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Computing topological invariants without inversion symmetry
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We consider the problem of calculating the weak and strong topological indices in noncentrosym-
metric time-reversal (T ) invariant insulators. In 2D we use a gauge corresponding to hybrid Wannier
functions that are maximally localized in one dimension. Although this gauge is not smoothly de-
fined on the two-torus, it respects the T symmetry of the system and allows for a definition of the
Z2 invariant in terms of time-reversal polarization. In 3D we apply the 2D approach to T -invariant
planes. We illustrate the method with first-principles calculations on GeTe and on HgTe under [001]
and [111] strain. Our approach differs from ones used previously for noncentrosymmetric materials
and should be easier to implement in ab initio code packages.

PACS numbers: 73.43.Cd, 03.65.Vf, 71.20.Nr, 71.70.Ej

I. INTRODUCTION

A series of theoretical developments starting in 2005,
showing that non-magnetic insulators admit a topo-
logical Z2 classification in two dimensions (2D)1,2 and
then in three dimensions (3D),3,4 has sparked enor-
mous interest, especially after numerous realizations of
such systems were confirmed both theoretically5–9 and
experimentally.10–13 These developments, nicely summa-
rized in some recent reviews,14–16 have essentially given
rise to a new subfield of condensed-matter physics, with
the topology of the band structure now regarded as a
fundamental characteristic of the electronic ground state
for semiconductors and insulators.
The Z2 classification divides time-reversal (T ) invari-

ant band insulators into two classes: ordinary (Z2-even)
insulators that can be adiabatically converted to the vac-
uum (or to each other) without a bulk gap closure, and
“topological” (Z2-odd) ones that cannot be so connected
(although they can be adiabatically connected to each
other). Even and odd phases are separated by a topo-
logical phase transition, and the bulk gap has to van-
ish at the transition point, at least in a non-interacting
system.17,18 The Z2-odd states are characterized by the
presence of an odd number of Kramers pairs of counter-
propagating edge states in 2D, or by an odd number of
Fermi loops enclosing certain high-symmetry points of
the surface band structure in 3D.
In view of all this, there is an obvious motivation to

develop simple yet effective methods for computing the
topological indices of a given material. For centrosym-
metric crystals, a convenient method was introduced in
Ref. 6, where it was shown that the knowledge of the
parity eigenvalues of the electronic states at only four T -
invariant momenta in 2D (or eight of them in 3D) is suffi-
cient to compute the topological characteristics of a given
material. This approach is limited to centrosymmetric
systems, however, and the calculation of the Z2 invariant
for noncentrosymmetric insulators is not so trivial.
One possible approach, suggested in Ref. 19, is based

on the existence of a topological obstruction to choos-
ing a smooth gauge that respects the T symmetry in the

Z2-odd case. For the implementation of this method, a
gauge must be chosen on the boundary of half of the Bril-
louin zone (BZ) in such a way as to respect T symmetry,
which involves acting with the time-reversal operator on
one of the states from each Kramers pair to construct the
other. Although this method has been implemented in
the ab initio framework20,21, its implementation is basis-
set dependent and involves the application of a unitary
rotation to the computed eigenvectors when fixing the
gauge, which may be tedious when there are many occu-
pied bands and basis states.

Another existing method7 relies on the fact that the
system will necessarily be in the Z2-even (normal) state
in the absence of spin-orbit (SO) coupling. In this
method, the strength of the SO coupling is artificially
tuned from λSO = 0 (no SO coupling) to λSO = 1 (full
SO coupling), and a closure of the band gap at some in-
termediate coupling strength is taken as evidence of an
inverted band structure. However, a closure of the band
gap in the course of tuning λSO to full strength is a neces-
sary, but not a sufficient, condition for a topological phase
transition. Therefore, in order to determine whether the
system is really in the topologically nontrivial phase, a
first-principles calculation of the surface states is carried
out in order to count the number of Dirac cones at the
surface of the candidate material. Such a calculation, al-
though illustrative, is quite demanding in terms of com-
putational resources.

In summary, existing methods have some shortcom-
ings, and it would be very useful to develop a simple
and effective method that would use the electronic wave-
functions, as obtained directly from the diagonalization
procedure, to determine the desired topological indices.

