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Accurate values for polarization discontinuities between pyroelectric materials are critical for
understanding and designing the electronic properties of heterostructures. For wurtzite materials,
the zincblende structure has been used in the literature as a reference to determine the effective
spontaneous polarization constants. We show that, because the zincblende structure has a nonzero
formal polarization, this method results in a spurious contribution to the spontaneous polarization
differences between materials. In addition, we address the correct choice of “improper” versus
“proper” piezoelectric constants. For the technologically important III-nitride materials GaN, AlN,
and InN, we determine polarization discontinuities using a consistent reference based on the layered
hexagonal structure and the correct choice of piezoelectric constants, and discuss the results in light
of available experimental data.
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I. INTRODUCTION

Pyroelectric materials have emerged in a variety of
electronic and optoelectronic applications. Because of
the symmetry of their crystal structure these materials
exhibit spontaneous (SP) and piezoelectric (PZ) dipole
moments [1] which manifest themselves as electric fields
in heterostructure layers and sheet charges at interfaces.
In the technologically important III-nitrides, which have
the wurtzite (WZ) structure (space group P63mc), po-
larization differences allow for strong carrier confine-
ment and the formation of a two-dimensional electron
gas (2DEG) with high density at AlGaN/GaN interfaces,
exploited in high electron mobility transistors (HEMTs).
The effect of polarization can also be detrimental, for
example causing the quantum-confined Stark effect in
quantum wells of light-emitting diodes (LEDs), which re-
duces radiative recombination rates and shifts the emis-
sion wavelength. For both HEMTs and LEDs, accurate
values of the SP and PZ polarization constants are re-
quired for a fundamental understanding as well as for
device design.
Since experimental determination of the separate SP

and PZ contributions to the total polarization is very
difficult, calculated values of SP and PZ polarization con-
stants are widely used in simulations. The PZ polariza-
tion constants are, in principle, fairly straightforward to
explicitly measure or calculate [2]. However, the reported
values exhibit a considerable spread [3]. In addition, the
difference between so-called “proper” and “improper” PZ
constants [2, 4] is often overlooked, even though it can
give rise to significant quantitative changes in the result-
ing polarization fields. This difference is one issue that
is elucidated in the present paper.
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The definition of SP polarization constants is even
more subtle, and they are typically not amenable to ex-
plicit experimental determination. The calculation of SP
polarization requires the choice of a reference structure,
which in the case of WZ semiconductors, has invariably
been chosen to be zincblende (ZB) [5–7]. In this work
we will show that though ZB as a reference structure is
intuitively appealing, the SP polarization constants that
result have been misinterpreted, introducing a source of
error into the predicted values for bound sheet charge
densities (and polarization fields). We also demonstrate
that a proper choice of reference structure can eliminate
these problems, and we provide revised values that can
be directly inserted in current simulation tools.

While our theoretical considerations are general, we
choose the nitride semiconductors because they provide
a suitable example to illustrate the derivations, and be-
cause our findings have a significant impact on this ma-
terials system of high (and still increasing) technological
importance. In Sec. II we review the underlying the-
ory. In Sec. III we address the problems with choos-
ing zincblende as a reference structure, and propose a
solution. Sec. IV deals with piezoelectric contributions,
specifically the issue of proper versus improper constants.
In Sec. V we show that our findings have important con-
sequences for nitride device structures and compare with
previous implementations and with experiment. Sec-
tion VI concludes the paper.

II. CALCULATING POLARIZATION
CONSTANTS IN WURTZITE

For WZ films grown in the [0001] direction (i.e., the
+c direction), the polarization component P3 is given by
the sum of the SP polarization at the wurtzite material’s
own lattice parameters, PSP, and the z component of the
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PZ polarization [1]. That is, for material m,

Pm
3 = Pm

SP + (ε1 + ε2)e
m
31 + ε3e

m
33, (1)

where (in Voigt notation) εi (i=1,2,3) is the strain in the i
direction and e3i are the corresponding piezoelectric con-
stants (specifically, the “improper” ones; see Section IV).
Henceforth we drop the subscript “3” from P for simplic-
ity; all unbolded quantities pertaining to wurtzite are as-
sumed to be in the c direction.

