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The intense theoretical and experimental interest in topological insulators and semimetals has
established band structure topology as a fundamental material property. Consequently, identifying
band topologies has become an important, but often challenging problem, with no exhaustive so-
lution at the present time. In this work we compile a series of techniques, some previously known,
that allow for a solution to this problem for a large set of the possible band topologies. The method
is based on tracking hybrid Wannier charge centers computed for relevant Bloch states, and it works
at all levels of materials modeling: continuous k · p models, tight-binding models and ab initio
calculations. We apply the method to compute and identify Chern, Z2 and crystalline topological
insulators, as well as topological semimetal phases, using real material examples. Moreover, we
provide a numerical implementation of this technique (the Z2Pack software package) that is ideally
suited for high-throughput screening of materials databases for compounds with non-trivial topolo-
gies. We expect that our work will allow researchers to: (a) identify topological materials optimal
for experimental probes, (b) classify existing compounds and (c) reveal materials that host novel,
not yet described, topological states.

I. INTRODUCTION

Topology studies the properties of geometric objects
that are preserved under smooth deformations, and di-
vides these objects accordingly into distinct topological
classes. In the past decade the principles of topology
were applied to crystalline solids, where electronic bands
can have a topological characterization [1–4]. For exam-
ple, in band insulators the occupied bands are separated
from the unoccupied ones by an energy gap, and form a
well-defined manifold in Hilbert space. Certain geometric
properties can be defined for this manifold, giving rise to
a topological classification of band insulators [5–7], and
to the notion of topological insulators[2, 3]. The physical
equivalent of the mathematical notion of smoothly con-
nectable manifolds in this case is the possibility to adi-
abatically transform one gapped manifold into another.
This means that if two gapped Hamiltonians belong to
the same topological class, they can be adiabatically con-
nected without a direct closure of the band gap.

The topological classification of insulators can be en-
riched by an additional symmetry constraint on the clas-
sified Hamiltonians. In this case, two systems are consid-
ered to be topologically equivalent if their Hamiltonians
can be adiabatically connected by a path along which the
band gap remains open and the symmetry is preserved.
Time-reversal (TR) symmetric [1, 8–12], antiferromag-
netic [13, 14] and crystalline topological insulators [15–
19] are examples of these symmetry-enriched topological
classifications.

Unlike other observables, quantum numbers describing

the topology of a state do not necessarily correspond to
eigenvalues of some Hermitian operator. Instead, a dif-
ferent type of quantum numbers – topological invariants
– has to be defined in such a way that a distinct number
is assigned to each class. The task of identifying topolog-
ical states then reduces to defining sensible topological
invariants that discern different classes. Finding ways to
compute these invariants becomes of major importance
in the field. A final predictive theory of all topological
invariants for all existing topological classes is missing
and, due to the multitude of symmetry space groups and
possible orbitals at the Fermi level, seems to be out of
reach at the present time.

The ability to distinguish distinct topological classes
is not only of theoretical interest, but also allows for the
prediction of physical phenomena in real materials. For
example, in two dimensions generic insulators with no
symmetries apart from the fundamental charge conser-
vation are classified according to the value of the (first)
Chern number C [20]. This is a unique characteristic of
the occupied manifold. Insulators with C 6= 0, called
Chern insulators, realize the integer quantum Hall effect
in the absence of an external magnetic field [21, 22], and
their Hall conductance is related to the Chern number as
σxy = Ce2/h [23, 24], where e is the electron charge and
h is the Planck constant.

The invariants of symmetry-protected band topologies
are usually more complex, giving rise to a variety of phys-
ical phenomena such as the existence of topologically pro-
tected surface states [2, 3], quantized magneto-electric re-
sponse [25, 26], the quantum spin Hall effect [1, 8, 27, 28],
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and non-Abelian quasi-particles for topological quantum
computing [29–34] in topological superconductors and su-
perfluids [4].

Metals also allow for a topological characterization [4].
For indirect band gap semimetals, where the lower-lying
bands are gapped from the rest at each momentum in
the Brillouin zone (BZ), the topology of the lower lying
states is defined in a similar way to that of the occu-
pied states in insulators. At the surfaces of these metals,
topologically protected (sometimes discontinuous) sur-
face states (Fermi arcs) can coexist with projected bulk
metallic states. For metals with a vanishing direct band
gap, topological invariants akin to those of insulators can
sometimes still be defined on surfaces/lines in the BZ,
on which the bands of interest are gapped. A suitable
choice of the chemical potential in a calculation also al-
lows for topological invariants to be defined for metallic
Fermi surfaces [35]. Non-trivial topology in semimetals,
such as Weyl and Dirac nodes, can significantly affect ob-
served quantities, for instance their electromagnetic re-
sponse [36–46].

Many real material examples of topological insulators
and metals have been discovered so far. They realize
some of the theoretically predicted topological phases
(see for example Refs. [27, 28, 44, 45, 47–63]). The iden-
tification of new candidate materials, better suited for
experimental studies and for realizing novel topologies, is
a high priority for the field, but again a common, exhaus-
tive, search procedure seems out of reach at the present
time. Given the amount of existing materials and current
abilities in synthesis and growth of novel compounds and
heterostructures, it is desirable to develop a methodology
and software that would allow for a routine computation
of some of the various known topological invariants in a
way accessible to non-specialists.

In this paper we develop such a general methodology
and present a software package – Z2Pack – based on
it. This software can be used as a postprocessing tool
with most existing ab initio codes, or as a standalone
tool for analyzing topological structure of tight-binding
or k ·p Hamiltonians. Z2Pack is ideally suited for a high-
throughput search of topological materials. It can also be
used to design materials or devices with specific topolog-
ical properties and to identify not only new topological
materials, but also novel topological classes thereof.

Topological invariants of superconductors in the
Bogoliubov-de Gennes (BdG) representation can also be
studied, since they are also described by tight-binding or
k · p models, supplemented with the particle-hole sym-
metry. For simple models a specially designed online in-
terface is provided (http://z2pack.ethz.ch/online/),
allowing one to obtain topological invariants without in-
stalling the software. The code represents one of the
main results of this paper. We hope it will bring the field
of topological invariants in realistic materials to every
interested researcher.

The method is based on the concept of hybrid Wan-
nier functions (HWF) [64], which are localized in only

one direction, remaining delocalized in the others. It was
shown previously [19, 65–70] that the flow of HWF charge
centers reveals the non-trivial topology of Chern [21, 22]
and TR-symmetric [1, 9] topological insulators and can
be used to compute the corresponding topological invari-
ants [71].

This technique can be generalized to crystalline topo-
logical insulators [17–19] and topological semimetals
[61, 72–76]. For the former, spatial symmetries give rise
to non-trivial band topologies. For the latter, the method
allows identifying the presence of a topological phase by
means of defining and computing various invariants anal-
ogous to those of topological insulators. In Weyl (Dirac)
semimetals for example, the flow of HWF charge centers
on certain surfaces reveals the presence, location and (for
Weyl semimetals) chirality of the Weyl (Dirac) points or
lines. The universality of this method allows us to de-
velop a general strategy for finding topological features
in band structures.

The paper is structured as follows: a review of HWFs
is given in Sec. II, along with the representation of Chern
numbers in terms of HWF charge centers. In Sec. III a
general strategy for identifying topological materials is
described. Illustrations for the application of this strat-
egy to Chern, TR-symmetric and crystalline insulators
are given in Sec. IV. The extension of the HWF technique
to topological semimetals is developed and extensively
illustrated in Sec. V. Finally, we describe the numerical
implementation of the method in Sec. VI and present an
outlook along with some concluding remarks in Sec. VII.

II. HYBRID WANNIER CHARGE CENTERS
AND CHERN NUMBERS

Here we review the definition and basic properties of
HWFs and their charge centers. A basic topological in-
variant – the (first) Chern number – is cast in terms of
the HWF charge centers. The flow of HWF centers is
introduced as the main signature of non-trivial topology.

A. Hybrid Wannier functions

Electronic states in crystalline solids are most com-
monly represented with Bloch functions ψnk(r) =
〈r|ψnk〉, which, according to the Bloch theorem, take the
form

ψnk(r) = eik·run(r), (1)

where n is the band index and

unk(r) = unk(r + R) (2)

is the lattice-periodic part of the wavefunction. Being
essentially modulated plane waves, Bloch functions are
delocalized in real space.

http://z2pack.ethz.ch/online/
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In many problems, however, the use of a local basis is
preferred. This basis is provided by Wannier functions
(WFs) wn(r −R) = 〈r|Rn〉 that are obtained from the
Bloch states by a Fourier transformation

|Rn〉 =
V

(2π)d

∫

BZ

e−ik·R|ψn,k〉dk (3)

where d stands for the space dimensionality, V is the unit
cell volume, and the integral is taken over the first BZ.

Thus defined WFs are not unique. An isolated [77] set
of N energy bands corresponding to the Bloch Hamilto-
nian eigenstates |ψnk〉 can equivalently be described by
an alternate set of N Bloch wavefunctions that might
not be the Hamiltonian eigenstates, but span the same
Hilbert space [78]. That is, a general unitary basis trans-
formation, called gauge transformation, of the form

|ψ̃mk〉 =

N∑

n=1

Unm(k)|ψnk〉 (4)

can be performed prior to constructing WFs for the given
set of bands. Depending on the gauge choice, the resul-
tant WFs can have different properties [79], in particular
their shape and localization in real space can differ signif-
icantly. The construction of exponentially localized WFs
wn(r−R) requires the gauge to be smooth, meaning that
the Bloch states used to construct WFs are smooth and
periodic in reciprocal space. We will see below that such
a gauge choice is not always possible [80–84].

For the purposes of the present paper, the most conve-
nient basis is that of HWFs [64, 66], which are Wannier-
like in one direction but Bloch-like in the others. The
formal definition is [85]

|n; `x, ky, kz〉 =
ax
2π

π/ax∫

−π/ax

eikx`xax |ψnk〉dkx, (5)

where `x ∈ Z and ax is the lattice constant along the
x-direction, in which the resultant wavefunction is lo-
calized. The HWF can be thought of as a WF of a 1-
dimensional system, coupled to the external parameters
ky and kz. It was proven that in one dimension expo-
nentially localized WFs can always be found [86, 87]. A
nice generalization of this procedure to 3D is given in
Ref. [19].

