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Abstract

First-principles total-energy calculations are carried out for (001) surfaces
of the cubic perovskite ATiO3 compounds PbTiO3z, BaTiOgz, and SrTiOs.
Both AO-terminated and TiOo-terminated surfaces are considered, and fully-
relaxed atomic configurations are determined. In general, BaTiO3 and SrTiOg
are found to have a rather similar behavior, while PbTiOg is different in
many respects because of the partially covalent character of the Pb—O bonds.
PbTiO3z and BaTiOg are ferroelectrics, and the influence of the surface upon
the ferroelectric distortions is studied for the case of a tetragonal ferroelectric
distortion parallel to the surface. The surface relaxation energies are found to
be substantial, i.e., many times larger than the bulk ferroelectric well depth.
Nevertheless, the influence of the surface upon the ferroelectric order parame-
ter is modest, and is qualitatively as well as quantitatively different for the two
materials. Surface energies and electronic properties are also computed. It is
found that for BaTiO3z and SrTiOj3 surfaces, both AO-terminated and TiO»-
terminated surfaces can be thermodynamically stable, whereas for PbTiOg
only the PbO surface termination is stable.

I. INTRODUCTION

The surfaces of insulating cubic perovskite materials such as PbTiO3z, BaTiOs, and
SrTiO3 are of interest from several points of view. First, some of these materials (notably
SrTiO3) are very widely used as substrates for growth of other oxide materials (e.g., layered
high-T, superconductors and “colossal magnetoresistance” materials). Second, this class of
materials is of enormous importance for actual and potential applications that make use
of their unusual piezoelectric, ferroelectric, and dielectric properties (e.g., for piezoelectric
transducers, non-volatile memories, and wireless communications applications, respectively).
Many of these applications are increasingly oriented towards thin-film geometries, where
surface properties are of growing importance. Third, the bulk materials display a variety of
structural phase transitions; the ferroelectric (FE) structural phases are of special interest,
but antiferroelectric (AFE) or antiferrodistortive (AFD) transitions can also take place.!
It is then of considerable fundamental interest to consider how these structural distortions
couple to the surface, e.g., whether the presence of the surface acts to enhance or suppress
the structural distortion. The ferroelectric properties are well known to degrade in thin-film?
and particulate® geometries, and it is very important to understand whether such behavior



is intrinsic to the presence of a surface, or whether it arises from extrinsic factors such as
compositional non-uniformities or structural defects in the surface region. Finally, the cubic
perovskites can serve as model systems for the study of transition-metal oxide surfaces more
generally.*

In the last decade, there has been a surge of activity in the application of first-principles
computational methods based on density-functional theory (DFT) to the study of the bulk
properties, and especially the ferroelectric transitions, in bulk perovskite oxides. (For a
recent review, see Ref. 5 or 6.) The importance of these methods was recently underlined by
the award of the Nobel Prize in Chemistry to Walter Kohn, the primary originator of DFT.
In the materials theory community, these methods have been widely used for two decades
to predict properties of semiconductors and simple metals. However, recent advances in
computational algorithms and computer power now allow these methods to be applied to
more complex materials (e.g., perovskites) and more complex geometries (e.g., defects and
surfaces). In particular, pioneering studies of BaTiO3” ? and SrTiO3'° ' surfaces have
recently appeared.

Experimental investigations of the surface structure of cubic perovskites have not been
very extensive. Such studies are hindered by the difficulties of preparing clean and defect-free
surfaces, and of overcoming charging effects associated with many experimental probes. Even
for SrTiOg3, the best-studied of these surfaces, there is a disappointing level of agreement
among experimental results?®® 26 and between experiment and theory.'! We are not aware of
comparable studies of BaTiO3 and PbTiO3 surfaces.