A. The modern theory of polarization

Direct calculation of the polarization constants in
Eq. (1) by first-principles electronic-structure methods
was enabled by the formulation of a rigorous theory of
bulk polarization, known as the modern theory of polar-
ization (MTP) [8, 9]. For a given structure λ, the MTP
allows calculation of the so-called “formal” polarization
[8]:

Pf = Pion +Pel

=
e

Ω

∑

s

Z ion
s R

(λ)
s +

ief

8π3

occ∑

j

∫

BZ

dk〈u(λ)
j,k |∇k|u(λ)

j,k〉,

(2)

where Ω is the cell volume, Z ion
s is the charge of the ion

s and R
(λ)
s is its position in the λ structure, f is the spin

degeneracy of the bands, the sum j runs over occupied

bands, and u
(λ)
j,k are the cell periodic parts of the Bloch

wave functions. The formal polarization is defined only
modulo the “quantum of polarization” eR/Ω, where R

is any lattice constant and e is the electron charge [8, 9].
In the MTP, only differences between formal polariza-

tions of appropriate structures, λ = 0 and λ = 1, are well
defined:

∆P = P
(λ=1)
f −P

(λ=0)
f . (3)

The choice of the “appropriate” structures λ = 0 and λ =
1 rests on one of two possible considerations to ensure
that physical conclusions can be drawn from their formal
polarization differences. First, if the two structures are
connected by an adiabatic, gap-preserving deformation
path [8, 9], then their difference in polarization [∆P in
Eq. (3)] is given by the expression

∆P =

∫ 1

0

dλ
∂P

∂λ
, (4)

and corresponds to the zero-field adiabatic displacement
current. This quantity can, in principle, be determined
experimentally. An obvious application is the calculation
of piezoelectric constants, which involves polarization dif-
ferences between structures with slightly different lattice
constants and/or internal structural parameters.

B. Interface theorem

The second consideration, as shown by Vanderbilt and
King-Smith [10], is that if an insulating interface can be
constructed between two structures, the difference in for-
mal polarization gives the bound charge, σb, that builds
up at the interface as a result of the continuity of the
displacement field over an interface with no free charge:

σb = (Pλ=1
f −P

λ=0
f ) · n̂. (5)

This is often referred to as the “interface theorem.” Since
there is no adiabatic path necessary between the two
structures in this consideration, λ = 0 and λ = 1 can
be different polymorphs of the same material (such as
WZ and ZB structures of GaN) or different materials al-
together (such as GaN and AlN); as long as they form an
insulating interface, Eq. (5) will give the bound charge
accumulation at the interface.
From the interface theorem [Eq. (5)] and Eq. (1), the

bound polarization charge at the interface between dif-
ferent III-nitride materials (m and n) is

σb = [Pm
SP + em31(ε

m
1 + εm2 ) + em33ε

m
3 ]

− [Pn
SP + en31(ε

n
1 + εn2 ) + en33ε

n
3 ] .

(6)

As an example, we will take a realistic situation that
occurs in heterostructures, by assuming that material n
is strained coherently to m (ǫm1 = ǫm2 = ǫm3 = 0), i.e.,
under plane stress (ǫn1 = ǫn2 , ǫ

n
3 = −2Cn

13/C
n
33ǫ

n
1 , where

Cij are the elastic constants). Therefore we have

σb = (Pm
SP − Pn

SP)− 2ǫn1 (e
n
31 − en33C

n
13/C

n
33)

= ∆P int
SP − 2ǫn1 (e

n
31 − en33C

n
13/C

n
33).

(7)

Note that σb is the charge density of electrons at an in-
terface for which material n has been grown on top of
material m in the +c direction.

III. REFERENCE STRUCTURE FOR
SPONTANEOUS POLARIZATION

A. Effective spontaneous polarization constants

We will first address the difference in spontaneous po-
larization in Eq. (7), ∆P int

SP . Strain effects will be taken
into account separately in the PZ part, so that ∆P int

SP is
simply the difference of formal polarizations of the re-
spective zero-strain structures,

∆P int
SP = Pm

f

∣∣
ε=0

− Pn
f

∣∣
ε=0

. (8)

For purposes of Eq. (1), we would like to define a SP
polarization constant that is a property of a single mate-
rial. Simply taking Pm

f of Eq. (8) as Pm
SP is problematic,

since formal polarization is multivalued, being only well-
defined modulo a quantum of polarization eR/Ω. There-
fore, in every situation in which Eq. (1) is applied to



3

determine σb at an interface, it must be confirmed that
formal polarizations of the two materials are taken on
the same “branch” of eR/Ω. A better approach is to
take Pm

SP in Eq. (1) as a so-called “effective” SP polar-
ization, Peff, defined by Resta and Vanderbilt [11] to be
the ∆P in Eq. (3) that results as the system is taken
from a high-symmetry “reference” structure (λ = 0) to
the structure of interest (λ = 1). That is,

Peff = P
(λ=1)
f −P

(λ=0)
f = Pf −P

ref
f . (9)

Using Peff to define the SP polarization of the material
removes the indeterminacy inherent to the formal polar-
ization.