In this paper we develop a method for computing Z2

invariants that meets these criteria, and which is easy
to implement in the context of ab initio code packages.
The method is based on the concept of time-reversal
polarization22 (TRP), but implemented in such a way
that a visual inspection of plotted curves is not required
in order to obtain the topological indices. Instead, all
the indices can be obtained directly as a result of an au-
tomated calculation. We describe the method, and then
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verify it using centrosymmetric Bi and Bi2Se3 as illustra-
tive test examples before applying it to the more difficult
cases of noncentrosymmetric GeTe and strained HgTe.
The paper is organized as follows. In Sec. II we start

by reviewing the formalism of TRP in the context of the
Z2 spin pump in one dimension (1D), emphasizing its re-
lation to the charge centers of Wannier functions. We
then discuss the numerical implementation of these ideas
to 2D and 3D cases, and suggest a simple numerical pro-
cedure for calculating the Z2 invariant in noncentrosym-
metric T -invariant systems in Sec. III. We further illus-
trate this method with ab initio calculations in Sec. IV,
and present some concluding remarks in Sec. V.

II. Z2 INVARIANT VIA WANNIER CHARGE

CENTERS

In this section we review the notion of TRP and the
definition of the Z2 invariant in terms of TRP derived
in Ref. 22. The definition arises by virtue of an analogy
between a 2D T -invariant insulator and a T -symmetric
pumping process in a 1D insulator. We further reformu-
late this definition in terms of Wannier charge centers,
setting the stage for the numerical method discussed in
the next section.

A. Review of time reversal polarization

Fu and Kane22 considered a family of 1D T -invariant
bulk-gapped Hamiltonians H(t) parametrized by a cyclic
parameter t (i.e., H [t + T ] = H [t]) subject to the con-
straint

H [−t] = θH [t]θ−1, (1)

where θ is the time-reversal operator. This can be un-
derstood as a pumping cycle, with t being the pumping
parameter. The constraint guarantees that the Hamil-
tonian is T -invariant at the points t = 0 and t = T/2,
while the T -symmetry is broken at the other values of
the parameter. If we also limit ourselves to Hamilto-
nians having unit period, so that H is invariant under
x → x + 1, then the eigenstates may be represented by
the periodic parts |unk〉 = e−ikx|ψnk〉 of the Bloch states
|ψnk〉. At t = 0 and t = T/2 the Hamiltonian is time-
reversal invariant and the eigenstates come in Kramers
pairs, being degenerate at k = 0 and k = π.
Since the system is periodic in both k and t, the |unk〉

functions are defined on a torus. Moreover, the system
must also be physically invariant under a gauge transfor-
mation of the form

|ũnk〉 =
∑

m

Umn|umk〉 (2)

where U(k, t) expresses the U(N ) gauge freedom to
choose N representatives of the occupied space at each

(k, t). We adopt a gauge that is continuous on the half-
torus t ∈ [0, T/2] and that respects T symmetry at t = 0
and T/2 in the sense of Fu and Kane,22 i.e.,

|uIα,−k〉 = −eiχαkθ|uIIαk〉,

|uIIα,−k〉 = eiχα,−kθ|uIαk〉. (3)

Here the occupied states n = 1, ...,N have been relabeled
in terms of pairs α = 1, ...,N/2 and elements I and II
within each pair. Note that Eq. (3) is a property which
is not preserved by an arbitrary U(N ) transformation. It
allows the Berry connection

A(k) = i
∑

n

〈unk|∂k|unk〉 (4)

to be decomposed as

A(k) = AI(k) +AII(k) (5)

where

AS(k) = i
∑

α

〈uSαk|∂k|u
S
αk〉 (6)

and S = I, II. Having chosen a gauge that obeys these
conventions at t = 0 and T/2 and evolves smoothly for
intermediate t,23 the “partial polarizations”22

PS
ρ =

1

2π

∮

dkAS(k) (7)

can be defined such that their sum is the total charge
polarization24

Pρ =
1

2π

∮

dkA(k) = P I
ρ + P II

ρ . (8)

Note that the total polarization is defined only modulo
an integer (the quantum of polarization) under a general
U(N ) gauge transformation, while the “partial polariza-
tion” is not gauge invariant at all. A quantity that is

gauge-invariant is the change in total polarization during
the cyclic adiabatic evolution of the Hamiltonian, and
using Eq. (1) it follows that