B. Wannier charge centers

Given a set of Wannier functions, their charge centers
are defined as the average position of charge of a Wannier
function that resides in the home unit cell

r̄n = 〈0n|r̂|0n〉 (6)

Due to the ambiguity in the choice of the home unit
cell, the Wannier charge centers (WCCs) are defined only

modulo a lattice vector. Moreover, when the isolated
group of bands in question contains more than one band,
individual WCCs are not gauge-invariant [79, 88]. Only
the sum of all WCCs is gauge-invariant modulo a lattice
vector, and it is related to the electronic polarization [88].
For a 1-dimensional system this relation reads

Pe = e
∑

n

r̄n (7)

where e stands for the electronic charge. While Pe is
defined only up to a lattice vector, the continuous change
∆Pe under a continuous deformation of the Hamiltonian
is a well-defined physical observable.

A geometric interpretation in terms of the Zak
phase [89] can be given to WCCs. To do this, a Berry
potential is introduced for the lattice periodic part of the
Bloch functions as

An(k) = i〈unk|∇k|unk〉 (8)

In 1D WCCs can be redefined in terms of Berry potential
using the transformations between Wannier and Bloch
representations of Ref. [90]

x̄n =
iax
2π

π/ax∫

−π/ax

dkx 〈unk|∂kx |unk〉 =
ax
2π

π/ax∫

−π/ax

dkx An(kx)

(9)
Similarly, the hybrid WCCs can be written as

x̄n(ky, kz) = 〈n; 0, ky, kz| r̂x |n; 0, ky, kz〉 (10)

=
ax
2π

π/ax∫

−π/ax

dkx A(kx, ky, kz).

Thus, a hybrid WCC can be thought of as a WCC of a
1D system coupled to external parameters (kx, ky). Since
in crystalline systems H(k) = H(k + G), this coupling
is equivalent to a periodic driving of a 1D system cou-
pled to an external environment, as discussed in the con-
text of charge pumping [91]. The existence of topological
classification for such pumps was known long before the
advent of topological materials [23, 91]. We show below
that many topological invariants of band structures can
be obtained by studying the pumping of hybrid WCCs. A
numerical procedure for constructing HWFs in a particu-
lar, “maximally localized gauge,” is given in Appendix C.

C. Chern number via HWF

The gauge field arising from the Berry potential (Eq. 8)
in a crystal is known as Berry curvature, and for a single
isolated band it is defined as

F = ∇k ∧ A(k), (11)
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where the wedge product in 3D is a usual cross product.
In a multi-band case a non-Abelian Berry connection [92]
is introduced

Amn,α = i 〈umk| ∂α |unk〉 , (12)

and the corresponding gauge covariant formulation of
Berry curvature in a multi-band case is

Fmn,γ = Fmn,γ −
i

2
εαβγ [Aα,Aβ ]mn . (13)

In 2D, or on a 2D cut of the 3D BZ, one can define a
Chern number [93] of a single isolated band as [23]

Cγ =
1

2π

∫

BZ

d2k Fγ(k), (14)

where γ indicates the component normal to the 2D sur-
face. The corresponding equation for an isolated set of
bands is given by

Cγ =
1

2π

∫

BZ

d2k Tr[Fγ ] =
1

2π

∫

BZ

d2k Tr[Fγ ], (15)

where the trace is taken over the band indices within the
set. It can be shown [68] that the same quantity can be
written in terms of the hybrid WCCs

C =
1

ax

(∑

n

x̄n(ky = 2π)−
∑

n

x̄n(ky = 0)

)
. (16)

Here the WCCs x̄(ky) are assumed to be smooth func-
tions of ky for ky ∈ [0, 2π]. This smoothness condition
is fulfilled by constructing hybrid WCC in the 1D maxi-
mally localized gauge [67]. However, the periodicity con-
dition is satisfied only modulo a lattice vector Rx = nax,
where n ∈ Z.

From this formulation one can see [80–84] how a non-
zero Chern number becomes an obstruction for defining
smooth and periodic Bloch states for the set of bands
in question. In 1D maximally localized WFs can always
be constructed [86, 87]. In particular, the parallel trans-
port procedure described in Appendix C produces WFs
that are the eigenstates of the projected position oper-
ator x̂ = P̂bX̂P̂b, where P̂b is the projector onto the
isolated bands [87]. In 2D, however, the projected po-
sition operators for the x and y coordinates in general
do not commute [79], and no set of WFs can be cho-
sen to be maximally localized in both dimensions at the
same time. Exponential localization, though, can still be
achieved in both dimensions, unless the Chern number
of the bands is non-zero [79, 81]. For a set of bands with
a non-zero Chern number it is impossible to find a set of
WFs exponentially localized in both dimensions: at least
one WF is bound to have a power law decay in at least
one direction in this case [80].

As mentioned above, the hybrid WFs are analogous to
1D WFs, but the 1D system here is coupled to external
parameters (momenta in the other directions). For such

a 1D system, the hybrid WF can still be chosen to be
the eigenstate of the projected position operator, hence
being exponentially localized in this direction. However,
to analyze the charge pumping driven by the external pa-
rameters, continuity of the hybrid WCC in these param-
eters is required. If a Bloch band has a non-zero Chern
number, the corresponding wave-function ψk cannot be
chosen to be a smooth function of k in the interior of the
BZ and still retain the periodicity condition ψk+G = ψk,
where G is a reciprocal lattice vector [94]. Thus, if one
insists on a smooth evolution of the hybrid WCC x̄(ky)
as a function of ky, the center of charge does not nec-
essarily return to the initial position after a period of
evolution Gy. However, crystalline periodicity guaran-
tees that the center returns back to its position modulo
a lattice vector, that is

x̄(ky) = x̄(ky +Gy) mod Rx (17)

Thus, Eq. (16) illustrates how much charge is pumped
through the 1D system during one continuous adiabatic
cycle of the external parameter ky.

This charge pumping is best understood as an exter-
nally induced change of electronic polarization of a 1D
system in Eq. 7. Using that expression of electronic po-
larization in terms of WCCs of a 1D system, and gener-
alizing it to hybrid WCCs, the expression for the Chern
number takes the form

C =
1

ea

(
Phe (2π)− Phe (0)

)
, (18)

where we introduced hybrid electronic polarization as

Phe (ky) = e
∑

n

x̄n(ky). (19)

According to the above, the value of HWCC are not
gauge invariant. However, the hybrid polarization, and
thus the Chern number, are gauge invariant. The Chern
number reflects the obstruction for the possibility to con-
struct maximally localized HWFs. Thus, Eq. 18 can give
a correct Chern number even without maximally local-
ized HWFs - other HWFs would work as well.

In 3D, the Chern number can be defined for any closed
2D cut of the BZ. Possible examples of such cuts are
shown in Fig. 1.

According to the discussion above the hybrid WCC
x̄(ky) is defined only modulo a lattice vector, reflecting
the periodicity of the lattice in real space. It is thus
convenient to put periodic boundary conditions on the
hybrid WCC of the form x̄(ky) = x̄(ky) + Rx, so that
x̄ represents a point on a circle S1 at each ky. This
point gives the position of the center of charge in the
unit cell for a given value of ky. Given that the WCCs are
assumed to be smooth functions of ky ∈ [0, 2π], the pump
can be visualized as the flow of WCCs on the surface
of the cylinder S1 × [0, 2π], as shown in Fig. 2. Since
the hybrid electronic polarization is a sum of all hybrid
WCCs, it is also defined on the surface of this cylinder.
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FIG. 1. Two examples (shaded) of possible closed 2D cuts in a
cubic Brillouin zone. Since periodicity is imposed at the Bril-
louin zone boundary, the surface in panel (a) is topologically
equivalent to a torus.

The Chern number is then associated with the number
of windings Phe (ky) performs around the cylinder when
ky is changed from 0 to 2π [67, 68]. Thus, the Chern
number can be associated with the number of unit cells
traversed by the net center of charge of all bands within
the pumping cycle, which can be equivalently thought of
as the number of electronic charges pumped across one
unit cell in the course of a cycle. This interpretation
makes the relation between the Chern number and the
Hall conductance explicit.

0 2π/a

ky

0

e · a

Pe
C = 0

C = 1

C = 2

FIG. 2. Sketch of some possible evolutions of polarization
(Pe(ky)) across the BZ, exhibiting different Chern numbers
C.

D. Wilson loops and gauge choices

An alternative physical understanding of the hybrid
WCCs was proposed in Refs. [66, 69], for the special
case of TR-symmetric systems. It was shown that the
eigenvalues of the projected position operator represents

the Wilson loop of the U(2N) non-Abelian Berry connec-
tion, where 2N is the number of occupied states in a TR-
symmetric insulator [95]. This Wilson loop approach was
later generalized to other topological phases [17–19, 70].
Here we discuss the differences between hybrid WCC and
the Wilson loop approaches.

The Wilson loop for the non-interacting insulating sys-
tems is defined [69] in terms of the projector onto the
Nocc occupied states as

P occ
k =

Nocc∑

j=1

|ujk〉〈ujk|. (20)

Given a closed curve C in k-space, discretized in L points
ki, i = 0, .., L− 1, the Wilson loop is computed as

W (C) =

L−1∏

i=0

P occ
ki (21)

and is a Nocc × Nocc matrix. Wilson loops are known
to be a gauge invariant quantity in quantum field the-
ory [96], and this is still the case in the present defini-
tion. Indeed, the gauge transformation of the form 4
leaves W (C) invariant. By taking the log of the eigen-
values of the Wilson loop at an arbitrary point on the
loop C (and normalized by 2π), one arrives at a special
gauge-invariant set of hybrid WCCs, which exactly co-
incide with those obtained from the maximally localized
WCC construction outlined in App. C.

From the theory of polarization [88] reviewed above
it is known that the WCCs are in general gauge depen-
dent. To reconcile this with the gauge-independence of
the Wilson loop, notice that the projector onto the oc-
cupied space can be equivalently considered to be a sum
of projectors onto different subspaces comprising the oc-
cupied space

P occ
k =

D∑

`=1

P
(`)
k , (22)

where D is the number of subspaces. Various examples
of such splittings are discussed below, but the simplest
of them is given by a large set of isolated bands, that is
composed of D smaller isolated sets. Then each of the
sets can be treated separately, and each of the projectors

P
(`)
k can be used separately to construct a Wilson loop
W`(C) for each of the isolated sets of bands separately.

The hybrid WCC obtained by diagonalizing the Wil-
son loops W` are in general different from the ones ob-
tained by diagonalizing the full loop W . This can be
seen by noticing that when constructing W with the

projector (Eq. 22), cross terms of the form P
(`)
ki
P

(`′)
ki+1

(` 6= `′) will appear, while they are absent when con-
structing W`’s separately. Note, that in accordance with
the theory of polarization, both constructions are phys-
ically equivalent, since the sum of the hybrid WCCs at
each point on the curve C will be the same for the two
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constructions (modulo a quantum), corresponding to 1D
electronic polarization.