The reference structure is often chosen to be cen-
trosymmetric, but it is important to recognize that the
formal polarization of centrosymmetric crystals is not
necessarily zero. This is because, as stated above, Pf is
a multivalued vector field, so it is possible for a nonzero
formal polarization to be unchanged (modulo eR/Ω) un-
der the inversion operator. Nevertheless, high symmetry

puts restrictions on the possible values of P
(λ=0)
f [10].

While in principle effective polarization constants are
still differences in formal polarization between λ = 1 and
λ = 0 (reference) structures, in practice they can be used
to compare spontaneous polarizations of different mate-
rials to obtain ∆PSP if such materials share a reference
structure with the same formal polarization. Such a com-
parison then correctly yields the interface charge density
according to the interface theorem of Ref. 10. In such
cases, ∆PSP is just given by the difference in effective SP
polarization of the materials,

∆P̃ int
SP = Pm

eff − Pn
eff. (10)

In the more general case that the reference formal po-
larizations do not match, the correct change in SP polar-
ization following from Eqs. (8) and (9) is

∆P int
SP = ∆P̃ int

SP + (Pm,ref
f − Pn,ref

f ). (11)

That is, a correction term of the form

∆P ref
corr ≡ Pm,ref

f − Pn,ref
f (12)

has to be added to Eq. (10). Unfortunately, this correc-
tion term is not typically implemented in device simula-
tion packages (e.g., Ref. 12) or used in the interpretation
of experimental data (e.g., Ref. 13, which is considered a
standard reference in the field).

When the PZ terms are included as well, the total in-
terface charge given by Eq. (7) becomes

σb = ∆P̃ int
SP +∆P ref

corr − 2ǫn1 (e
n
31 − en33C

n
13/C

n
33). (13)

Equation (13) is a central result of the present work.

B. Correction term for the effective spontaneous
polarization with the zincblende reference structure

As mentioned before, previous studies [5–7] have exclu-
sively used ZB (space group F 4̄3m) as a reference struc-
ture for calculating the SP polarization of the WZ. This
structure is not centrosymmetric, although it has suffi-
cient symmetry to preclude any SP polarization [1]. The
fact that an insulating (111) interface can be constructed
between the WZ and ZB polytypes [7] makes it an ap-
propriate reference structure.
However, there is a subtlety with using ZB as a ref-

erence structure: it has a nonzero formal polarization in
the [111] direction, PZB

f (modulo eR/Ω). Again, this
is consistent with the symmetry considerations because
Pf is a multivalued vector quantity, and can be nonzero
while still remaining unchanged (modulo eR/Ω) under
the F 4̄3m symmetry operations. These symmetry oper-
ations dictate the possible values of PZB

f , and therefore
the resulting value depends only on the lattice constant,
not on the chemical species of the atoms [10]. The ZB
reference structures for the reported effective SP polar-
ization values for the III-nitrides were those with lat-
tice constants equal to the in-plane lattice constant of
the corresponding wurtzite material [5–7] (as confirmed
by our calculations), so PZB

f will be different for each
material. Therefore, for the effective SP polarization
constants with the ZB reference to be implemented in
Eq. (7), the correction term of Eq. (12) is required, as in
Eq. (13).
Consider the example of the interface charge between

InN and GaN. Although, as mentioned above, the formal
polarization of zincblende does not necessarily vanish,
the symmetry of the structure severely limits the pos-
sible values. Specifically there are two possible values
of the formal polarization in the [111] direction that are
consistent with the symmetry: either Pf vanishes, or it is
equal to e

√
3an/2Ωn (both modulo ean/Ωn), where an is

the lattice constant of material n and Ωn is the volume
[10]. For the III-nitrides our calculations result in the
latter, giving a correction term for GaN/InN:

∆P (ZB ref)
corr = PGaN,ZB

f − P InN,ZB
f

=
2e
√
3

4

(
1

(aGaN)2
− 1

(aInN)2

)

= 0.28 C/m
2
.