The purpose of the present contribution is to present new theoretical work on the struc-
tural properties of the PbTiO3 (001) surface, and to compare and contrast these results
with the previous work of our group on BaTiOs; and SrTiOs surfaces.”!' As regards bulk
properties, lead-based compounds such as PbTiO3 and PbZrO3 are known to behave quite
differently from alkaline-earth based perovskites such as BaTiOz and SrTiOs. Previous
theoretical work has shown that the FE distortion is typically larger and that Pb atoms
participate much more strongly in (and sometimes even dominate) the FE distortion, com-
pared with non-Pb perovskites.!3 17 Moreover, the Pb-based compounds are generally more
susceptible to more complex AFD and AFE instabilities involving tilting of the oxygen
octahedra,'® ' and the ground-state structures often involve the formation of some quite
short Pb—O bonds.’ 22 All of these effects point to a strong and active involvement of the
Pb atoms in the bonding, most naturally interpreted in terms of the formation of partially
covalent Pb—O bonds with the closest oxygen neighbors. Finally, a focus on Pb-based ma-
terials is motivated by the fact that these are the leading candidates for many practical
piezoelectric and switching applications, especially in the form of solid solutions such as
PZT (PbZI‘xTil_xO?,), PMN (Pngl/g,Nbg/gOg), and PZN (szn1/3Nbg/303).

The manuscript is organized as follows. Section II contains a brief account of the technical
details of the work, including the theoretical methods used, the slab geometries studied,
and the formulation of the surface energy. In Sec. III we present the computed structural
relaxations of the PbTiO3 surfaces, and compare these to the previous results on BaTiO;
and SrTiOj surfaces. Additionally, we discuss the surface energetics (surface energies and
surface relaxation energies), and point out some characteristic differences in the surface
electronic structure of the three compounds. Finally, the paper ends with a summary in
Sec. IV.
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FIG. 1. Schematic illustration of the supercell geometries for the two differently terminated
ATiO3 (001) surfaces.

II. PRELIMINARIES
A. Theoretical Methods

We carried out self-consistent plane-wave pseudopotential calculations within Kohn-
Sham density-functional theory using a conjugate-gradient technique.'® Exchange and cor-
relation were treated using the Ceperley-Alder form.?” Vanderbilt ultrasoft pseudopotentials
were employed,?® with semicore Pb 5d, Ba 5s and 5p, Sr 4s and 4p, and Ti 3s and 3p or-
bitals included as valence states. A plane-wave cutoff of 25 Ry has been used throughout.
Relaxations of atomic coordinates are iterated until the forces are less than 0.01 eV /A. Jus-
tification of the convergence and accuracy of this approach can be found in the previously
published work.%11:15

B. Surface and Slab Geometries

In this work we consider only II-IV cubic perovskites, i.e., ABO3 perovskites in which
atoms A and B are divalent and tetravalent, respectively. In this case, two non-polar (001)
surface terminations are possible: the AO-terminated surface, and the BOs—terminated
surface.

We have studied both types of surface termination for all three materials (PbTiOs,
BaTiOgs, and SrTiOj3) using a repeated slab geometry. The slabs are symmetrically ter-
minated and typically contain seven layers (17 or 18 atoms), as illustrated in Fig. 1. The
vacuum region was chosen to be two lattice constants thick. The calculations were done
using a (4,4,2) Monkhorst-Pack mesh,?® corresponding to three or four k-points in the ir-
reducible Brillouin zone for cubic and tetragonal surfaces respectively. The convergence of



the calculations has been very carefully checked for PbTiO3 by repeating some of the cal-
culations with asymmetrically terminated eight-layer slabs and symmetrically terminated
nine-layer slabs. Additionally, we have enlarged the vacuum region to a thickness of three
lattice constants, and we have checked the convergence of the Brillouin zone integration by
going to a (6,6,2) k-point mesh. In all cases, the results for the structural properties of the
surfaces given in the Tables I to V change by less than 0.2%.

For all three materials, we first computed the relaxations for the “cubic” surface, i.e.,
for the case where there is no symmetry lowering relative to a slab of ideal cubic material.
In this case we preserved M,, M,, and M, mirror symmetries relative to the center of
the slab, and set the lattice constants in the ¥ and y directions equal to those computed
theoretically for the corresponding bulk material (3.89 A, 3.95 A, and 3.86 A for PbTiO;,
BaTiOs, and SrTiOs, respectively). The symmetry-allowed displacements of the atoms in
the z (surface-normal) direction were then fully relaxed.