Pρ(T )− Pρ(0) = C (9)

where C is the first Chern number, an integer topolog-
ical invariant corresponding to the number of electrons
pumped through the system in one cycle of the pump-
ing process.25 For a T -invariant pump that satisfies the
conditions of Eq. (1), C must be zero.
In order to describe the Z2 invariant of a T -symmetric

system in a similar fashion, the “time reversal polariza-
tion” was introduced as22

Pθ = P I
ρ − P II

ρ . (10)

Then the integer Z2 invariant can be written as

∆ = Pθ(T/2)− Pθ(0) mod 2. (11)
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To summarize, the Z2 invariant is well defined via
Eq. (11) when the gauge respects T -symmetry at t = 0
and T/2 and is continuous on the torus between these
two parameter values. Note, however, that while such
a gauge choice is possible on the half-torus even for the
Z2-odd case (∆=1), it can only be extended to cover the
full torus continuously in the Z2-even case (∆=0).26

B. Formulation in terms of Wannier charge centers

Let us now rewrite Eq. (11) in terms of the Wannier
charge centers (WCCs). By definition the Wannier func-
tions (WFs) belonging to unit cell R are

|Rn〉 =
1

2π

∫ π

−π

dke−ik(R−r)|unk〉, (12)

Adopting again the notation of Eq. (3), we note that at
t = 0 and t = T/2 the WFs will also appear in pairs
obeying

x̄Iα = x̄IIα mod 1. (13)

This follows because T maps the space spanned by WF
|Rα, I〉 and its periodic images into the space spanned
by |Rα, II〉 and its periodic images. Since we have also
insisted on the gauge being continuous for t ∈ [0, T/2],
it is possible to follow the evolution of each WCC dur-
ing the half-cycle. Taking into account that

∑

α x̄
s
α =

(1/2π)
∮

BZ A
S for S = I, II, Eq. (11) yields

∆ =
∑

α

[

x̄Iα(T/2)− x̄IIα (T/2)
]

−
∑

α

[

x̄Iα(0)− x̄IIα (0)
]

.

(14)
Since the gauge is assumed to be smooth, the evolution
of the charge centers must also be smooth. Being defined
in this way, ∆ is clearly a mod-2 quantity, and as shown
in Ref. 22 it represents the desired Z2 invariant.
However, if the gauge breaks T symmetry or it is not

continuous in the half-cycle, Eq. (14) no longer defines
a topological invariant. A discontinuity in the gauge in
the process of the half cycle can change ∆ by 1, so the
mod-2 property is lost. Breaking T in the gauge choice
means that the corresponding centers are not necessarily
degenerate at t = 0 and t = T/2. In fact, ∆ can even
take non-integer values in this case.
The above argument implies that in order to compute

the Z2 invariant via Eq. (14), one needs a gauge that
satisfies both T -invariance and continuity on the half-
torus. We now argue that the gauge that corresponds
to 1D maximally localized WFs at each t has the de-
sired properties. The criterion introduced in Ref. 27
for constructing the maximally localized WFs was that
the gauge choice should provide the minimum possible
quadratic spread Ω =

∑

n[〈0n|r
2|0n〉 − 〈0n|r|0n〉2]. In

1D, the maximally localized WFs constructed according
to this criterion are eigenstates of the position operator

X̂ in the band subspace.27,28 Since this operator com-
mutes with θ, its eigenvalues will be doubly degenerate
and its eigenstates will come in Kramers pairs at t = 0
and T/2.
Let us briefly discuss how to construct this gauge on

a k-mesh kj+1 = kj + ∆k by carrying out a multi-
band parallel-transport construction along the Brillouin
zone.27 At a given value of t, starting from k = 0 one

constructs overlap matrices M
(kj ,kj+1)
mn = 〈umkj

|unkj+1
〉

in such a way that they are Hermitian. This can be
done in a unique way by means of the singular value
decomposition M = V ΣW †, where Σ is positive real di-
agonal and V and W are unitary matrices. With this
decomposition a unitary rotation of the states at kj+1 by

WV † leavesM (kj,kj+1) Hermitian. Repeating this proce-
dure, one finds that states |ψnk〉 at k = 2π are related to
those at k = 0 by a unitary rotation Λ, whose eigenvalues
λn = e−ix̄n give the 1D maximally-localized WCCs x̄n.
The corresponding eigenvectors can be used to define a
gauge that is continuous on the half-torus 0 ≤ t ≤ T/2.
Now, having established a particular gauge choice in

which Eqs. (11) and (14) are valid, it is straightforward
in principle to obtain the Z2 invariant. In practice, when
working on a discrete mesh of t values when many bands
are present, it may not be entirely straightforward to en-
force the continuity with respect to t. In the next section
we present a simple and automatic numerical procedure
that is robust in this respect, and use it to illustrate the
calculation of the Z2 invariants for several materials of
interest.