At the risk of abuse of terminology we refer to the var-
ious ways of constructing the WCCs as a gauge freedom.
This is motivated by the definition of the WFs and hybrid
WFs – their construction depends on a particular choice
of representative Bloch states ψnk used to represent the
Hilbert space of interest.

III. GENERAL STRATEGY FOR IDENTIFYING
TOPOLOGICAL MATERIALS

While the net Chern number is protected by charge
conservation, less fundamental symmetries can exist and
also induce a topological classification. These topological
classes are in general not captured by the net Chern num-
ber. In this section, we propose a general route to robust
identification of such topological states in both real mate-
rials and models based on the notion of individual Chern
numbers [94]. We first explain what individual Chern
numbers are, and then show how they can be used to
track down the presence of symmetry-protected topolog-
ical order in materials and calculate the corresponding
topological invariants. One of the clear examples of such
a procedure are the mirror Chern numbers [49].

A. Individual Chern numbers

The notion of individual Chern numbers [94] is based
on the idea of splitting the Hilbert space spanned by
an isolated set of bands Hset into a collection of Hilbert
spaces

Hset =

N⊕

i=1

Hi (23)

in such a way that the Chern number associated with
each of these Hilbert spaces is an integer. This means
that the projector P set

k onto Hset is decomposed into pro-
jectors on the individual Hilbert spaces

P set
k =

N∑

i=1

P
(i)
k (24)

for any k on the 2D smooth and closed manifold M , on
which the bands are defined. The necessary condition for
the individual Chern numbers to be integral is that each

projector P
(i)
k is smooth on M [97].

The total Chern number of the set of bands [97]

Cset =
i

2π

∫

M

Tr
{
P set
k

[
∂k1P

set
k , ∂k2P

set
k

]}
dk1∧dk2 (25)

is then equal to the sum of individual Chern numbers

0

a

x̄1

c1 = 2

0

a

x̄2

c2 = −1

0

a

x̄3

c3 = 0

0 2π/a

ky

0

a
∑

i x̄i

Cset = 1

(a)
c1 = 1

c2 = 0

c3 = 0

0 2π/a

ky

Cset = 1

(b)

FIG. 3. Illustration of different gauge choices for a system
with N = 3 occupied bands and Cset = 1. Left panel: Bands
No. 1 and 2 have individual Chern numbers c1 = 2 and
c2 = −1. Right panel: Bands No. 2 and 3 have zero Chern
number, and thus c1 = Cset = 1

(see Appendix E)

Cset =

N∑

i=1

ci, (26)

where

ci =
i

2π

∫

M

Tr
{
P

(i)
k

[
∂k1P

(i)
k , ∂k2P

(i)
k

]}
dk1 ∧ dk2. (27)

An important example of such splittings of the Hilbert
space is the one with each Hi containing only a single
band |uk,i〉. If the projectors |uk,i〉〈uk,i| are chosen to
be smooth on the manifold M , each band is assigned an
integer individual Chern number. However, an actual
construction of a gauge (projector choice) that results
in integer individual Chern numbers is a complicated
task [98], since the gauge (and hence projectors) obtained
from diagonalization of the Hamiltonian numerically on
the mesh of k-points can have discontinuities around de-
generacy points in the energy spectrum. Moreover, in
accord with the above discussions of WCCs and Wilson
loops, one can manipulate the gauge choice to produce
a different decomposition of Hset with different values of
ci’s, as illustrated in Fig. 3.

Since the individual Chern numbers depend on a par-
ticular splitting of the Hilbert space, they lack physical
meaning, unless some physical constraints on the sub-
spaces Hi fix their values. These constraints are pro-
vided by the symmetries of the underlying Hamiltonian.
If the gauge used to split the Hilbert space into individual
Bloch states respects the symmetry (meaning that the
projectors resulting from the splitting respect the sym-
metry), a symmetry-protected topological phase could
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have at least some non-zero individual Chern numbers.
Thus, choosing the subspaces according to their symme-
try behavior could allow for a classification of symmetry-
protected topological states. Whether this classification
is unique or complete is, at present time, unknown.

An illustrative example here is provided by time-
reversal (TR) invariant systems [1, 8], where Bloch bands
come in Kramers pairs. Consider the case of a single
such pair. An individual Chern number can be associ-
ated with each of the two bands in the Kramers pair.
This is equivalent to splitting the Hilbert space spanned
by the Kramers pair into two subspaces

Pk = P
(1)
k + P

(2)
k . (28)

corresponding to projectors P
(i)
k that are smooth on M .

In the gauge that respects TR symmetry, the two pro-
jectors are related by

P
(1)
k = θP

(2)
−kθ

−1, (29)

for all k in M , where θ is the TR operator. Under this
constraint, the HWCCs need to come in pairs of TR-
symmetric momenta [67, 99], and the individual Chern
numbers of the two bands must be opposite (c2 = −c1).
In the quantum spin Hall phase, they are constrained to
be odd, while they are bound to be even in the Z2-even
phase [99], as illustrated in Fig. 5. It is TR-symmetry
that enforces the distinction between the two phases, and
no splitting of the Kramers pair in the Z2-odd phase sub-
ject to the TR constraint of Eq. 29, can produce vanishing
individual Chern numbers, thus proving the robustness
of topological phase protected by TR-symmetry. Due to
the particular symmetry of the HWCCs, however, it is
possible to distinguish the Z2-even and -odd phases even
without explicitly calculating the individual Chern num-
bers [66, 69, 99], as will be illustrated in Sec. IV B for a
realistic many-band case.

More illustrations of symmetry-protected individual
Chern numbers are provided below. The general ap-
proach is to construct HWCCs on certain surfaces in the
BZ in a gauge that respects a symmetry of the Hamilto-
nian, to see whether this symmetry protects non-zero in-
dividual Chern numbers. As shown below this approach
can be readily used to identify the known topological
phases of non-interacting systems.

B. Application to the search for topological
materials

Based on the properties of individual Chern numbers,
we outline several cases of this procedure that can po-
tentially predict topological materials. As previously dis-
cussed, for a symmetry-protected topological phase, the
gauge that respects the symmetry protecting the topol-
ogy results, in all the cases studied so far, in non-zero
individual Chern numbers. This implies a gapless flow
of HWCCs on some symmetry-respecting surfaces in the

BZ. While a robust confirmation of the possible pres-
ence of the gapless HWCC flow (and hence, a topological
phase) might require additional analysis in some cases,
its absence is often easy to see. Consequently, possible
candidate materials can be identified by screening the
high-symmetry planes in the BZ for the presence of a
gapless flow of the WCCs constructed in the symmetry-
preserving gauge.

Once a candidate material is identified, the next step
is to uniquely define its topology. In some (but not
all) cases this is simply a matter of calculating the to-
tal Chern number or the Z2 invariant on specific surfaces
in reciprocal space. In a more general case, this is done
by splitting the Hilbert space into subspaces according
to their symmetry behaviour, as described in Appendix
F.

IV. APPLICATION TO INSULATORS

In this section, we discuss and illustrate how the Wan-
nier centers flow is applied to insulators. The discus-
sion covers the cases of Chern (quantum anomalous Hall)
insulators, TR-symmetric Z2 topological insulators and
crystalline topological insulators, including those, where
topology is protected by rotational symmetries.

A. Chern insulator

Chern insulators are 2D materials with broken TR-
symmetry, in which the occupied Bloch bands have a
non-zero total Chern number, which is the topological
invariant characterizing this phase [21–23]. The Chern
number takes on integer values, and these values corre-
spond to the integer Hall conductance in units of 2e2/h
exhibited by the material in the absence of an external
magnetic field. Due to the presence of robust chiral edge
states, these materials are expected to be useful in many
technological applications . Several compounds were pre-
dicted to host this phase [100–109], and experimental ev-
idence of its existence in some of them was found exper-
imentally [110]. However, no stoichiometric crystalline
material was experimentally identified yet, and the quest
for a wide-gap Chern insulator material is still ongoing
at the time of writing.

The search strategy, supplemented by Z2Pack, has
what we hope will be two promising directions. One
is to simulate thin films of magnetic materials directly
and compute the Chern number of such effectively 2D
systems. The total hybrid polarization is tracked and
plotted as a function of momentum, giving the value for
the topological invariant via the hybrid Wannier func-
tion approach described above in Sec. II C. Such a route
to search for Chern insulators should also be taken when
simulating heterostructures, such as quantum wells, or
interfaces that are candidate for this phase. Another can-
didate platform for realizing a Chern insulator is provided
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FIG. 4. Sketch of a cubic Brillouin zone. In an insulator, the
Chern numbers C1, ..., CN associated with surfaces 1, ..., N
orthogonal to the kz direction (shown in red) are all equal.
The same is true for surfaces perpendicular to kx or ky.

by thin films of magnetic (semi)-metals, where quantum
confinement due to finite size can lead to a bulk gap open-
ing, making the thin film insulating. Such simulations
require the use of supercells, so the direct implementa-
tion can be computationally expensive when a realistic
description of the system requires the use of methods
beyond the standard density functional theory, such as
hybrid functionals [111–114] or GW [115]. In such cases
one can use Z2Pack to identify the Chern numbers for
the corresponding tight-binding models.

A different approach, especially suitable for the search
for a stoichiometric crystalline Chern insulator, does not
require the use of supercells and consists in finding a 3D
material with a 3D quantum Hall effect - which is nec-
essarily a layered compound of 2D Chern insulators. It
is motivated by the observation, that in an insulating
material 2D cuts of the 3D BZ represent a BZ of some
imaginary 2D insulator. Thus, Chern numbers can be
defined on different 2D cuts in the BZ, giving a classifi-
cation of magnetic materials in terms of a set of 3 Chern
numbers [116].

For example, consider a cubic magnetic insulator with
a cubic BZ as shown in Fig. 4. Taking 2D square cuts of
the BZ at fixed values of ki, i = x, y, z allows to define
a 2D Chern number on any of these cuts. Moreover, one
can argue that the cuts taken at ki and ki + δki, have
the same Chern number, since in going from the 2D cut
at ki to the one at ki + δki, the band gap does not close
on the 2D cut, and thus the 2D systems at these two
momenta represent 2D systems that can be adiabatically
connected without closing the band gap. Thus the Chern
number of all the 2D cuts taken for a certain ki have to
be the same.

More generally, the Chern number is invariant under
an adiabatic change in the manifold. Also, the Chern
number of a union of disjoint manifolds is the sum of their
Chern numbers. Using these two simple rules, the Chern
number of other closed manifolds can be inferred from the

three described above. For example, the plane defined by
kx = ky can be smoothly transformed into a sum of the
two planes at kx = 0 and ky = 2π/a. Once a BZ cut
with a non-zero Chern number is identified, the surfaces
of the crystal that exhibit the quantum anomalous Hall
effect are known.