Each of the three materials studied displays a different sequence of structural phase tran-
sitions from the cubic paraelectric phase as the temperature is lowered.! PbTiO3 undergoes a
single transition into a tetragonal ferroelectric (FE) phase at 763 K and then remains in this
structure down to zero temperature. BaTiO3 displays a series of three transitions to tetrag-
onal, orthorhombic, and rhombohedral FE phases at 403 K, 278 K, and 183 K, respectively.
SrTiO3 remains cubic down to 105K, at which point it undergoes an antiferrodistortive
transition involving rotation of the oxygen octahedra and doubling of the unit cell. The
material nearly goes ferroelectric at about 7' = 30 K, but is evidently prevented from doing
so by quantum zero-point fluctuations.*°

Because we are primarily interested in the room-temperature structures of these materials
and their surfaces, we have chosen to focus on the tetragonal FE phases of PbTiO3; and
BaTiOj3 for our surface studies. We consider only the case of the tetragonal ¢ axis (i.e.,
polarization) lying parallel to the surface, since polarization normal to the surface is strongly
suppressed by the depolarization fields that would arise from the accumulated charge at the
surfaces.?® We take the tetragonal axis to lie along Z, and relax the M, symmetry while
retaining the M, and M, symmetries with respect to the center of the slab. For PbTiOs,
which is tetragonal at 7' = 0, this will indeed be the ground-state structure of the slab. For
BaTiOg, on the other hand, the M, symmetry is artificially imposed so that the theoretical
T = 0 calculation will mimic the experimental room-temperature surface structure. In both
cases, the slab lattice constants in the Z and y directions were set equal to the corresponding
theoretical equilibrium lattice constants computed for the bulk tetragonal phase: ¢=4.04 A
and a=3.86 A for PbTiO3, and ¢=3.99 A and a=3.94 A for BaTiOs.

C. Surface Energies

A comparison of the relative stability of the AO and TiO4 surface terminations is prob-
lematic because the corresponding surface slabs contain different numbers of AO and TiO,
formula subunits. We treat this problem by introducing chemical potentials a0 and prio,
for these subunits, defined in such a way that pao = 0 and prio, = 0 correspond to ther-
mal equilibrium with bulk crystalline AO and TiO,, respectively. We have computed the
cohesive energies Eap and Erio, of crystalline PbO, BaO, SrO, and TiO, using the same



first-principles pseudopotential method in order to provide these reference values. The grand
potential for a given surface structure can then be computed as

1
Fowe = Q[Eslab — Nti0, (Emio, + p1i0,) — Nao(Eao + pao)] , (1)

where N is the number of formula subunits contained in the slab, and the factor of 1/2
accounts for the fact that each slab contains two surfaces. Assuming that the surface of the
ATiOs is in equilibrium with its own bulk, it follows that

pao + prio, = —Ex , (2)
where E: is the heat of formation of bulk ATiO3 from bulk AO and bulk TiO,. The two

chemical potentials are thus not independent, and we choose to treat prio, as the indepen-
dent variable when presenting our results. Accordingly, prio, is allowed to vary over the
range

_Ef S ,uTiOQ S O ) (3)

the lower and upper limit corresponding to the precipitation of particulates of AO and TiO,
on the surface, respectively.

III. RESULTS AND DISCUSSIONS
A. Structural relaxations

We begin by presenting our new results on the structural properties of the PbTiO3 (001)
surfaces. The equilibrium atomic positions for both surface terminations in the two phases
were obtained by starting from the ideal structures of the surfaces and then relaxing the
atomic positions while preserving the symmetries described in section II B. The results for
the fully relaxed geometries are summarized in Table I and II. By symmetry, there are no
forces along z and y for the cubic surface, and no forces along 7 for the tetragonal surface.

Tables I and II show for both surfaces a substantial inward contraction towards the bulk
for the uppermost surface layers, whereas for the second layers we find an outward relaxation
of the atoms relative to the positions of the atoms on the ideal surface. Generally, the metal
and the oxygen atoms move in the same direction, but the relaxations of the metal atoms
are much larger, leading to a rumpling of the layers. The single exception is the surface layer
of the tetragonal TiOs-terminated surface, where one of the two oxygen atoms moves in the
opposite direction to the metal atom. Therefore we can see here a significant asymmetry
between the O atoms with respect to their positions perpendicular to the surface. This
asymmetry between the oxygen atoms in the topmost surface layer of the tetragonal TiOs—
terminated surface was also found for BaTiOz but with a much smaller amplitude. As
expected, we find the largest relaxations for the surface—layer atoms, but the displacement
of the Pb atom in the second layer of the TiOy—terminated surface is of the same magnitude.