III. NUMERICAL IMPLEMENTATION

The method outlined above, in which the WCCs ob-
tained with the 1D maximally-localized gauge are used
to compute the Z2 invariant via Eq. (14), can be im-
plemented by plotting the WCCs at each point on the
t mesh and then visually tracking the evolution of each
WCC, as we describe next in Sec. III A. However, we find
that a more straightforward and more easily automated
approach is to track the largest gap in the spectrum of
WCCs instead. This gives rise to our proposed method,
which is described in Sec. III B.

A. Tracking WCC locations

Let us first interpret Eq. (14) in terms of the winding
of the WCCs around the BZ during the half-cycle t ∈
[0, T ]. Since the WCCs are defined modulo 1, one can
imagine the x̄n living on a circle of unit circumference,
as illustrated in the left panels of Fig. 1. During the
pumping process, the WCCs migrate along this circle.
The system will be in the Z2-odd state (δ=1) if and only
if the WCCs flow during the pumping cycle in such a way
as to wind around the circle an odd number of times.
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FIG. 1. Sketch of evolution of Wannier charge centers
(WCCs) x̄ vs. time t during an adiabatic pumping process.
Regarding x̄ ∈ [0, 1] as a unit circle and t ∈ [0, T/2] as a line
segment, the cylindrical (x̄, t) manifold is represented via a
sequence of circular cross sections at left, or as an unwrapped
cylinder at right. Each red rhombus marks the middle of the
largest gap between WCCs at given t. (a) Z2 insulator; WCCs
wind around the cylinder. (b) Normal insulator; WCCs re-
connect without wrapping the cylinder.

Consider, for example, the case of only two occupied
bands, as sketched in Fig. 1. The top panel shows the
Z2-odd case; the blue and red arrows show the evolu-
tion of the first and second WCC from t0 (= 0) to t4
(=T/2), and they meet in such a way that the unit cir-
cle is wrapped exactly once. Correspondingly, as shown
in the right-hand part of the figure, the WCCs “exchange
partners” during the pumping process.22 For the Z2-even
case shown in the bottom panel, by contrast, the unit
circle is wrapped zero times, and no such exchange of
partners occurs.

There is a problem, however. In Fig. 1 we show the
evolution of the WCCs as the solid blue and red curves in
the panels at right; with this connectivity information at
hand, it is trivial to determine the winding number. How-
ever, in practice one will typically have the WCC values
only on a discrete mesh of t points, in which case the con-
nectivity can be far from obvious. Certainly one cannot
simply make the arbitrary branch cut choice x̄n ∈ [0, 1],
sort the x̄n in increasing order, and use the resulting
indices to define the paths of the WCCs. This would,
for example, give an incorrect evolution from t1 to t2 in
Fig. 1(b), since one WCC passes through the branch cut
in this interval, apparently jumping discontinuously from
the “top” to the “bottom” of the unwrapped rectangle
at right. (A similar jump happens again near t3.)

One possible approach is to increase the t-mesh den-
sity until, by visual inspection, the connectivity becomes
obvious. This can work up to a point, but it can become
very difficult to implement in the case of many WCCs.

As we shall see below, in first-principles calculations one
can easily have 10-30 occupied bands, not just two. In
this case, it is typical for some of the WCCs to cluster
rather closely together during part of the evolution in t.
If this clustering happens near the artificial branch cut,
it can become very difficult to determine the connectiv-
ity from one t to the next, even if a rather dense mesh of
t values is used. Moreover, an algorithm of this kind is
difficult to automate. For these reasons, we find that the
direct approach of plotting the evolution of the WCCs is
not a very satisfactory algorithm for obtaining the topo-
logical indices, at least in the case of a large number of
occupied bands.