While these two methods so far represent wishful
thinking in terms of finding materials, we hope that a
thorough search of databases based on these methods
and using our code to compute Chern numbers will lead
to the discovery of the first Chern insulator.

B. Z2 phases

Here we discuss the numerical determination of the Z2

topological phases in materials. The numerical method
for computing this topological invariant was first intro-
duced in Ref. [67] in the context of TR-symmetric topo-
logical insulators [1]. However, it can be equally applica-
ble to any system, in which the Hilbert space of interest
can be split into two symmetry-related subspaces, each
of which has an odd individual Chern number. We sum-
marize the method of Ref. [67] below, and put it in the
context of individual Chern numbers.

1. Z2 classification due to TR symmetry

For 2D systems, the Z2 classification distinguishes
two topological phases. There are only two classes of
gapped Hamiltonians that cannot be adiabatically con-
nected without closing the band gap or breaking the clas-
sifying symmetry.

The standard example here is given by TR-symmetric
topological insulators. These are classified into two dis-
tinct classes [1] depending on the number of Kramers
pairs of edge states appearing at a semi-infinite 1D edge
of such an insulator. By changing the Hamiltonian adia-
batically while preserving TR symmetry, these Kramers
pairs can only be removed from the edge spectrum in
pairs. Thus, Hamiltonians hosting an odd number of
Kramers pairs of edge states at the boundary are topo-
logically distinct from those that host an even number of
such pairs [1].

The bulk bands in these insulators come in Kramers
pairs of states related by TR-symmetry. The case of
a single occupied Kramers pair was briefly mentioned
above in Sec. III A. For an arbitrary number of Kramers
pairs, the occupied Hilbert space Hset is split into two
subspaces H1,2, such that the projectors onto each of
them are smooth and related by TR-symmetry, as in
Eq. 29. Now, however, both P1 and P2 are projectors
onto a set of bands, rather than just a single band. In
TR-symmetric systems the net Chern number has to van-
ish, since it is odd under TR. Thus, the two subspaces
related by TR-symmetry necessarily have opposite indi-
vidual Chern numbers.
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When choosing H1,2, each Kramers pair is split into
two states that are assigned to different subspaces. As
long as the two states are mapped onto each other by
TR-symmetry, it does not matter how this assignment
of states to the subspaces is done. Indeed, the states
can exchange subspaces. Since the states carry opposite
Chern numbers, this exchange can only change the indi-
vidual Chern numbers C1,2 of the subspaces by an even
number. Thus, a Z2 invariant can be defined as

∆ = (C1 − C2)/2 mod 2. (30)

For the topological quantum spin Hall phase, C1,2 are
odd, so that TR-symmetry does not allow for the con-
struction of smooth Bloch states spanning both these
subspaces [66, 117]. Since the Chern numbers of the sub-
spaces represent the change of their corresponding elec-
tronic polarizations, the invariant ∆ can be defined via
the notion of TR-polarization, defined in Ref. [99].

The Z2 phases of 3D materials are classified by a set
of indices [9–12]

ν; (νx, νy, νz), (31)

defined through the 2D invariants on the TR-invariant
planes in the BZ

ν = ∆(ki = 0) + ∆(ki = 0.5) mod 2 (32)

νi = ∆(ki = 0.5), (33)

where ki is in reduced coordinates. A system is called
a weak topological insulator if any of the νi is non-zero
but ν = 0, while a system with ν = 1 is referred to as a
strong topological insulator [9].

Note, that the definition is in terms of invariants ∆ of
those cuts of the 3D BZ that can be considered as BZs
of some 2D TR-symmetric insulators. A 2D Z2 invariant
∆ can be defined on any plane in the BZ that for each
point k also contains its TR-image −k.

2. Z2 phase in terms of hybrid Wannier functions

In practice, splitting the two occupied space of a
TR-symmetric insulator into two subspaces H1,2 related
by TR, and spanned by smooth projectors is a non-
trivial task. While in the presence of additional sym-
metries [118, 119] such a splitting is possible, it is prefer-
able to have a numerical method for computing ∆, which
does not require an explicit splitting of the Hilbert space.
Such a formulation is given in terms of HWCCs [67], and
we recap it here.

In a gauge that respects TR-symmetry, the HWCC
come in pairs

x̄2j−1(ky) = x̄2j(−ky) mod ax, (34)

for any given ky. Consequently, they are equal up to a
lattice constant at the special points ky = 0, π/ay and

0 π/a 2π/a
0

a

x̄

(a)

0 π/a 2π/a
0

a

x̄

(b)

0 π/a 2π/a

ky

0

a

x̄

(c)

FIG. 5. Different possible WCC evolutions (red and blue
lines) for a system with 2 occupied bands and time-reversal
symmetry. The Z2 invariant can be calculated from the num-
ber of WCC crossings L of an arbitrary line xcut(ky) (dotted
green line) across half the BZ. (a) Both WCC have winding
number 0, corresponding to a Z2 trivial state (L = 0,∆ = 0).
(b) WCC with winding numbers ±1, corresponding to a Z2

non-trivial state (L = 1,∆ = 1). (c) WCC with winding
numbers ±2. Because the crossings at momenta other than
ky = 0, π are not protected, the system is adiabatically con-
nectable (dashed black lines) to the one in (a) (L = 2,∆ = 0).

2π/ay. This condition allows for two distinct topological
phases, illustrated in Fig. 5 for a single Kramers pair.

The Z2 invariant is computed by considering the
HWCCs x̄(ky) for only half of the momentum values
(that is ky ∈ [0, π/ay]), since the other half is symmetric
in the TR-respecting gauge (for each HWCC at ky there
exists its TR-image at −ky). The invariant is given by
the number of times L any line xcut(ky) crosses a HWCC
line when going from ky = 0 to ky = π/ay [67, 69] (see
Fig. 5). This number will be even if the system is in a Z2-
trivial state and odd otherwise. Thus, the Z2 invariant
is simply

∆ = L mod 2. (35)

For reasons of numerical convergence and to avoid plot-
ting the HWCCs, it is best to define xcut(ky) as the
largest gap between any two HWCCs at a given ky [67].
The situation is illustrated in the Fig. 6 for a single
Kramers pair, where a color scheme shows the possi-
ble splitting of the occupied Kramers pair into two TR-
related states with opposite individual Chern numbers.
On a discrete mesh, L is computed by counting the num-
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FIG. 6. Sketch of a Z2 calculation. (a) Continuous illus-
tration of HWCCs. The largest gap (blue line) between any
two HWCC (dashed lines) crosses a single HWCC (red dot).
(b) Discrete illustration of HWCCs. The crossing between
HWCC (circles) and the largest gap (blue rhombi) is found
by searching for a HWCC lying between neighboring gaps.

ber of HWCC lying between neighboring values of the
largest gap xcut [67]. The details of the numerical calcu-
lation are described in Appendix B.

For completeness, we illustrate the use of Z2Pack (see
Sec. VI for particular details) on the prototypical ex-
ample of Bi2Se3. The Z2 invariant is calculated for the
planes at ky = 0 and 0.5, with HWCCs calculated along
kz, and kx acting as a pumping parameter. Because
Bi2Se3 is symmetric with respect to permutations of the
unit cell vectors, this is sufficient to fully determine the
topological state [67].

This calculation was performed with the VASP soft-
ware package [120], using the generalized gradient ap-
proximation of the PBE [121] type, and the PAW po-
tentials [122, 123] supplied by VASP. The self-consistent
calculations were performed with a 12x12x12 k-mesh, an
energy cut-off of 300 eV and the experimental lattice pa-
rameters [124]. The results, shown in Fig. 7, illustrate
a non-trivial ∆ for the ky = 0 plane and a trivial one for
the ky = 0.5 plane. Thus, Z2Pack identifies Bi2Se3 as
a strong topological insulator, in agreement with previ-
ous calculations [47] and the parity-eigenvalue argument
of Ref. [125]. Note that the illustration is provided here
for clarity only, and no manual inspection of the plot is
needed. The calculation of the Z2 invariant is fully auto-
mated in the code in accord with the method of Ref. [67],
giving the invariant value as an output.

C. Crystalline topological materials

We now discuss the topological phases protected by
crystalline symmetries. In principle, any crystalline sym-
metry can induce a topological classification, however,
to date only few such classifications are known [15–19].
We expect Z2Pack to be most useful for identification of
materials with yet unknown topologies, which, in turn,
would accelerate the progress towards full classification
of possible crystalline topological phases and the cor-
responding low-energy excitations. The two examples

0

a

z̄

(a)

0 π/a
kx

0

a

z̄

(b)

FIG. 7. Evolution of HWCCs (circles) and their largest gap
function (blue rhombi) for ky = 0 (a) and ky = 0.5 (b) planes
for Bi2Se3. The plane at ky = 0 is topologically non-trivial.

of crystalline topological phases we consider below are
those of the mirror-symmetric and four-fold rotational
(C4) topological insulators.

1. Mirror-symmetric topological phases

The presence of mirror symmetry in the crystal struc-
ture of a material results in the presence of planes in
the BZ that are mirror-symmetric. This means that the
Bloch states on these planes are eigenstates of a unitary
matrix M that describes the action of mirror symmetry.
In the presence (absence) of spin-orbit coupling this ma-
trix squares to −1 (1), due to spin rotation. This means
that the eigenvalues of M are ±i (±1) for spinor (scalar)
Bloch states on the mirror-symmetric planes.

Thus, one can split the occupied subspace Hset on the
mirror-symmetric planes into two subspaces, according
to their mirror eigenvalue. For example, with spin-orbit
accounted the two projectors P̂±i split Hset into H±i
consisting of Bloch states with M eigenvalues ±i corre-
spondingly. The individual Chern numbers C±i are then
defined for each of these subspaces. Note that the split-
ting according to the mirror eigenvalue fixes the individ-
ual Chern numbers uniquely, and each of the subspaces
has Z classification. This is different from the case of
TR-symmetry considered above, where all even/odd in-
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dividual Chern numbers were equivalent from the point
of view of the Z2 classification.

The work of Ref. [49] introduced the mirror Chern
number defined as nM = (C+i−C−i)/2. This number can
be used as a Z topological invariant for the systems with
TR-symmetry, where Ci = −C−i (assuming the mirror-
symmetric plane is also TR-symmetric). In magnetic sys-
tems, however, the two individual Chern numbers are not
necessarily equal, so that the invariant can be given by
two integers (Ci, C−i) and the corresponding classifica-
tion is Z× Z.

