontaneous polarization [25]. As for the dependence
of P upon structure, the �rst-order variation of P with
atomic displacements is given by the dynamical e�ective
charge Z�, which can be computed either directly using
linear-response methods [26], or numerically by �nite dif-
ferences. The latter method was applied to KNbO3 by
the authors of Ref. [9], with the remarkable result that
the Z� = 9:13 for Nb is signi�cantly larger than its nom-
inal ionic value Z = 5 (with a corresponding anomalous
Z� for oxygen motion along the Nb{O bond). This pat-
tern of anomalous Z� values was found to be a univer-
sal feature of virtually all of the ferroelectric perovskites
[25], and its origin was traced to the borderline ionic-
covalent character and speci�cally to the hybridization
between O 2p and B-atom 3d or 4d orbitals in the ABO3

material [9,10,25]. Subsequent work has more carefully
characterized these anomalous Z� values, especially their
dependence upon structural parameters and their band-
by-band decomposition [27{31]. Such investigations have
also provided insight into the origin of the FE instability
and its relation to the long-range Coulomb interactions

[32] and to many-body electron correlation e�ects [33].
Having characterized the strength of the long-range

Coulomb interactions through the Z�'s, one can move
on to a study of the lattice dynamics. Actually,
the transverse optic (TO) modes at � can be com-
puted without Z�; some early frozen-phonon studies
[5,7,8,12,13,16,19{21] were able to identify the eigenvec-
tors and frequencies of the TO modes, and especially to
provide detailed knowledge of the FE soft mode. With
the additional knowledge of the Z� values, it is then fairly
straightforward to obtain also the corresponding longitu-
dinal optic (LO) modes at � [25].
While zone-boundary phonons and phonons at other

rational wavevectors are accessible in principle by ap-
plying the frozen-phonon approach to supercells, linear-
response methods [26] are the methods of choice for com-
puting phonon properties on a mesh of wavevectors. De-
veloped in the NCPP context [26], this approach was then
extended to LAPW methods by Krakauer and coworkers
[34]. In most cases, the analysis of the phonon spectrum
in perovskites has been carried out in the reference ideal
cubic structure, so that the FE or other instabilities show
up as imaginary phonon frequencies. For example, apply-
ing such an approach to KNbO3 [31,35] one �nds that the
portion of the Brillouin zone at which imaginary frequen-
cies (potential FE instabilities) occur comprises a set of
three \sheets" surrounding the x � y, x � z, and y � z

planes, consistent with a picture in which the FE dipoles
associated with each unit cell are strongly correlated in
longitudinal chains along the Cartesian axes. Similar re-
sults have been reported for the similar material BaTiO3

[36]. On the other hand, for PbZrO3 [37] and SrTiO3 [38],
the same approach demonstrates that both FE and an-
tiferrodistortive instabilities are simultaneously present
in the cubic reference structure, and nicely characterizes
the portions of the Brillouin zone where each kind of in-
stability is strongest.
Of course it is also of interest to �rst identify the T = 0

ground state structure by a careful total-energy mini-
mization, and then apply the linear-response calculation
to study the phonons in the ground state. A good ex-
ample of this kind is a recent study of the rhombohedral
ground-state structure of KNbO3 [30].

III. INDIRECT MODELING VIA EFFECTIVE

HAMILTONIANS

The methods discussed so far are essentially restricted
to study the zero-temperature properties of the materials.
Clearly it is of the �rst importance to see whether one can
understand such features as the phase transition sequence
and transition temperatures on a material-speci�c basis.
A very successful approach to this problem has been the
e�ective Hamiltonian approach [39{41]. Here, one de-
�nes a reduced number of degrees of freedom per unit cell
(typically, a FE mode vector and a displacement vector
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in each unit cell), and constructs a model Hamiltonian,
written as a function of these reduced degrees of freedom,
that reproduces the spectrum of low-energy excitations
(FE soft modes and strains) for the given material as ob-
tained from the ab-initio DFT-LDA calculations. One
then arrives at a model, typically containing 10-20 pa-
rameters, that can be subjected to Monte Carlo (MC)
[41{43,22,44] or molecular dynamics (MD) [45] simula-
tions in order to determine the �nite-temperature prop-
erties of the material.
This approach has been applied with considerable suc-

cess to the FE materials BaTiO3 [41], PbTiO3 [44], and
KNbO3 [45], with the theory correctly reproducing the
experimental phase transition sequence in each case, as
summarized in Table I. It can be seen that the theoret-
ical values tend to be too low, typically by 20% or so,
but in the worst case by almost 50%. Given that the
calculations are based almost entirely on �rst principles,
taking no input from experiment (except for the experi-
mental lattice constant), this is overall a satisfying level
of agreement. Moreover, the calculations give other use-
ful information about the nature (soft-mode vs. order-
disorder) of the transitions and their latent heats, and
the correlations, 
uctuations, and dynamics [45] in the
various phases. They can also be helpful in identifying
the role of strain coupling in the FE transitions [46].
For more complex materials such as SrTiO3 [42,43],