(14)

When considering the SP polarization differences be-
tween WZ nitrides, this represents a significant correc-
tion. In fact, as we will show in Section III C, the correc-
tion is an order of magnitude larger than the effective po-
larizations when they are calculated with the zincblende
reference [5, 6]. As we shall see later in Section VE, this
error is substantially reduced in practice by an approx-
imate error cancellation that occurs in connection with
the treatment of the PZ response.
There is nothing intrinsically wrong with using ZB

as the reference structure, as long as the ∆P ref
corr term
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[Eq. (12), or Eq. (14) for the example of GaN/InN] is
explicitly included in expressions such as Eq. (11) or
Eq. (13) . To our knowledge, however, this has not been
properly implemented in the numerous previous evalu-
ations of SP polarization for nitride interfaces, and it
would require changes in the software for the many sim-
ulation tools that include modeling of polarization fields
in heterostructures.

C. P63/mmc hexagonal layered structure as an
alternative reference

In order to avoid extensive changes in the simulation
software, and to enhance physical insight, we advocate
another approach, namely to determine effective SP po-
larization constants with respect to a reference structure
for which the formal polarization is explicitly zero (so

that ∆P int
SP = ∆P̃ int

SP ). A straightforward choice for this
reference structure is the layered hexagonal (H) struc-
ture (space group P63/mmc), as was used for hexago-
nal P63mc ABC materials [14]. This structure is cen-
trosymmetric, and we will show below with explicit first-
principles calculations that it remains insulating and
its formal polarization vanishes. The layered hexagonal
structure can be obtained by an adiabatic (gap preserv-
ing) increase of the internal structural u parameter from
u ≈ 0.37− 0.38 of the WZ structure to u = 0.5. All that
is required to avoid correction terms like Eq. (14) is to
replace the effective SP polarization constants currently
used in the field (the ones referenced to ZB [5, 6]) with
those referenced to the H reference structure. We have
explicitly verified that this leads to expressions that are
identical to those that would be obtained for the ZB ref-
erence, provided the second term in Eq. (11) or Eq. (13)
is included.
The first-principles calculations of Pf for the H, WZ,

and ZB structures of the III-nitrides were performed us-
ing density functional theory with the screened hybrid
functional of Heyd, Scuseria, and Ernzerhof (HSE) [15] as
implemented in the Vasp code [16]. Hartree-Fock mixing
parameters of 31% for AlN and GaN, and 25% for InN
were used to correctly describe the band gaps and struc-
tural parameters of each material. Conventional func-
tionals based on the local density approximation (LDA)
or generalized gradient approximation (GGA) predict
InN to be a metal, precluding the calculation of the po-
larization constants if the Γ point is included in the k-
point mesh (which is required in Vasp). Projector aug-
mented wave potentials (PAW) [17], with the In and Ga
d electrons frozen in the core, were used. All calculations
were performed on bulk primitive cells, with a 6× 6× 8
Monkhorst-Pack [18] k-point mesh to sample the Bril-
louin zone, and a large energy cutoff of 600 eV for the
plane-wave basis set, chosen to ensure convergence of the
internal structural parameter u. The calculated lattice
parameters and band gaps, listed in Section S1 of the
supplemental material (SM) [19], show good agreement
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FIG. 1. Formal polarization of InN, GaN, and AlN for struc-
tures as a function of the internal structural parameter u,
varying between fully relaxed WZ (circled symbols, labelled
with relaxed u value) and H (u = 0.5), as shown schemati-
cally by ball and stick models where smaller balls represent N
atoms and larger ones represent the cations. All other lattice
parameters were fixed at their relaxed WZ values.

with experimental data.
We have calculated the electronic structure for struc-

tures with increasing u, ranging from u ≈ 0.37 to u = 0.5
(Fig. 1), and confirmed that this path between WZ and
H is gap preserving by checking the electronic structure
for each calculation. These calculations also show that
the formal polarization of the H structure is zero (modulo
eR/Ω) for the III-nitrides (Fig. 1). We remind the reader
that this was not guaranteed, sincePf can be nonzero and
still consistent with inversion symmetry, if the inversion
operator changes Pf by a multiple of eR/Ω. We have
therefore verified that the hexagonal phase is a reference
structure for which there is no spurious term in Eq. (11).
In addition, by correcting for any discontinuities (in

the amount of a multiple of eR/Ω) that may occur in
the calculations of formal polarizations along the path
between WZ and H, we have insured that we are com-
paring formal polarizations of WZ GaN, AlN, InN on the
same branch of eR/Ω [11].
The calculated spontaneous polarization coefficients