In order to compare these results with previous calculations for SrTiO3 and BaTiOs,
we have calculated the changes in the interlayer distances Ad;; and the amplitudes of the
rumpling 7); of the layers in the surface slabs for all three perovskites. The results for both



Atom 5.(C) 5,(T) 5.(T)

Ph(1) —4.36 —3.44 —2.38
Omi(1) —0.46 +11.85 —1.17
Ti(2) +2.39 +3.62 +1.15
01(2) +1.21 +9.27 +0.81
OH( ) +1.21 +11.45 +0.06
Ph(3) ~1.37 +0.00 —0.81
Omi(3) —0.20 +11.14 —0.17
Ti(4) 0 +3.86 0
O1(4) 0 +9.60 0
On(4) 0 +10.98 0

TABLE I. Atomic relaxations (relative to ideal atomic positions) of the PbO-terminated sur-
face in the cubic (C) and tetragonal (T") phases. The relaxations perpendicular (6,) and parallel
(05) to the surface are given in percent of the lattice constants a and ¢, respectively. For reference,
the theoretical 0, values in the bulk ferroelectric phase, relative to the Pb atoms, are 0, (Ti) = 3.45,
8:(01) = 9.26 and ,(Or1) = 6,(Omp) = 10.44. Atom labels refer to Figs. 2 and 1; results are only
given for the top half of the slab, since the bottom half is equivalent by M, mirror symmetry.

Atom 5.(C) 6.(T) 5.(T)
Ti(1) —3.40 +3.62 —3.47
O1(1) —0.34 +9.27 ~1.60
OH( ) —0.34 +11.45 +0.79
Pb(2) +4.53 +0.00 +4.06
0111(2) +0.43 +11.14 +0.17
Ti(3) —0.92 +3.86 —0.79
01(3) —0.27 +9.60 —0.03
OH(3) —0.27 +10.98 —0.06
Ph(4) 0 —3.44 0
Om(4) 0 +11.85 0

TABLE II. Atomic relaxations of the TiOs—terminated surface in the cubic (C') and tetragonal
(T') phases. Notation is the same as in Table I.



FIG. 2. Structure of the cubic perovskite compounds ATiO3. Atoms A, Ti and O are repre-
sented by shaded, solid and open circles, and Op, Or; and Oryp are the oxygen atoms lying along
the Z, i and Z direction from the Ti atom, respectively. Arrows indicate the displacements of the
Ti and O atoms relative to the A atoms in the case of the tetragonal phase of PbTiOg.

surface terminations and the different phases are given in the Tables III and IV. We denote
the change in the z position of a metal atom relative to the ideal unrelaxed structure as
3.(M), and 6,(O) is the same for the oxygen atom in the same layer (defined as [4.(Oy) +
9.(Omn)]/2 for a TiOy layer). We then define the change of the interlayer distance Ad;; as
the difference between the averaged atomic displacements [9,(M) + 6,(0)]/2 of layer i and
J, and the rumpling 7; is defined as the amplitude of these displacements |J,(M) — 6,(O)]|.
From Tables III and IV we can see that, for all three perovskites and for both terminations,
the surfaces display a similar oscillating relaxation pattern with a reduction of the interlayer
distance di5, an expansion of dy3 and again a reduction for ds;. However, compared to
BaTiO3 and SrTiOj3, the amplitudes of the relaxations in PbTiOj3 are significantly increased.

The second interesting feature of Tables III and IV is that for BaTiOg, there is almost no
difference in the relaxations of the surface layers between the cubic and the tetragonal phase.
The same is true for the TiOs—terminated surface of PbTiOs3. For the PbO—-terminated
surface, in contrast, the changes in the interlayer distances and the layer rumplings are
strongly reduced in the tetragonal phase. We will come back to this point at the end of the
next subsection.