PbZrO3 [22], CaTiO3 [43], and NaNbO3 [43], one has an-
tiferrodistortive instabilities competing with the FE ones.
In SrTiO3 one has reasonable agreement (130K theory
vs. 105K experiment) for the cubic-to-tetragonal anti-
ferrodistortive transition, but the simulation also shows
FE phases below 70K [42,43]; however, when quantum

uctuations are taken into account, the former transition
changes to 110K, and the FE phases disappear [47], in ex-
cellent agreement with experiment. In the more complex
materials PbZrO3, CaTiO3, and NaNbO3, the behavior
is more complicated, and the predicted sequence of phase
transitions does not always exactly follow the experimen-
tal one [22,43]. Further work is needed to understand
where the limitations of the theory lie, e.g., whether it is
the LDA approximation to DFT itself that is inadequate,
or whether the formulation of the e�ective Hamiltonian
was oversimpli�ed.
As mentioned earlier, the theories tend to underesti-

mate the lattice constants with respect to experiment by
approximately 1%. In the above works, this was cor-
rected by working at a negative �ctitious pressure [41],
by arti�cially dropping the term linear in strain in the
e�ective Hamiltonian [44], or by a fortuitous choice of
exchange-correlation potential [45]. These e�ects are not
small; in BaTiO3, e.g., the C{T transition temperature
falls to �160K if the negative �ctitious pressure is re-
moved [41]. The necessity of �xing the lattice constant
with reference to experiment clearly constitutes an un-
satisfying retreat from the goal of a completely �rst-
principles approach. In a very encouraging development,
Singh has recently shown that use of the the weighted-

TABLE I. Comparison of theoretical and experimental fer-
roelectric transition temperatures (Kelvin). Symbols C, T, O
and R refer to cubic, tetragonal, orthorhombic, and rhombo-
hedral phases, respectively.

Material Transition Tc (theo.) Tc (expt.)

BaTiO3 (Ref. [41]) C{T 290 403
T{O 230 278
O{R 197 183

KNbO3 (Ref. [45]) C{T 370 710
T{O 260 488
O{R 210 210

PbTiO3 (Ref. [44]) C{T 660 763

density approximation (WDA) in place of the LDA ap-
pears to give good systematic improvement at the ex-
pense of only modest computational cost [13].

IV. PROSPECTS

In the coming years, the �rst-principles theories will
increasingly need to address some of the complexities as-
sociated with applications of FE materials. For example,
the behavior of the material under conditions of applied
electric �elds and strains is often of primary importance.
Thus, the study of the piezoelectric properties of these
materials is now beginning, with a recent calculation on
PbTiO3 illustrating one way to proceed [48]. Many of the
materials of interest for applications are solid solutions,
e.g., PZT (PbZr1�xTixO3), BST (Ba1�xSrxTiO3), and
PMN (PbMn1=3Nb2=3O3). Studies of the cation ordering
and its consequences in such compounds are just begin-
ning [49,50], and eventually the program of construction
of an e�ective Hamiltonian and its use in MC or MD
simulations will have to be carried through for such ma-
terials. Finally, the real materials are frequently ceramics
or �lms, and a critical role is often played by boundaries
and defects of various kinds, including grain boundaries,
surfaces, interfaces, contacts, and FE domain walls. The
180� domain wall in BaTiO3 has recently been studied
using the e�ective-Hamiltonian approach [51], and some
�rst studies of BaTiO3 free surfaces have also appeared
[52,53].
Clearly there is a great deal that remains to be done.

In the real world, the material properties are frequently
dominated by e�ects that have not yet even been men-
tioned above. For example, in order to understand
hysteresis and fatigue e�ects, much more knowledge is
needed regarding the role of grain boundaries, disloca-
tions, impurities, oxygen vacancies, stoichiometric vari-
ations, electronic carriers, pinning of domain walls, etc.
While these are certainly hard problems, it can be ex-
pected that clever and judicious applications of �rst-
principles methods will contribute to solving many of
these problems over the coming years.
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