for the WZ structure using either H or ZB as a reference
are given in Table I. The results obtained by Bernardini
et al. [5, 6] are listed for comparison. The GGA func-
tional used in that work provides results that are very
close to those we obtained with HSE; the discrepancy
is the largest for InN, which is probably related to the
fact, mentioned above, that GGA predicts InN to be a
metal. Table I also shows, however, that the choice of
reference structure makes a significant difference. The
magnitudes of the coefficients are much larger, and their
signs are different when H is used as the reference. We
observe that it is not just the absolute values, but also
the relative differences between the calculated polariza-
tion constants of the three materials that differ from the
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TABLE I. Effective spontaneous polarization constants in
units of C/m2 of wurtzite (WZ) GaN, AlN, and InN calcu-
lated using either the hexagonal (H, space group P63/mmc)
or zincblende (ZB, space group F 4̄3m) reference structures.
The lattice constant of the ZB structure is chosen to match
the in-plane lattice constant of the WZ structure for the same
material. Results from previous calculations [6] that used the
ZB reference are listed for comparison.

P
(H ref)
eff P

(ZB ref)
eff P

(ZB ref)
eff , prev.a

GaN 1.312 −0.035 −0.034
AlN 1.351 −0.090 −0.090
InN 1.026 −0.053 −0.042

a From Ref. 6.

previously reported values [5, 6].

The difference in sign of P
(H ref)
eff compared to P

(ZB ref)
eff

demonstrates that the conventional wisdom that the SP
polarization in WZ points in the -c direction is mislead-
ing. The formal polarization of WZ has no definite sign
as this would depend on the chosen branch. The effective
SP depends on the polarization difference, and therefore
the sign will depend on the sign and magnitude of the
formal polarization of the reference structure.

IV. IMPROPER VERSUS PROPER
PIEZOELECTRIC CONSTANTS

We now address the specifics of the PZ terms in
Eqs. (7) and (13). A complication that must be addressed
is the choice between improper and proper e31 (e33 has
no such complication) [2, 4].
As we have done above, consider a thin layer of a WZ

material grown in the c direction. If the layer is strained
perpendicular to the c direction, the total bound charge
on the +c and −c surfaces will change as a result of the
polarization current, or redistribution of charge, in the
layer. If metallic contacts on the +c and −c surfaces are
short-circuited when the strain occurs, the current flow
can be measured directly and will give the proper PZ
constant, denoted eprop31 [2, 4].
If the +c and −c faces are in open-circuit boundary

conditions, the layer will have a field across it due to the
SP polarization, which will be modified by the strain via
two mechanisms. The first is the same as in the proper
case, as the strain will cause a flow of polarization cur-
rent. But in addition, since the field depends on the
charge density, the change in the area of the c-plane as
a result of ε1 will dilute or concentrate the pre-strain
bound charge. For small strains the latter is given by
the zero-strain formal polarization [2, 4]. Taking both
of these mechanisms into account gives the improper PZ
constant, eimp

31 .
In the case of, e.g., Eq. (13), the PZ constants corre-

spond to the improper case, since their role in the equa-
tion is to take into account the change in formal polar-

ization of material n with strain, so that σb corresponds
to the bound charge at the coherent interface with the
in-plane lattice constant of material m. The change in
formal polarization with strain is an alternative definition
of the improper PZ constants [4].

From Refs. 2 and 4, the improper PZ constant en,imp
31

is related to the proper constant by

en,imp
31 = en,prop31 − Pn

f

∣∣
ε=0

, (15)

where Pn
f

∣∣
ε=0

is the zero-strain formal polarization of ma-
terial n. There is no change to the e33 PZ constant. The
proper PZ constant is a well-defined bulk quantity, as it is
related to the polarization current; however the improper
PZ constant is branch dependent [4]. Here also, defining
polarization with respect to the H reference proves use-
ful. Since the formal polarization of the H structure van-

ishes (Fig. 1), P
n,(H ref)
eff = Pn,WZ

f

∣∣
ε=0

; this also ensures
that improper PZ constants for the different materials
are taken on the same branch, in the same way as this is
confirmed for the SP polarization constants. Therefore,
consistent use of the H reference structure allows us to
write Eq. (7) as

σb = ∆P̃
int,(H ref)
SP

− 2ǫn1

(
en,prop31 − P

n,(H ref)
eff − en,prop33 Cn

13/C
n
33

)
,

(16)

where P
n,(H ref)
eff can be taken from Table I.

TABLE II. Calculated piezoelectric polarization constants in
units of C/m2 compared with reported values from the liter-
ature.

proper improper prev. reporteda

GaN e31 –0.551 –1.863 –0.22 to –0.55
e33 1.020 1.020 0.43 to 1.12

AlN e31 –0.676 –2.027 –0.38 to –0.81
e33 1.569 1.569 1.29 to 1.94

InN e31 –0.604 –1.63 –0.23 to –0.59
e33 1.238 1.238 0.39 to 1.09

a From Ref. 3 and references therein.