A TR-symmetric example of a mirror-symmetric crys-
talline topological insulator is SnTe, in which the topo-
logical phase is protected by the mirror symmetry of its
rocksalt structure [126, 127]. The mirror Chern number
was predicted to be nM = 2 for this material [126]. The
individual Chern numbers C+i and C−i are defined on a
mirror-invariant plane (ΓL1L2) shown in Fig. 8(a).

The presence of a topological phase can immediately
be inferred by computing HWCCs (running Z2Pack) on
the mirror plane. The result of this calculation is shown
in Fig. 8(b). The absence of a gap in the full HWCCs
spectrum, which is a superposition of the HWCCs of both
+i and −i mirror eigenstates, is indeed a strong indicator
for the presence of a topological phase.

To compute the individual Chern numbers C+i and
C−i with Z2Pack, it is first necessary to classify each
Hamiltonian eigenstate according to the mirror eigenval-
ues +i or −i. This is done by computing and diagonaliz-
ing at each k the matrix 〈ψn(k)| M̂ |ψm(k)〉, where M̂ is
the mirror operator, for all occupied states ψj(k). Using
the unitary transformation U(k) which diagonalizes this
matrix, a set of states with definite mirror eigenvalues
is constructed as |ψ̃m(k)〉 =

∑
m Umn(k)|ψ̃n(k)〉. These

states are then separated into two groups corresponding
to the ±i eigenvalues, and Z2Pack is applied to each sub-
space to compute C+i = +2 and C−i = −2 as shown in
Figs. 8 (c) and (d), using the numerical procedure de-
scribed in Appendix A.

For this illustration, ab-initio calculations based on
density-functional theory (DFT) [128, 129] were per-
formed, employing the generalized-gradient approxi-
mation (GGA) and Perdew-Burke-Ernzerhof exchange-
correlation functionals [121] as implemented in the
Quantum-ESPRESSO package [130]. Spin-orbit ef-
fects were accounted for using fully relativistic norm-
conserving pseudo-potentials acting on valence electron
wave functions, represented in the two-component spinor
form [131]. The self-consistent field calculation was per-
formed with a 10×10×10 k-mesh, a plane-wave cut-off of
50 Ry and experimental lattice parameters of Ref. [132].

2. C4 topological insulator

Certain topological phases are protected by rotation
point-group symmetry [15, 17–19, 133]. The first model
to realize such a phase was proposed by Fu [15], and

FIG. 8. (a) Brillouin zone of SnTe showing the mirror planes
along which the HWCCs are computed. (b) HWCCs in
the mirror plane. (c)-(d) HWCCs (circles) and their sum
(rhombi) for the i and −i eigenstates in the mirror plane.

it considered spinless fermions with TR-symmetry sup-
plemented with an additional four-fold rotational sym-
metry C4. The Z2 classification proposed in Ref. [15]
arises for bands that belong to two-dimensional repre-
sentations along the high-symmetry lines Γ-Z and A-M
of the BZ shown in Fig. 9 a (the C4-axis is assumed to
coincide with the z-direction). For the particular model
of Ref. [15], these bands were obtained by considering px
and py orbitals on a tetragonal crystal lattice with two
inequivalent sites, and it was argued that the considera-
tion is also relevant for the bands formed by the dxz and
dyz orbitals.

In real materials such a phase may occur for systems
with weak spin-orbit coupling, where the bands near the
Fermi level have primarily px-py or dxz-dyz character.
No real example for this phase was reported to date, and
we hope that Z2Pack will encourage people to perform a
thorough search of existing materials for the emergence
of this novel topology.

The product of a rotation Ĉ4 and spinless TR-operator
τ2 = 1 forms a symmetry that is antiunitary and ensures
double degeneracy of bands at high-symmetry points due
to the constraint (Ĉ4τ)2 = −1 for bands of C4 eigen-
value ±i [15]. This is analogous to the case of spin-
ful TR-symmetric insulators, where the antiunitary TR-
operator θ, subject to the condition θ2 = −1, guaranteed
Kramers degeneracy at TR-symmetric momenta in the
BZ. To continue this analogy, notice that the Z2 invari-
ant of the TR-insulators is defined on a plane connecting
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TR-invariant lines. Thus, the plane for the definition of
the invariant in this case should connect lines that are
invariant under the product symmetry C4 ∗ τ .

Such a plane is given by the one shown in Fig. 9,
since the double degeneracy of bands is present at the
high-symmetry points Γ = (0, 0, 0), M = (0.5, 0.5, 0),
Z = (0, 0, 0.5) and A = (0.5, 0.5, 0.5). Due to the C4 ∗ τ
symmetry the HWCCs constructed along lines in kz,
corresponding to Γ-Z and M -A directions, are degen-
erate [17]. Hence, the Z2 classification on the plane for
this model is analogous to that of a single Kramers pair
of TR-symmetric insulator on a TR-symmetric plane, as
considered in Sec. IV B.

The methods developed above for computing Z2 topo-
logical invariants are applicable in this case. The cor-
responding HWCCs flow is shown in Fig. 9 b for the
topological phase of the model of Ref. [15]. From the
gapless flow of the HWCCs one can see that the individ-
ual Chern numbers C1,2 = ±1 can be assigned to two

subspaces mapped onto each other by Ĉ4 ∗ τ .
The search for a real material candidate for such a

phase can proceed as follows. A scalar-relativistic band
structure calculation is first performed for compounds of
light atoms with small spin-orbit coupling with crystal
structures that contain a C4-rotational axis. The spec-
trum of HWCCs is obtained on a plane shown in Fig. 9 a.
Since bands with characters other than px-pz and dxz-dyz
are usually overlapping with these ones, the topological
phase can become not immediately visible in the HWCC
spectrum. However, if the HWCCs exhibit strong wind-
ing in the spectrum (see Sec. V A for a discussion of this
indication of the existence of the topological phase in
metals), this might be a hint of the C4-topology buried
under HWCCs coming from the non-topological part of
the spectrum. In this case, a tight-binding model can be
derived, for example using the Wannier90 software pack-
age [134, 135] or based on symmetry arguments and pa-
rameter fitting, that projects the band structure onto the
relevant orbitals (px-py or dxz-dyz), and the WCCs anal-
ysis of the tight-binding model will uncover the phase.

Finally, we notice, that the C4-phase illustrated above
is only one of the possible phases protected by rotational
point group symmetry operations. We refer the reader to
the works of Refs. [15, 17–19] for a thorough discussion
of these phases and the corresponding Wilson loops.

V. APPLICATION TO METALS

Here we discuss how the HWCC technique and Z2Pack
can be used to identify topological phases in metallic
band structures. The discussion is illustrated with the
examples of Dirac [136, 137], type-I and type-II Weyl
semimetals [73, 74, 138], as well as those of some higher-
order topologically protected crossings [139, 140].

The Weyl [44, 63, 72, 141–144] semimetal phase is char-
acterized by a point-like crossing of bands with a linear
spectrum. Topologically, this crossing is characterized by

FIG. 9. (a) The Brillouin zone for the model of Ref. [15]. The
C4∗τ symmetry maps one leg of the indicated bent plane onto
the second. (b) HWCCs (circles) and the largest gap function
(rhombi) shown for the C4-symmetric plane of panel (a).

a quantized topological charge, meaning that it is either
a source or sink of Berry curvature, depending on its chi-
rality. As such, Weyl nodes can only form or annihilate
in pairs of opposite chirality. The presence of Weyl nodes
in the bulk leads to the appearance of Fermi arcs on a
surface of the material, connecting the projections of the
bulk points of opposite chirality onto the surface. In the
presence of a magnetic field, Weyl points exhibit a chiral
Landau level [36, 145, 146], which can be a source of the
reduced or negative magneto-resistance observed in Weyl
semimetals [43, 147–149].

Recently, a new, type-II, kind of Weyl semimetals has
been proposed [73]. These type-II Weyl nodes appear at
the touching points of electron and hole pockets. As a
consequence, they are expected to exhibit an anisotropic
chiral anomaly [73]. That is, the presence or absence of
a chiral anomaly depends on the direction of the applied
magnetic field, aligned with the electric field.

In Dirac semimetals [61, 137, 150, 151], the nodal
points are formed by doubly degenerate bands in sys-
tems, symmetric under the product of TR and inversion
P ∗T . This symmetry maps a Weyl point onto itself, but
with opposite chirality, so that a Dirac point consists
of two superimposed Weyl fermions of opposite Chern
numbers that are protected from annihilation by lattice
symmetries such as Cn, where n > 2.

Other point-like topological degeneracies can exist in
metallic spectra [152–154]. However, all of these phases
can be viewed as either a certain superposition of Weyl
points, just like insulating topological phases can be
viewed as symmetry dictated superpositions of bands
with non-zero individual Chern numbers, or as Weyl
points, intersected by an additional band. The method-
ology outlined below is suited to identify such types of
topologically protected degeneracies.

A. Generalized topological classification

In semimetals, the existence of a direct band gap clo-
sure means that the manifold formed by the occupied
bands is not well-defined. This seemingly contradicts the
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FIG. 10. (a) HWCCs of WTe2 for ky = 0 plane [73]. A nearly
gapless flow of HWCCs indicates the presence of topologically
non-trivial features in the band structure close to this plane.
(b) HWCCs of MoTe2 for kz = 0 plane [74]. The presence of
a band gap closure is visible as a discontinuity in the HWCCs
evolution, and occurs at a momentum, corresponding to the
position of a type-II Weyl point in this material.

definition of topologically distinct states because the no-
tion of topologically equivalent states requires them to
be adiabatically connectible without a direct band gap
closure. This problem is avoided by restricting the con-
sideration to a specific 2D manifold M within the BZ,
which does not contain a direct band gap closure. Two
states are then considered topologically equivalent on M
if they can be adiabatically connected without a direct
band gap closure occurring on M . Using this generalized
notion of topological classification, the methods discussed
previously for identifying a general topological phase in
insulators can be generalized to the Fermi surfaces of
metals.

The search for manifolds in metallic BZs, on which
the bands have topologically non-trivial features, can be
a challenging task. It is aided a lot by the fact that
the HWCC technique often reveals hints of non-trivial
topology on manifolds, where the band structure is topo-
logically trivial, but close to a phase transition. For ex-
ample, Fig. 10 (a) illustrates HWCCs obtained on the
ky = 0 plane in WTe2. While the spectrum of HWCCs is
gapped, the presence of kinks and the narrow gaps hints
at the possible presence of the topologically non-trivial
features nearby. Indeed, it was shown in Ref. [73] that
type-II Weyl points exist in this material in the close
vicinity of this plane.