B. Influence of the surface upon ferroelectricity

We turn now to the question of whether the presence of the surface has a strong effect
upon the near—surface ferroelectricity. To analyze whether the ferroelectric order is enhanced
or suppressed near the surface, we introduce average ferroelectric distortions dpg for each
layer of the surface slabs:

opp = [02(A) — 6,(Om)| for AO planes and ()
6FE = |5$(T1) - [6x(ol) + 6;r(OH)]/2| for TiOq planes.

7



SI“TiOg BaTiO3 PleO3
cubic cubic tetrag cubic tetrag
Adio —-3.4 —2.8 —2.8 —4.2 —2.6
Adoy | 412 F11 0 411 | 426 +13
Adsy —0.6 —0.4 —0.4 —0.8 —0.5
m 5.8 1.4 1.5 3.9 1.2
o 1.2 0.4 0.5 1.2 0.7
73 1.1 0.3 0.4 1.2 0.6

TABLE III. Change of the interlayer distance Ad;; and layer rumpling n; (in percent of the
lattice constant a) for the relaxed AO-terminated surface of the three perovskites in the cubic and

tetragonal phases.

SI“TiOg BaTiO3 PleO3
cubic cubic tetrag cubic tetrag
Adio —3.5 —3.1 —2.9 —4.4 —4.1
Ados +1.6 +0.9 +1.2 +3.1 +2.5
Adsy —0.6 —0.6 —0.4 —0.6 —0.4
m 1.8 2.3 2.5 3.1 3.1
72 3.0 1.9 2.1 4.1 3.9
- 0.2 0.4 0.4 0.7 0.8

TABLE IV. Change of the interlayer distance Ad;; and layer rumpling 7; (in percent of the

and tetragonal phases.

lattice constant a) for the relaxed TiOy-terminated surface of the three perovskites in the cubic

AO—terminated TiOs—terminated
BaTiOgs PbTiO3 BaTiOg PbTiO3
layer 5FE(BaO) 5FE(TiO2) 5FE(PbO) 5FE(TiO2) 5FE(BaO) 5FE(TiOQ) 5FE(PbO) 5FE(TiOQ)
1.6 15.3 4.4 5.7
1.8 6.8 1.4 7.0
1.3 11.1 3.4 6.3
2.6 6.4 1.7 9.7
bulk 1.5 3.2 10.4 6.4 1.5 3.2 10.4 6.4

TABLE V. Average layer-by-layer ferroelectric distortions dpg of the relaxed slabs, in percent

of the lattice constant ¢. Last row shows the theoretical bulk values for reference.
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FIG. 3. Grand thermodynamic potential Fi,+ as a function of the chemical potential prio, for
the two types of surfaces of BaTiOg (left) and PbTiO3 (right), in the tetragonal phase. Dashed
and solid lines correspond to AO—terminated and TiOs—terminated surfaces, respectively.

The calculated values of dpg for BaTiO3 and PbTiOj3 are given in Table V; the last row of
the table gives the bulk values for reference.

For the PbO-terminated surface of PbTiOg3, one can see a clear increase in the average
ferroelectric distortions dpg when going from the bulk values to the surface layer. On the
other hand, for the TiOs—terminated surface, the average distortions are slightly decreased
at the surface. Surprisingly, this is just the opposite of what one observes for BaTiOs,
where one sees a reduction of the ferroelectric distortions for the BaO—terminated surface
and a moderate enhancement for the TiOo—terminated surface. (Of course, the distortions
are also much smaller for BaTiOj surfaces, as they are in the bulk, compared to PbTiOs3.)
These results tend to confirm that Pb is a much more active constituent in PbTiO3 than is
Ba in BaTiOg, presumably because of the partially covalent nature of the Pb—O bonds as
discussed in Sec. I.

In any case, the present results again confirm that the presence of the surface does not
lead to any drastic suppression of the ferroelectric order near the surface, supporting the
view that extrinsic effects must be responsible for degradation of ferroelectricity in thin-film
geometries.