Calculated proper PZ constants are given in the
“proper” column of Table II. Since the HSE hybrid func-
tional was used (and therefore density functional pertur-
bation theory was not implemented), finite differences
were used to calculate the derivatives with strain, fol-
lowing the procedure outlined in Eqs. (4)-(6) in Ref. 5.
Specifically, improper PZ constants were calculated, and
converted to proper constants by adding Pn

f

∣∣
ε=0

[see

Eq. (15)] as determined in the calculation. This re-
moves any dependence on the branch choice used in
finite-difference calculations [4]. We then convert back to

improper constants using P
n,(H ref)
eff as discussed above, in

order to ensure that the constants are reported for the
same branch for each material (“improper” column in
Table II).



6

It is important to comment on the PZ constants re-
ported in the literature [3]. When PZ polarization
constants have been implemented in simulations (e.g.
Refs. 3, 12, and 13) it has never been specified which

PZ constants are used for WZ III-nitrides. However, by
comparing our calculations of proper and improper PZ
constants (“proper” and “improper” columns of Table II)
with the reported PZ constants in the literature (“prev.
reported” of Table II) we have found that the reported
constants are more likely to be the proper PZ constants.

In previous work [6], P
n,(ZB ref)
eff was used instead of

Pn
f

∣∣
ε=0

in Eq. (15) to convert improper to proper e31 PZ
constants (cf. Table VI and V of Ref. 6). Because of
the nonvanishing formal polarization of the ZB reference

structure, P
n,(ZB ref)
eff 6= Pn,WZ

f

∣∣
ε=0

; instead, we see from

the discussion resulting in Eq. (14) that Eq. (15) can be
expressed as

en,imp
31 = en,prop31 −

(
Pn,ZB ref
eff +

e
√
3

2a2n

)
, (17)

where an is the equilibrium lattice constant of material
n. To our knowledge the inclusion of the last term in
Eq. (17) has not been discussed in the literature.

Because of the small magnitude of P
n,(ZB ref)
eff , neglect-

ing the last term in Eq. (17) led to the conclusion in Ref. 6
that the difference between the proper and improper PZ
constants is small, seemingly rendering the distinction of
no consequence. Instead, because of the large magnitude

of P
n,(H ref)
eff [and e

√
3/2a2n in Eq. (17)], the distinction

between proper and improper PZ constants is actually
very significant.

V. COMPARISON WITH REPORTED
EXPERIMENTAL RESULTS

A. Correct expressions for total polarization for
wurtzite materials

Before discussing specific quantitative results for ni-
tride semiconductors, we briefly summarize the main
points of the previous sections and rigorously express
the polarization of a given WZ material [Eq. (1)]. Spon-
taneous polarization constants must be defined with re-
spect to a reference structure, and this choice of reference
structure must be taken into account when evaluating po-
larization discontinuities at interfaces. We determined a
correction term [Eq. (12)] that is necessary when effec-
tive SP polarization constants are used to determine the
SP polarization difference between materials at an inter-
face. This correction term is significant when the ZB
reference structure is used [e.g., Eq. (14)], but is zero for
the H reference. Using H as a reference is therefore more
straightforward and is the approach we advocate, with

the SP constants P
(H ref)
eff listed in Table II.

In addition, the improper PZ constants should be used
to determine interface bound charge and fields in het-
erostructure layers. These can be obtained from the

proper constant eprop31 by subtracting P
(H ref)
eff (Table II).

Therefore, in the notation of this paper, Eq. (1) is written
rigorously as

P = P
(H ref)
eff +(ε1+ε2)

(
eprop31 − P

(H ref)
eff

)
+ε3e

prop
33 . (18)

B. Calculation of sheet charges for III-nitrides

Because of the important impact of polarization on de-
vice performance and design, a plethora of experimental
studies have been aimed at determining the effects of po-
larization at GaN/InGaN and GaN/AlGaN heterostruc-
tures. We have plotted these reported results in Fig. 2,
expressed as the magnitude of polarization bound charge
at the interface, as a function of alloy content (a full list
of references is provided in Section S2 of the SM [19]).
For GaN grown in the +c direction with the InGaN

(AlGaN) grown on top, the sign of the bound charge at
the interface will be negative (positive) [20].
In Fig. 2, the black dashed curves correspond to the

current practice in the field: sheet charges are predicted
based on (i) SP constants referenced to the ZB structure