B. Tracking gaps in the WCC spectrum

Here we propose a simple procedure that overcomes
the above obstacles, allowing the Z2 invariant to be com-
puted in a straightforward fashion. The main idea is to
concentrate on the largest gap between WCCs, instead of
on the individual WCCs themselves. This approach can
be implemented without reference to any branch cut in
the determination of the x̄n, allowing the Z2 invariant to
be determined from the flow of WCCs on the cylindrical
(x̄, t) manifold directly.
As in Fig. 1, we again consider a set ofM circular sec-

tions of the cylinder that correspond to the pumping pa-
rameter values t(m) = T (m− 1)/2M , where m ∈ [0,M ].
At each tm we define z(m) to be the center of the largest
gap between two adjacent WCCs on the circle. (If two
gaps are of equal size, either can be chosen arbitrarily.)
For definiteness we choose z(m) ∈ [0, 1), but as we shall
see shortly, the branch choice is immaterial. In the con-
tinuous limit M → ∞, z(t) takes the form of a series of
path segments on the surface of the cylinder, with dis-
continuous jumps in the x̄ direction at certain critical pa-
rameter values tj . Our algorithm consists in counting the
number of WCCs jumped over at each tj , and summing
them all mod 2. As becomes clear from an inspection
of Fig. 1 and similar examples of increasing complexity,
the WCCs exchange partners during the evolution from
t=0 to T/2 only if this sum is odd, so that this sum
determines the Z2 invariant of the system.
The approach generalizes easily to the case of discrete

z(m). Let ∆m be the number of WCCs x̄
(m+1)
n that ap-

pear between gap centers z(m) and z(m+1), mod 2. As we
shall see below, this can be computed in a manner that is
independent of the branch cut choices used to determine
the x̄mn and z(m). Then the overall Z2 invariant is just

∆ =

M
∑

m=0

∆m mod 2. (15)

This argument is illustrated in the right-hand panels
of Fig. 1 for the two band-case and M = 4. The rect-
angles represent the surface of the cylinder in the pa-
rameter space, and should be regarded as glued along
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the longer sides. The circles correspond to x̄
(m)
n values,

while each red rhombus represents the center z(m) of the

largest gap between x̄
(m)
n values. In Fig. 1(a) there is

one jump that occurs between m=2 and m=3, in which
one WCC is jumped over; thus, ∆m = 0 except for
∆2 = 1, giving ∆=1. In Fig. 1(b), on the other hand,
there are two jumps, once between m=1 and m=2 and
again between m=2 and m=3, so that ∆1 = ∆2 = 1 and
∆ = 0 (mod 2).

We now show how the ∆m can be computed straight-
forwardly in a manner that is insensitive to the branch-
cut choices made in determining the x̄mn and z(m). We
use the fact that the directed area of a triangle defined
by angles φ1, φ2, and φ3 on the unit circle is29

g(φ1, φ2, φ3) = sin(φ2−φ1)+ sin(φ3−φ2)+ sin(φ1−φ3).
(16)

Therefore the sign of g(φ1, φ2, φ3) tells us whether or not
φ3 lies “between” φ1 and φ2 in the sense of counterclock-
wise rotation. Identifying φ1 = 2πz(m), φ2 = 2πz(m+1)

and φ3 = 2πx̄
(m+1)
n , it follows that

(−1)∆m =
N
∏

n=1

sgn
[

g(2πz(m), 2πz(m+1), 2πx̄(m+1)
n )

]

,

(17)
where sgn(x) is the sign function. The ∆m defined in
this way is precisely the needed count of WCCs jumped
over, mod 2, in evolving from m to m+ 1.

As a last detail, we discuss the case of possible de-
generacies between the three arguments of g(φ1, φ2, φ3).

First, note that z(m+1) = x̄
(m+1)
n is impossible, since

z(m+1) is by definition in a gap between x̄
(m+1)
n values. If

the mesh spacing in t is fine enough, then by continuity

we expect that z(m) = x̄
(m+1)
n will also be unlikely. It is

recommended to test whether these values ever approach
within a threshold distance, and restart the algorithm
with a finer t mesh if such a case is encountered; two
cases of this kind are discussed later in Sec. IV. Finally,
it can happen that z(m) = z(m+1). In this case, the
signum function (which technically assigns value 0 to ar-
gument 0) should be replaced in Eq. (17) by a function
that returns s whenever z(m) = z(m+1), where s is chosen
once and for all to be either +1 or −1. Since the same
degeneracy appears in every term of the product over N
factors in Eq. (17), where N is even, the choice of s is
arbitrary as long as it is applied consistently.