Finally, we note that there are interesting signs of interplay between the relaxations
parallel and perpendicular to the surface for PbTiO3. In particular, the relaxations perpen-
dicular to the surface are substantially reduced (by a factor of ~3) on the PbO-terminated
surface when going from the cubic to the tetragonal case. This can be rationalized as fol-
lows. Because of the partial covalency of the Pb—O bonds, there is a tendency to reduce
the Pb-O bond length (this length is 2.75, 2.51, and 2.30 A in cubic PbTiOs, tetragonal
PbTiO3, and PbO, respectively). For the cubic surface, by symmetry, the only possibility
to shorten this bond length is by a strong movement of the Pb atom towards the bulk and
a strong movement upwards of the O atoms in the second layer. This leads to the strong
rumpling and the decrease of di5. But in the tetragonal phase there is also the possibility



SrTiO5 BaTiO3 PbTiO3
cubic cubic tetrag cubic tetrag
E; 3.2 3.20 3.23 0.30 0.36
Bt 1.26 1.24 1.24 0.97 0.97
FErelax 0.18 0.13 0.21 0.22

TABLE VI. Formation energy Ff, average surface energy Fg,.+ and average relaxation energy
E\clax (in eV /unit cell) for the three perovskites in the cubic and tetragonal phases.

to enlarge the ferroelectric distortion in order to shorten the Pb—O bond length. Evidently,
the enlargement of the ferroelectric distortion is preferred to the relaxation perpendicular
to the surface.

C. Surface energies

In this section we discuss the surface energetics of the three perovskite compounds.
In order to compare the relative stability of the AO— and TiOs,—terminated surfaces, we
have calculated the grand thermodynamic potential Fy,s (as introduced in Sec. IIC) for
the different surfaces as a function of the chemical potential pri0,. The results for the
tetragonal surfaces of BaTiO3 and PbTiO3 are shown in Fig. 3. The graphs of the grand
thermodynamic potentials for the Sr'TiO3 surfaces are very similar to those of BaTiO3 and
are therefore not shown separately.

Figure 3 shows a very different behavior for the BaTiO3 and PbTiO3 surfaces. First of
all, the formation energy Ff of PbTiO3 (when formed from bulk PbO and TiOs) is 0.36 eV,
much lower than the formation energies of Sr'TiO3 and BaTiO3 which are about 3.2 eV. This
leads to a much smaller range for the chemical potential prip, for which PbTiOg3 surfaces
can grow in thermodynamic equilibrium. Second, for BaTiO3 the two different surfaces
have a comparable range of thermodynamic stability, indicating that either BaO—terminated
surfaces or TiOs-terminated surfaces could be formed depending on whether growth occurs
in Ba-rich or Ti-rich conditions. In contrast, for PbTiO3 only the PbO-terminated surface
can be obtained in thermodynamic equilibrium.

To get a quantity describing the surface energetics that is independent of the chemical
potential prio, and therefore allows a more direct comparison of the three compounds, we
define the average surface energy per surface unit cell

Egut = i(E;?ﬁ) + B — 7 Ebulk) ; (5)
which is equal to the average of the grand thermodynamic potential Fi, for the two kinds
of surfaces. Again, the results for Eg,+ shown in Table VI are very similar for SrTiO3 and
BaTiOj3, whereas the value for PbTiOj is significantly lower.

Finally we have computed the average relaxation energy FE,.., of the three perovskite
compounds. FE.q.. is defined as the difference between the average surface energy FEg,¢ of
the ideal surface without relaxation of the atoms, and the fully relaxed surfaces. The largest

10



SrTiO5 BaTiO3 PbTiO3
cubic cubic  tetrag| cubic tetrag
AO-term. 1.86 1.80 2.01 1.53 2.12
TiOs-term. 1.13 0.84 1.18 1.61 1.79
bulk 1.85 1.79 1.80 1.54 1.56

TABLE VII. Calculated band gaps (in eV) for the relaxed cubic and tetragonal surface slabs.

and smallest value for F,q.y (see Table VI) were found for PbTiO3 and BaTiOs3, respectively,
which is in agreement with the observation that the atomic relaxations are largest in PbTiO3
and smallest in BaTiO3.