(P
(ZB ref)
eff in Table I) and Eq. (13) without the correction

term ∆P
(ZB ref)
corr ; and (ii) proper PZ constants (“proper”

column in Table II). Quantities for alloys were obtained
using linear interpolation (Vegard’s law). For an explicit
expression in terms of alloy content, see Eq. (1) in Sec-
tion S3 of the SM [19]. Elastic constants were taken from
Ref. 21.
The red solid line in Fig. 2 corresponds to the imple-

mentation recommended in this work, i.e., using the H
reference structure and the improper PZ constants, as in
Eqs. (16) and (18) [and Eq. (3) in Section S3 of the SM
[19]]. In view of the arguments given above, it may seem
surprising that the dashed black and solid red curves
agree as well as they do; we will return to this point
in Section VE.

C. InGaN/GaN interfaces

For the InGaN/GaN system, most experimental stud-
ies have applied optical techniques to determine the
polarization fields in GaN/InGaN/GaN quantum wells
(QWs). This field can be probed by varying QW width
[22] or external biases [23] and measuring the change in
the optical properties of the QW (labeled “optical” in
Fig. 2). In addition, there have also been studies using
time-resolved PL to measure shifts due to screening of
the polarization field by photoexcited or electrically in-
jected carriers [24]. Other studies have been based on
electron holography [25], where cross-sectional transmis-
sion electron microscopy is conducted on InGaN/GaN
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FIG. 2. Absolute values for polarization sheet charges at the
(a) InGaN/GaN and (b) AlGaN/GaN interface as a function
of alloy content predicted from the spontaneous polarization
constants calculated using either the zincblende (ZB) refer-
ence structure [without correction term, Eq. (14)] and the
proper piezoelectric constants (black dashed curve), or the
hexagonal (H) reference structure and improper piezoelectric
constants (red solid curve). Points are experimental values
from the literature (see section S2 of the SM [19] for refer-
ences and values).

heterostructures to determine the depth-resolved electro-
static potential in the growth direction, and capacitance-
voltage (CV) profiling of the fields [26]. When fields are
reported, we convert to bound charge for the purposes
of Fig. 2(a), assuming GaN/InGaN/GaN quantum well
(with thick barriers such that the electric field in the
barriers is presumed zero) using a simple parallel-plate
capacitor model (E = σ/ǫ0ǫr, using a relative dielectric
constant for GaN of 10 [27] and for InN of 15 [28] and a
linear interpolation for the dielectric constant of InGaN).
For specific values of the points in Fig. 2, see Section S2
of the SM [19].
The red curve in Fig. 2(a) is indeed in reasonable agree-

ment with the experimental observations, appearing to
be an upper bound of the data. The optical experiments
usually rely on Schrödinger-Poisson simulations to de-

termine the field magnitude from the measured optical
properties. Uncertainties in input parameters to these
models such as well widths, compositions, and composi-
tion profiles [29, 30] can result in quantitative differences.
Deviations from an ideal QW structure are expected to
be significant for InGaN/GaN because of the large lat-
tice mismatch and the large difference in optimal growth
temperatures for GaN and InGaN.

D. AlGaN/GaN interfaces

For the AlGaN/GaN system, there are two basic
strategies for experimentally determining polarization ef-
fects. The first is to directly measure the polariza-
tion field in an AlGaN/GaN/AlGaN (QW) structure
with the same methods as used in the InGaN/GaN case
[31, 32]. For the purposes of Fig. 2(b) we have converted
these fields to bound sheet charge densities in an Al-
GaN/GaN/AlGaN quantum well (using a relative dielec-
tric constant for GaN of 10 [27]).
The other strategy is to measure the density of the

2DEG at the AlGaN/GaN interface in a HEMT struc-
ture (GaN channel, AlGaN barrier); from this, the bound
interface charge, σb, can be derived [33]. The 2DEG den-
sity can be determined either by Hall effect [13] or CV
[33] measurements.
Again, the predicted sheet charges are in reasonable

agreement with experimental observations. The signifi-
cant scatter in the experimental data in Fig. 2(b) may
have several origins. There are experimental uncertain-
ties that can influence fields, such as incomplete strain
relaxation in buffer layers [34], and differences in back-
ground doping. For optical measurements, Schrödinger-
Poisson modeling is again typically used to interpret the
measured properties, and the same uncertainties arise as
discussed in the case of InGaN/GaN [35, 36].