Furthermore, the presence of a band gap closure within
the manifold M is revealed as a divergence in the
HWCC calculation, which can be detected by Z2Pack.
This is illustrated for another type-II Weyl semimetal,
MoTe2 [74], in Fig. 10, which shows the divergence of the
HWCCs lines obtained with Z2Pack on the kz = 0 plane
in the BZ. This divergence is due to the four type-II Weyl
points that appear in this plane owing to the existence
of the product symmetry of a C2-rotation around z and
TR θ [155]. The way of finding Weyl points and other
degeneracies in the high symmetry planes by tracking di-

vergencies in the Z2Pack calculation is especially useful
for a high-throughput search of topological metals.

B. Chern and Z2 invariants in metals

The first and most straightforward way to examine
metallic band structures for the presence of non-trivial
topologies is to compute the Chern and Z2 invariants de-
scribed above for insulators on planes in the metallic BZ
where the bands are gapped.

For magnetic metals, for example, one should compute
Chern numbers on various planes (see Fig. 4). A change
in the value of the Chern invariant when going between
the adjacent planes in k-space indicates the presence of a
topologically protected degeneracy in between the planes,
such as a Weyl point. An example of such a material is
HgCr2Se4 [156].

A similar argument holds for TR-symmetric metals.
The Z2 number can be computed on the standard TR-
symmetric planes (ki = {0, 0.5}), and for inversion-
(a)symmetric materials a change in its value suggests the
presence of a Dirac point (a pair of Weyl points) in be-
tween the planes. We illustrate this point here by show-
ing the use of Z2Pack to identify the Dirac semimetal
phase. We use BiNa3 [61, 150] as a material example.

This material crystallizes in the centrosymmetric
hexagonal P63/mmc structure and exhibits a band in-
version at Γ, similar to the band inversion observed in the
Z2 topological insulators Bi2Se3 and Bi2Te3 [47]. How-
ever, this material is not gapped; its Fermi surface con-
sists of two four-fold degenerate Dirac points located at
kd = (0, 0,±0.29πc ) (see Fig. 11 (a) and (b)) correspond-
ing to two overlapping Weyl points of opposite chirality.

The Dirac points are formed, since the Weyl points of
opposite chirality are protected from gapping each other
by a rotational symmetry [61, 157]: the two doublets
crossing along Γ-A belong to different irreducible repre-
sentations of the little group of the k-vectors k = (0, 0, u)
(C6v). The topology of such materials can be captured
with Z2Pack by computing the Z2 topological invariants
of two TR-invariant planes located above and below the
3D Dirac points as shown in Figs. 11 (c) and (d).

For TR-symmetric materials with no inversion sym-
metry, the change in the Z2 value on the TR-symmetric
planes in the BZ indicates the presence of Weyl points.
An example of such a Weyl semimetal is TaAs [44,
142, 144, 158]. This material crystallizes in the non-
centrosymmetric body-centered tetragonal I41md struc-
ture. It is a semimetal possessing 24 Weyl points near
the Fermi level [44, 142, 144, 158]. Due to TR-symmetry,
these 24 points come in 12 pairs. Four symmetry-related
pairs reside in the kz = 0 plane and the remaining eight
are located symmetrically about the [100] and [010] mir-
ror planes at kz = ±0.59kΓZ (marked with crosses and
stars in Fig. 12 (b)).

The presence of Weyl points in the TR-symmetric
band structure can be identified with Z2Pack. For TaAs,
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FIG. 11. (a) Brillouin zone of BiNa3. The red crosses show
the position of the two 3D Dirac points. (b) Band structure of
BiNa3. (c)-(d) HWCCs (circles) and the largest gap function
(rhombi) for the BZ cuts kz = 0 and kz = π/c.

HWCCs were obtained for the ky = 0 plane (shown as
[100] in Fig. 12 (b)) and the result is shown in Fig. 12 (c).
The corresponding Z2 invariant is non-trivial. Note, that
while in the context of TR-symmetric topological insula-
tors the TR-planes used to compute the topological in-
variants are those defined by ki = {0, 0.5}, the Z2 invari-
ant is well-defined on any section of the BZ that for any
point k also contains the point −k, and that connects
lines related by a reciprocal lattice vector. Thus, one can
define a Z2 invariant on a kx = ky plane (shown as [110]
in Fig. 12 (b)). The corresponding invariant is trivial
in TaAs, as illustrated by the evolution of the HWCCs
on the half-plane from Γ to the TR-invariant point X in
Fig. 12 (d) [159].

Moreover, the cuts of the BZ do not need to be pla-
nar to define a Z2 invariant. As mentioned previously in
Sec. IV C 2, the only requirement for a Z2 invariant is
that the surface connects three TR-invariant lines, mak-
ing the HWCC on these lines doubly degenerate. This
allows for a more complete characterization of the Z2

topology using curved surfaces. In fact, identifying topo-
logical invariants on such planes allows to guess the pos-
sible connectivities of the Fermi arcs on the surfaces of
topological semimetals.

As an example, consider the case of WTe2 [73].
Fig. 13 (a) illustrates the locations of the type-II Weyl
points in the kz = 0 plane, of which this material has
8. The Z2 invariant is trivial on all TR-invariant planes
ki = 0 and 0.5 except kz = 0, where it is undefined
due to the presence of band gap closures. Additionally,

FIG. 12. (a) Brillouin zone of TaAs. (b) Top view of the
Brillouin zone showing the position of the 24 Weyl points
with chirality +1 (red) and -1 (blue) (crosses are used for
Weyl points in the kz = 0 plane, and stars designate Weyl
points with kz = ±0.59kΓZ). (c)-(d) HWCCs (circles) and
the largest gap function (rhombi) along the [100] mirror plane
and [110] glide plane shown in (b).
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FIG. 13. (a) Cut through the BZ of WTe2 at kz = 0. The
eight WPs are indicated, as well as the curved surface used
to calculate the Z2 invariant (blue line). The surface extends
in kz direction. (b) Evolution of WCC (blue dots) and their
largest gaps (red rhombi) along the curved surface indicated
in panel (a), exhibiting a non-trivial Z2 invariant.

the Z2 invariant was calculated on a TR-invariant curved
surface passing in between Weyl points, as illustrated in
Fig. 13 (a), where it was found to be non-trivial. Thus,
this topology cannot be characterized from the planes at
ki = 0, 0.5 alone.
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C. Existence and chirality of Weyl Fermions

Next we show that the chirality of a Weyl point, as
well as other topological point-crossings, can be calcu-
lated directly as the Chern number on a closed surface
enclosing the node. This provides a simple and reliable
way of determining the nature of nodal points.

Let us first calculate the Chern number on a sphere
enclosing a Weyl point. The Hamiltonian for an isotropic
(upon possible rescaling and rotations) 3D type-I Weyl
point located at the origin is:

H(k) =

3∑

i=1

kiσi (36)

with two energy states ±k. The lower-energy eigenstate
(E = −k) as a function of the momentum (kx, ky, kz) =
k(sin θ cosφ, sin θ sinφ, cos θ) is:

ψk =
1√

2(1− cos(θ))

(
1− cos θ
− sin θeiφ

)
(37)

Note that the eigenstate is smooth and well-defined ev-
erywhere except for θ = 0. Since

lim
θ→0+

sin θ√
1− cos θ

=
√

2 (38)

the eigenstate takes the following form at the north pole
k = (0, 0, 1):

ψk=(0,0,1) =

(
0
−eiφ

)
(39)

which means it is multi-valued. In other words, different
values of φ, although describing the same momentum,
correspond to unequal values for the wave function. The
wave function is thus ill-defined in this gauge at the north
pole; this is also the point where the Dirac string between
the monopole (Weyl fermion) in the center of the sphere
and infinity crosses the Fermi surface. Of course, this is
just a gauge choice - by making a gauge transformation
we can move the position of the intersection of the Fermi
surface with the Dirac string to wherever we want on the
sphere.

The existence of a Weyl fermion can be verified by
calculating the flux of Berry curvature through a surface
enclosing it. Choosing a sphere of unit radius, the Berry
vector potential is given by

A(θ, φ) = i 〈ψk| ∇k |ψk〉 = − sin θ

2(1− cos θ)
eφ (40)

The Chern number is thus given by

C =
1

2π

∫

Ω

[∇×A] · dS = (41)

=
1

2π

2π∫

0

dφ

π∫

0

dθ

[
∂

∂θ

(
− sin2 θ

2(1− cos θ)

)]
= 1 (42)

FIG. 14. Loops around a sphere on which WCC are com-
puted. Each loop circles the sphere in mathematically posi-
tive direction at a constant azimuthal angle θ. The loops go
from the south pole (θ = −π) to the north pole (θ = 0).

Since the Chern number cannot change under smooth
deformations of the surface as long as the bands remain
gapped on it, the argument can be generalized to any
closed surface. The same is true for adiabatic changes in
the Hamiltonian, which cannot change the Chern number
on the surface without closing the band gap on the sur-
face. Consequently, the Chern number on a sphere can
be used to confirm the existence of a Weyl point within
the sphere, and determine its chirality. This illustrates
that Weyl points can be viewed as a quantized topological
charge, which acts as a source or sink of Berry curvature.

As described in Sec. II C a Chern number on any closed
2D manifold can be calculated by tracking the evolution
of the sum of HWCC. In the case of a sphere, the HWCC
can be computed on loops around the sphere, as illus-
trated in Sec. 14. The sum of HWCC is then tracked as
a function of the angle θ. For θ = −π and 0, the loop
is just a single point. As a consequence, the bands do
not acquire any phase in the parallel transport, and the
sum of HWCC must be zero. This ensures the values for
θ = −π and 0 to be the same, even though the two loops
are not equivalent lines in the BZ.

This method also works for topological crossings other
than standard Weyl points. For example, consider an
effective Hamiltonian [139, 140]

Heff(k) =

(
kz (k−)n

(k+)n −kz

)
(43)

where n ∈ N and k± = kx ± iky. The two bands will
have an n-th order touching point at the origin in the
kz = 0 plane, while the crossing is linear in the kz direc-
tion. The results for linear, quadratic and cubic touching
points are illustrated in Fig. 15. Using the method of
computing HWCCs on a sphere described above, as im-
plemented in Z2Pack, we found that the Chern number
for such an effective Hamiltonian is C = n, which agrees
with theoretical considerations of Refs. [139, 140]. A few
particular cases are illustrated in Fig. 15.