For all three compounds the average relaxation energy FE, .y iS many times larger than a
typical bulk ferroelectric well depth, which is approximately 0.03 eV for BaTiO3 and 0.05 eV
for PbTiO3. This would indicate that the surface is capable of acting as a strong perturbation
on the ferroelectric order. As we have shown in Sec. III B, this is not the case for BaTiO3z and
PbTiO3. One reason why the ferroelectric order is not as strongly affected by the surface as
one might have thought has been pointed out in Ref. 9: the soft phonon eigenmode, which
is responsible for the ferroelectric distortion, is only one of three zone center modes having
the same symmetry. By looking at how strongly the surface relaxations are related to each
of these zone center modes it has turned out that the distortions induced by the presence of
the surface are to a large extent of non—ferroelectric character.

D. Surface band structure

For all three perovskite compounds we have carried out LDA calculations of the bulk
and the surface electronic structure for our various surface slabs. It is well known that the
LDA is quantitatively unreliable regarding excitation properties such as band gaps. Since
we are in the following only looking at differences between band structures, we think that
our conclusions drawn from the LDA results are nevertheless qualitatively correct.

As has already been shown in Ref. 15, the bulk band structures of SrTiO3 and BaTiO3
are very similar, whereas PbTiO3 shows some significant differences. In SrTiO3z and BaTiO3
the upper edge of the valence band is very flat throughout the Brillouin zone. On the other
hand, in PbTiO3 the shallow 6s semicore states of the Pb atoms hybridize with the 2p states
of the O atoms, leading to a lifting of the upper valence band states near the X point of the
Brillouin zone.

This fact is responsible for a different behavior of the PbTiOj3 surface band structure
compared to Sr'TiO3 and BaTiOg3. If we look at the calculated band gaps in Table VII, we
see that for TiOs-terminated surfaces the band gap is significantly reduced for Sr'TiO3 and
BaTiOj3, whereas for PbTiO3 the band gap is almost unchanged. The reduction of the band
gap in SrTiO3 and BaTiOj3 is mainly due to an upward intrusion of the upper valence band
states near the M point into the lower part of the band gap (as pointed out in Ref. 9, this
is caused by the suppression of the hybridization of certain O 2p and Ti 3d orbitals in the
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surface layer). In PbTiO3; we find the same upward movement of the upper valence band
states near the M point, but these states stay just below the highest valence states at the X
point, and so the band gap is almost unchanged.

On the other hand, for the AO—-terminated surfaces we see no reduction of the band gap
for any of the three perovskite compounds. Even here, however, there is a subtle difference
between PbTiO3 and the other materials, this time concerning the conduction band edge.
According to our calculations, the Pb 6p states overlap the Ti 3d states to some degree
in bulk PbTiO3, and this effect is accentuated at the I' point of the surface Brillouin zone
on the Pb—O terminated surface, where the lowest Pb 6p state falls just below the lowest
Ti 3d state. We thus suggest that the conduction band minimum may actually have Pb 6p
character at this surface, although the effect is too small to affect the band gaps in Table VII
substantially. This might be an interesting target of investigation for future spectroscopic
experimental studies.

IV. SUMMARY

In summary, we have calculated structural and electronic properties of PbTiO3z (001)
surfaces using a first-principles density-functional approach. The results are compared and
contrasted with corresponding previous calculations on BaTiO3z and SrTiOs surfaces. We
observe qualitatively different behavior of the PbTiO3 surfaces in several respects. First,
within the narrow range of PbO and TiO, chemical potentials permitted by bulk thermody-
namics, we find that the TiOs-terminated surface is never thermodynamically stable. Thus,
the PbO-terminated surface is expected to be the one observed experimentally. Second,
the interaction between the ferroelectric distortion and the presence of the surface is quite
different for PbTiO3, compared to BaTiO3. In particular, the ferroelectricity is strongly en-
hanced at the AO-terminated surface and suppressed at the TiOs-terminated surface, just
the opposite of the behavior found for BaTiOj3. Moreover, the ferroelectric distortion at
the surface allows for a drastic reduction of the rumpling of the surface layer on the PbO-
terminated surface, an effect which is not seen on the BaO-terminated of BaTiO3. Third,
the surface electronic band structure is qualitatively modified in the case of PbTiO3 by the
presence of Pb 6s and 6p states in the upper valence and lower conduction regions.
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