E. Comparison of theoretical implementations

The degree of agreement between results obtained
based on the current practice in the field (ZB reference,
no correction term, proper PZ) and our revised imple-
mentation (H reference, improper PZ constants) merits
some discussion. The success of current practice in the
field has hinged on a fortuitous cancellation of errors be-
tween the spurious term from the use of the ZB reference
for the SP polarization and the proper PZ constants in-
stead of the improper ones. Comparing the revised im-
plementation [Eq. (3) of the SM [19]] to the current prac-
tice in the field [Eq. (1) of the SM [19]] gives the differ-
ence between the solid red and dashed black curves for
a given x in Fig. 2 as x∆P

(ZB ref)
corr + 2ε1(x)P

n,(H ref)
eff (x)

(see Section S4 of the SM [19] for a detailed derivation).

For both AlGaN/GaN and InGaN/GaN, ∆P
(ZB ref)
corr and

2ε1P
(H ref)
eff have opposite signs and a tendency to cancel.
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To understand why, note that for small lattice-constant
differences, the correction term can be approximated as

x∆P
(ZB ref)
corr ≃ −2ǫ1(x)P

m,ZB
f [see Eq. (6) of the SM [19]].

Therefore, the difference between the implementations
depends on the in-plane strain and the difference between

Pm,ZB
f and P

n,(H ref)
eff [see Eq. (7) of the SM [19]]. We see

from Table I that PZB ref
eff = PWZ

f − PZB
f is one to two

orders of magnitude less than P
(H ref)
eff = PWZ

f , therefore

P
(H ref)
eff ∼ PZB

f .
The similarity between PZB

f and PWZ
f is not unex-

pected. Although ZB has sufficient symmetry to preclude
SP polarization, in the [111] direction the structure only
differs from the WZ c direction by the stacking of the
cation/anion planes.
For AlGaN/GaN, the relatively modest difference in

lattice constants between AlN and GaN (and therefore
modest ε1 values for coherently strained alloy layers),

and an almost exact cancellation between PGaN,ZB
f and

P
AlGaN,(H ref)
eff means that the difference between imple-

mentations is small over the whole composition range
(cf. Section S4 of the SM [19]). For InGaN/GaN, the
large lattice mismatch of InN and GaN and a less com-

plete cancellation of PGaN,ZB
f and P

InGaN,(H ref)
eff results

in a significant deviation at higher In content; this will
be important for the prediction of polarization fields in
applications such as tunnel field-effect transistors based
on thin, high In-content interlayers [37].
The two implementations differ significantly in the rel-

ative contributions of SP and PZ polarization. An effect
of this is illustrated by the case where there is strain
relaxation in the alloy layer. In Fig. 3 the predicted
polarization bound charges for In0.2Ga0.4N/GaN (blue
curves) and Al0.2Ga0.4N/GaN (green curves) are shown
as a function of strain relaxation of the layer, modeled
by simply scaling ǫ1. For both InGaN/GaN and Al-
GaN/GaN, the revised implementation of this work pre-
dicts a much faster decrease in bound charge at the in-
terface than the current practice in the field. Of course,
strain relaxation is associated with the presence of edge
dislocations at the interface, which may themselves influ-
ence the interface bound charge; this effect has not been
taken into account in either version of the implementa-
tion.

VI. CONCLUSIONS

We have derived a rigorously correct implementation
of polarization constants in wurtzite materials, focusing
on the example of the III-nitrides. Our derivation has
demonstrated the impact of the choice of reference struc-
ture when calculating spontaneous polarization constants
using the modern theory of polarization. Insufficient care
in using the values can result in spurious contributions
to the polarization discontinuities at heterostructure in-

terfaces. We have provided new values calculated with a
consistent hexagonal (rather than zincblende) reference
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FIG. 3. Absolute values for polarization sheet charges at the
In0.2Ga0.4N/GaN (blue) and Al0.2Ga0.4N/GaN (green) inter-
face as a function of percent strain relaxation. 0 % relax-
ation corresponds to perfectly strained layers, 100 % relax-
ation to an unstrained overlayer at its bulk lattice constant.
Solid curves are the correct implementation described in this
work (H reference for SP and improper PZ constants); dashed
curves are the current practice in the field (ZB reference for
SP, without the correction term, and proper PZ constants).

structure. In addition, we have demonstrated the im-
portance of choosing the correct piezoelectric constants
(improper), and provided values for these improper con-
stants. These revised values of the spontaneous and
piezoelectric constants can be directly used in simula-
tions and to interpret experimental observations. The
revised implementation predicts a more rapid decrease
of polarization charge with strain relaxation for an alloy
layer on GaN.
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