In type-II Weyl points [73], the energy spectrum is
tilted in such a way that their Fermi surface becomes
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FIG. 15. The evolution of polarization around linear (a, n=1),
quadratic (b, n = 2) and cubic (c, n = 3) touching points in
Heff.

open. Unlike for type-I Weyl point, where the FS is a
sphere around the node, the topological charge of the
FS cannot be used to determine its chirality. However,
the method described above is not linked to the Fermi
surface topology. Indeed, the chirality of a type-II Weyl
point can still be determined by considering the lower-
lying bands on a surface enclosing the point. In fact,
type-II and type-I Weyl points of the same chirality can
be adiabatically connected, which means the associated
Chern number of the surface must be the same. On the
other hand, this means that the type of a Weyl point
cannot be determined by means of calculating topological
invariants.

−π 0

θ

0

2π

ϕ̄

(a)

−π 0

θ

(b)

FIG. 16. Change in charge polarization on a sphere sur-
rounding Weyl points in WTe2, indicating their chirality. (a)
Sphere of radius r = 0.005 around a Weyl point of nega-
tive chirality at k = (0.1203, 0.05232, 0.0). (b) Sphere of ra-
dius r = 0.005 around a Weyl point of positive chirality at
k = (0.1211, 0.02887, 0.0).

Fig. 16 shows the evolution of polarization on a sphere
around two of the type-II Weyl points in WTe2. The

HWCCs were calculated from a tight-binding model de-
rived from first-principles, with full spin-orbit coupling.

D. Dirac Semimetals

In Dirac semimetals, the nodal point consists of two
degenerate Weyl nodes of opposite chirality, mapped into
each other by the product of time-reversal and parity. An
additional symmetry is required to keep the two Weyl
nodes from gapping. Since each of the two Weyl nodes
contributes an individual Chern number ±1, we expect
to see a gapless flow in the HWCC evolution on a sphere
enclosing a Dirac point.

We exemplify this by studying Cd3As2, which was re-
cently shown to be a Dirac semimetal [59, 136]. The
modified four-band k · p Hamiltonian used to study this
material is given by [59, 160][161]

H(k) =ε0(k)I⊗ I +M(k)τz ⊗ I+ (44)

+
[
Akx +Bk3

x + Fkxk
3
y +Gk2

zkx
]
τx ⊗ σz−

−
[
Aky +Bk3

y + Fkyk
2
x +Gk2

zky
]
τy ⊗ I+

+ n1kz
(
k2
x − k2

y

)
τx ⊗ σx + n2kxkykzτx ⊗ σy.

where

M(k) = m0 +
√
m2

3 +m1k2
z +m2(k2

x + k2
y), (45)

and

ε0(k) = c0 + c1k
2
z + c2(k2

x + k2
y). (46)

The parameters from Ref. [136]

m0 = −0.06 eV m1 = 96 eV2Å2 (47)

m2 = 18 eVÅ2 m3 = 0.05 eV

c0 = −0.219 eV c1 = −30 eVÅ2

c2 = −16 eVÅ2 A = 2.75 eVÅ,

were used, and different values for B,F,G, n1, n2 were
studied to investigate the properties of the Dirac point
when higher-order corrections are included.

As expected, the HWCC evolution on a sphere sur-
rounding one of the two Dirac points appears gapless (see
Fig. 17 (a), (c)). However, from this consideration alone
it is not clear whether these HWCC indeed form a cross-
ing, or whether there may be some small gap. Unlike
the case of the Z2 classification described above, there is
a priori no symmetry which enforces the HWCC to be
degenerate at some θ. To prove the existence of a Dirac
node, then, it is necessary to consider the effect of the
symmetry stabilizing the Dirac fermion on the HWCC.
This can be done by calculating the symmetry expecta-
tion value of the Wilson loop eigenstates v which corre-
spond to the given HWCC (see Appendix G for details).
As can be seen in Fig. 17 (b) and (d), the eigenstates
have different C4 expectation values at the point where
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FIG. 17. (a) WCC evolution on a sphere of radius r =
0.001 Å−1 enclosing one of the two Dirac points in Cd3As2

with n1 = n2 = 0. The WCC are colored according to the C4

expectation values of the corresponding Wilson loop eigen-
states. The expectation values are mapped on the complex
plane in panel (b). (c), (d) WCC evolution and C4 expecta-
tion values on the same sphere around one of the Dirac points,
for n1 = n2 = 106 eVÅ3

the HWCC cross. This means small perturbations can-
not gap the HWCC flow.

Furthermore, in the case of n1 = n2 = 0, the two
HWCC belong to two different subspaces V± spanned by
the eigenstates with eigenvalues {e+iπ/4, e+i3π/4} and
{e+iπ/4, e+i3π/4}, respectively. The individual Chern
numbers c± = ∓1 corresponding to each of these sub-
spaces reveal the presence of Weyl points of opposite
chirality. When higher order terms are included in the
Hamiltonian (see Fig. 17 (c)-(d)), the Wilson loop eigen-
states no longer belong to one of the two subspaces V±,
since they are mixed by the τx ⊗ σx and τx ⊗ σy terms.
However, the mixing term, being quadratic in kx, ky, be-
comes vanishingly small, when the radius of the sphere
surrounding the Dirac point is taken to be small.

We thus conclude that the presence of topological
nodal points, comprised of several overlapping Weyl
points, like Dirac point, can be revealed by the flow of
Wannier charge centers, provided one tracks the expecta-
tion values of the symmetry that protects the Weyls from
annihilating for the corresponding eigenstates of the non-
Abelian Berry connection (Wilson loop) to make sure
that they are distinct at the crossing point in the WCC
spectrum. In this case the WCC spectrum is gapless and
the topological phase is proven.

VI. NUMERICAL IMPLEMENTATION

Here we outline the numerical implementation of the
methodology described in the previous sections. The
method of calculating (individual) Chern numbers and
Z2 invariants on different manifolds in the BZ is imple-
mented in the Z2Pack code package, which is an open-
source Python [162] module. The code and documenta-
tion, including tutorials and examples, are available in
the supplementary material to this paper. Updated ver-
sions of the code and documentation will be made avail-
able online (code: https://pypi.python.org/pypi/
z2pack/, documentation: http://z2pack.ethz.ch).

One-dimensional maximally localized hybrid Wannier
charge centers are computed directly from the overlap
matrices as defined in Appendix C 2. The Chern and Z2

invariants can be automatically extracted from the WCC,
by using the methods described in Appendix A and B.
The numerical calculations are performed with help of
the numpy [163] and scipy [164] packages.

Z2Pack is compatible with any method or software,
which can provide the overlap matrices or eigenstates
for a given path of k-points. Tools for computing the
overlap matrices for tight-binding and k · p models are
included in the module. For first-principles computa-
tions, an interface to the Wannier90 [134, 135] code is
provided, and the overlap matrices are computed by the
first-principles codes that support Wannier90, making
Z2Pack compatible with any such code. For example,
widely used VASP [120], Quantum Espresso [130] and
ABINIT [165, 166] codes can be straightforwardly used
with Z2Pack.

Furthermore, Z2Pack features a rich set of convergence
criteria to ensure the correct evaluation of the topological
indices. This is especially important because of the quan-
tized nature of the topological invariants, making it im-
possible to approximate their value iteratively. In all but
the most delicate cases [167], Z2Pack will converge au-
tomatically using only the provided default parameters.
This makes the code ideally suited for high-throughput
applications by minimizing the need for manual interven-
tion.

Finally, Z2Pack provides methods for plotting the re-
sults. Figures showing the WCC and their largest gap
(such as in Fig. 7), the sum of WCC (see Fig. 15), and
the WCC colored according to a symmetry expectation
value (see Fig. 17) can be produced. The plotting func-
tions are based on the matplotlib [168] package, and
their appearance can be fully customized.

VII. CONCLUSIONS

We introduced and enumerated the known approaches
to identifying topological states in both insulators and
semimetals and provided an easy-to use package for
the evaluation of topological invariants such as Chern
numbers, Z2 invariants, mirror Chern numbers, and

https://pypi.python.org/pypi/z2pack/
https://pypi.python.org/pypi/z2pack/
http://z2pack.ethz.ch
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semimetal monopole charges. The approach is based on
the calculation of hybrid WCCs from the overlap ma-
trices constructed with Bloch states. We showed how
the method can be used to classify part of the knowns
symmetry-protected topological states of non-interacting
systems, based on the notion of individual Chern num-
bers. The proposed scheme is suited for high-throughput
search for materials with non-trivial topology and can
point to materials that have yet undiscovered non-trivial
topologies.

We also presented a numerical implementation of the
method in the Z2Pack software package.Examples were
provided for materials with various topologies. For insu-
lators, the Chern and Z2 topological phases were illus-
trated, as well as some crystalline TIs. For semimetals,
we illustrated approaches for classifying and identifying
topological nodal points. Generalizations to nodal lines

are straightforward.
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Appendix A: Numerical computation of the Chern
number

The straightforward way to compute the Chern num-
ber is to integrate the gauge-invariant Berry curvature
over the (section of) BZ. A numerical calculation using
the hybrid WCCs is also possible. In this case the Chern
number is computed by evaluating electronic polarization
at discrete points ky = ki ∈ [0, 2π

a ].

Pe(ki) = e

(∑

n

x̄n(ki) mod ax

)
(A1)

Because the polarization is defined only modulo e ·a, the
same is true for the change in polarization, whose possible

values are

∆Pe,i = Pe(ki+1)− Pe(ki) + l(e · a) (A2)

for l ∈ Z. Assuming that the k-points ki are dense
enough such that the true change in polarization is less
than e·a

2 between any two steps, the correct choice of l is
the one that minimizes the absolute value of ∆Pe,i. The
Chern number is then given by

C =
1

ea

∑

i

∆Pe,i (A3)

=
1

ea

∑

i

min
k∈Z

[Pe,i+1 − Pe,i + k(e · a)]abs , (A4)

where min [·]abs denotes the minimum with respect to the
absolute value.

Appendix B: Numerical computation of the Z2

invariant

Here we describe how the Z2 invariant is calculated for
a given set of WCC

{x̄in := x̄n(ki), n ∈ {1, ..., N}, i ∈ 1, ...,M}, (B1)

where we assume the WCC to be normalized to [0, 1).
We define gi := g(ki) as the largest gap between any two
WCC xin. That is, gi is such that the distance to the
nearest WCC

min
n
d(gi, xin) (B2)

is maximized, where d is the periodic distance. This dis-
tance can be numerically evaluated as

d(x, y) = min (|1 + x− y| mod 1, |1− x+ y| mod 1) .
(B3)

For each step i → i + 1, the number ni of WCC x̄i+1
n

for which

min(gi, gi+1) ≤ x̄i+1
n < max(gi, gi+1) (B4)

is counted. This is equivalent to the number of crossings
between the largest gap and the WCC between ki and
ki+1. Thus, the Z2 invariant is given by

∆ =

(
M−1∑

i=1

ni

)
mod 2. (B5)

Appendix C: Computation of 1D maximally
localized hybrid Wannier charge centers

1. Single-band systems

Numerically, the Berry phase of a single-band system
can be computed as a product of overlaps 〈uki |uki+1

〉

http://www.scipy.org/
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along a string of k-points ki going across the BZ.

j

N−1∏

i=0

〈uki |uki+1〉 = cN · e−iϕ̃B(N) −−−−→
N→∞

e−iϕB ; cN ∈ R

(C1)

⇒ ϕ̃B(N) = − arg

[
N−1∏

i=0

〈uki |uki+1
〉

]
(C2)

This can be cast in terms of the parallel transport of the
Bloch state across the BZ. For this, in going from ki to
ki+1, the state |uki+1〉 is rotated such that it is parallel
to |uki〉, so that their overlap is real and positive:

|ũki+1〉 = e−i arg[〈uki |uki+1
〉]|uki+1〉 (C3)

⇒ 〈uki |ũki+1〉 ∈ R+ (C4)

Doing this procedure along the closed loop from k0 to kN
(see Appendix D for the explicit expressions for overlaps),
a total phase ϕ̃B(N) is picked up, which converges to the
exact Berry phase for large N .

2. Multi-band systems

The same principle of rotating the states along a closed
path keeping them parallel to each other in consecutive
steps is applied when more than one band is present.
However, the overlap is now defined as a matrix

M (ki,ki+1)
m,n = 〈um,ki |un,ki+1

〉. (C5)

The states at ki+1 must be rotated in such a way that the
resulting overlap matrix is hermitian. From a singular
value decomposition M = V ΣW †, this rotation can be
obtained as WV † [79]. Along a closed path, the states
pick up a non-Abelian phase [92]

Λ = Wn−1V
†
n−1 . . .W0V

†
0 (C6)

whose eigenvalues λi are connected to WCCs by

x̄i = −arg(λi)

2π
. (C7)

Note that this construction gives the WCC normalized
to [0, 1).

Appendix D: Phase shift originating from atomic
positions in tight-binding models

Tight-binding models are defined as a system of or-
bitals |φα〉 , α ∈ {1, . . . , N}, localized at positions tα
within the unit cell, and a set of on-site energies Eα, as
well as hoppings between the orbitals. A hopping be-
tween orbitals |φα〉 and |φβ〉, located in unit cells speci-
fied by lattice vectors Rα and Rβ correspondingly, is in

general given by a complex number s ∈ C. A hopping
matrix can be introduced with entries at (α, β) and (β, α)

A(α, β, s) = (seik·Tα,βδα,iδβ,j)i,j + h.c. (D1)

where Tα,β = Rα − Rβ is the vector connecting the
positions of the two orbitals.

We make a gauge convention such that the total Hamil-
tonian matrix is given by

H(k) = diag(E1, . . . , EN ) +
∑

i

A(αi, βi, si) (D2)

This guarantees that H(k + G) = H(k), where G is a
reciprocal lattice vector.

Given the Hamiltonian, its eigenvectors |ψn(k)〉 =∑
α
cnα(k) |φα〉 can be computed. An overlap matrix el-

ement in the adopted convention is given by

M (k,k+b)
m,n =

occ.∑

α

cmα (k)∗cnα(k + b)e−ib·tα , (D3)

assuming the orbitals |φα〉 are perfectly localized at tα.
Unlike the Hamiltonian itself, the overlap matrices de-

pend on the orbital positions tα, which act as a phase
factor. However, both the symmetry of the system and
its spectrum are determined by the Hamiltonian alone.
It is thus possible to adiabatically move the orbital posi-
tions to the origin without changing the topology of the
system, provided the hoppings are kept unchanged and
the space group of the system is symmorphic. In this case
(but not for non-symmorphic systems) the phase factor
originating from the orbital positions in the unit cell,
can be ignored when computing topological invariants
(but not electronic polarization, which is not quantized
in general).

Appendix E: Projector expression for the individual
Chern numbers

Here we show that the total Chern number associated
with an isolated set of bands is decomposed into the sum
of individual Chern numbers as defined in Sec. III A.

Let H be a Hilbert space spanned by the bands
{|i〉 := |uk,i〉 , i ∈ {1, ..., N}}, which are defined on a
smooth and closed 2D manifold M . The family of pro-
jectors

Pk =

N∑

i=1

|i〉〈i| (E1)

onto H, as well as the families of projectors

P
(i)
k = |i〉〈i| (E2)

onto the individual bands are all assumed to be smooth
on the manifold.
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The Chern number associated with these bands is then
given by (Eq. 25)

C =
i

2π

∫

M

Tr {Pk [∂k1Pk, ∂k2Pk]} dk1 ∧ dk2, (E3)

By using Tr {A} =
∑
n
〈n|A |n〉 and 〈i|n〉 = δi,n we find

C =
i

2π

∫

M

N∑

i=1

〈i| [∂k1Pk, ∂k2Pk] |i〉dk1 ∧ dk2 (E4)

The summand can be simplified as follows:

〈i| [∂k1Pk, ∂k2Pk] |i〉 (E5)

=

N∑

m,n=1

〈i|
[
∂k1 |n〉〈n|, ∂k2 |m〉〈m|

]
|i〉

=

N∑

m,n=1

〈i|
(
∂k1 |n〉〈n|∂k2 |m〉〈m| − ∂k2 |m〉〈m|∂k1 |n〉〈n|

)
|i〉

=

N∑

n=1

(
〈i| ∂k1 |n〉〈n|∂k2 |i〉 − 〈i| ∂k2 |n〉〈n|∂k1 |i〉

)

= i

N∑

n=1

2 Im
[
〈i| ∂k1 |n〉〈n|∂k2 |i〉

]

For cases where n 6= i

Im
[
〈i| ∂k1 |n〉〈n|∂k2 |i〉

]
(E6)

= Im
[
〈i|∂k1n〉︸ ︷︷ ︸

=0

〈n|∂k2i〉+ 〈i|n〉︸︷︷︸
=0

∂k1 〈n| ∂k2 |i〉
]

= 0,

where we used the fact that

〈i|n〉 = δin, (E7)

and thus

0 = ∂k1 〈i|n〉 = 〈∂k1i|n〉+ 〈i|∂k1n〉 = 2 〈i|∂k1n〉 . (E8)

From this, it follows that

〈i| [∂k1Pk, ∂k2Pk] |i〉 = 〈i|
[
∂k1P

(i)
k , ∂k2P

(i)
k

]
|i〉 (E9)

and hence

C =
i

2π

∫

M

N∑

i=1

〈i| [∂k1Pk, ∂k2Pk] |i〉dk1 ∧ dk2 (E10)

=

N∑

i=1

i

2π

∫

M

〈i|
[
∂k1P

(i)
k , ∂k2P

(i)
k

]
|i〉dk1 ∧ dk2

=

N∑

i=1

i

2π

∫

M

Tr
{
P

(i)
k

[
∂k1P

(i)
k , ∂k2P

(i)
k

]}
dk1 ∧ dk2

=

N∑

i=1

ci

This proves Eq. 26 for the special case where the Hi

each consist of a single band. Using this special case, the
result can be generalized to any splitting of the Hilbert
space

H =

N⊕

i=1

Hi (E11)

Let {|ij〉 , i ∈ {1, ..., N} , j ∈ {1, ..., Ni}} be a basis of H
such that {|ij〉 , {j ∈ 1, ..., Ni}} is a basis of Hi for all i. It
is well-known that such a basis always exists. Applying
Eq. E10 first on H and then on each of the Hi, we get

C =

N∑

i=1

Nj∑

j=1

cij =

N∑

i=1

ci, (E12)

thus proving Eq. 26 for a general splitting of the Hilbert
space.

Appendix F: Splitting of the Hilbert space into
subspaces according to their symmetry behaviour

Here we discuss how the Hilbert space can be split into
subspaces according to their symmetry, for the cases of
unitary and antiunitary symmetry operations.

In the case of a unitary symmetry operation, the
Hilbert space can uniquely be split into subspaces which
correspond to the eigenspaces of the symmetry operator.
For the case of an antiunitary symmetry operation A, the
same is true for the eigenspaces of the squared symmetry
operator Γ = A2, which is again unitary. For any ω 6= 1,
the eigenstates of Γ come in pairs, with eigenvalues ω and
ω∗ [173]. This creates a special case for ω = −1, where
ω = ω∗ is true. It is then possible to split the eigenspace
in two in such a way that for each such pair, only one
state is contained in each subspace. However, this split-
ting is not unique because the two states in a pair may
be switched. Consequently, the individual Chern number
of the two subspaces is meaningful only if the symmetry
relates the individual Chern numbers of the two states
in a pair. An important example of such a symmetry is
time-reversal, where the two states in a pair must have
opposite individual Chern numbers, and thus a switching
of states can change the individual Chern number of the
two subspaces only by an even number.

Appendix G: Calculation of symmetry expectation
values of the Wilson loop eigenstates

Here we discuss how the symmetry expectation values
are calculated for the Wilson loop eigenstates.

The Wilson loop (Eq. 20, 21) can be written as a prod-
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uct of overlap matrices (Eq. C5)

W (C) =

L−1∏

i=0

Nocc.∑

j=1

|uj,ki〉 〈uj,ki | (G1)

=
∑

j1,j2

|uj1,k0〉

(
L−2∏

i=0

Mki,ki+1

)

j1,j2

〈
uj2,kL−1

∣∣ .

Since the loop C is closed and thus |uj,k0〉 =
∣∣uj,kL−1

〉
,

the Wilson loop in the basis {uj,k0}j is simply given by
the product of overlap matrices

W =

L−2∏

i=0

Mki,ki+1 (G2)

and its eigenstates |vi〉, fulfilling W |vi〉 = λn |vi〉 can be
calculated.

Knowing the symmetry representation C in the basis
of the Hamiltonian (that is, the basis in which the |uj,k0

〉
are written), the symmetry expectation values of |vi〉 can
be calculated by

〈vi| Ĉ |vi〉 = vTi S
TCSvi (G3)

where S is the basis-transformation matrix which con-
tains |uj,k0

〉 as its columns.

In the limit of large L, W = Λ†, where Λ is defined as
in Eq. C6. This means the eigenvalues λn are related to
the (normalized) WCC by

x̄i =
arg(λi)

2π
, (G4)

and the symmetry expectation values can thus be as-
signed to corresponding WCCs.
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