The above-described algorithm, based on Eqs. (15-17),
constitutes one of the principal results of the present
work. The implementation of this algorithm is straight-
forward, and allows for an efficient and robust determi-
nation of the Z2 invariant even when many bands are
present, and even for only moderately fine mesh spac-
ings. In Sec. IV, we will demonstrate the successful ap-
plication of this approach to the calculation of the strong
and weak topological indices of some real materials.

C. Application to 2D and 3D T -invariant insulators

As pointed out in Ref. (22), the pumping process dis-
cussed above for a 1D system is the direct analogue of
a 2D T -invariant insulator, i.e., one whose Hamiltonian
is subject to the condition H(−k) = θ−1H(k)θ. To see
this, let k =

∑

i kibi/2π, where b1 and b2 have been
chosen as primitive reciprocal lattice vectors. Then we
can let k1 and k2 play the roles of k and t respectively.
Just as H(k, t) displays T symmetry at t=0 and T , so
H(k1, k2), regarded as the Hamiltonian H(k1) of a ficti-
tious 1D system for given k2, is T -invariant at k2 = 0
and π. The Wannier functions of the effective 1D system
can be understood as “hybrid Wannier functions” that
have been Fourier transformed from k space to r space
only in direction 1, while remaining extended in direc-
tion 2. The topological Z2 invariant of the 2D system
can therefore be determined straightforwardly by apply-
ing the approach outlined above.
A topological phase of a 3D T -symmetric insulator is

described by one strong topological index ν0 and three
weak indices ν1, ν2, and ν3.

3,4,30 These indices may be un-
derstood as follows. Again letting k =

∑

i kibi/2π, there
are eight T -invariant points Γ(n1,n2,n3), where ni = 0 or 1
denotes ki = 0 or π respectively. These eight points may
be thought of as the vertices of a parallelogram in recip-
rocal space whose six faces are labeled by n1=0, n2=0,
n3=0, n1=1, n2=1, and n3=1. On any one of these six
faces, the Hamiltonian H(k), regarded as a function of
two k variables, can be thought of as the Hamiltonian of
a fictitious 2D T -symmetric system, and the argument
of the previous paragraph can thus be applied to each of
these six faces separately. The three weak indices νi=1,2,3

are defined to be the Z2 invariants associated with the
three surfaces n1=1, n2=1, and n3=1.3 These weak in-
dices obviously depend on the choice of reciprocal lattice
vectors. The strong index ν0 is the sum (mod 2) of the
Z2 invariants of the nj=0 and nj=1 faces for any one of
the j (implying some redundancy among the six indices);
it is also a Z2 quantity, but is independent of the choice
of reciprocal lattice vectors.3,4

Thus, a complete topological classification in 3D, given
by the index ν0; (ν1ν2ν3), can be obtained by applying
our analysis to each of these six faces in the 3D Brillouin
zone. Note that in general, this determines the strong
index ν0 with some redundancy, providing a check on the
internal consistency of the method. However, symmetry
considerations often play a role. For systems having a
3-fold symmetry axis, for example, one typically needs
to compute the Z2 index on only two faces, as we shall
see below.

IV. APPLICATION TO REAL MATERIALS

In this section we discuss the application of the above-
described method to real materials. First, we illustrate
the validity of the approach for centrosymmetric Bi and
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Bi2Se3, where weak and strong indices may alternatively
be computed directly from the parities of the occupied
Kramers pairs at the eight T -invariant momenta.6 We
then apply the method to noncentrosymmetric crystals
of GeTe and strained HgTe, showing that the first is a
trivial insulator, while the latter is a strong topological
insulator under both positive and negative strains along
[001] and under positive strain along [111].
The calculations were carried out in the frame-

work of density-functional theory31 using the local-
density approximation with the exchange and corre-
lation parametrized as in Ref. 32. We used HGH
pseudopotentials33 with semicore 5d-states included for
Hg, while for all other elements only the s and p valence
electrons were explicitly included. The calculations were
carried out using the ABINIT code package34,35 with a
10 × 10× 10 k-mesh for the self-consistent field calcula-
tions and a 70Ha planewave cutoff. The spin-orbit inter-
action was included in the calculation via the HGH pseu-

dopotentials. Note that the overlap matrices M
(kj ,kj+1)
mn

defined in Sec. II B, are the same as those needed for the
calculation of the electric polarization24 or the construc-
tion of maximally-localized Wannier functions,27 and are
thus readily available in many standard ab initio code
packages including ABINIT.

A. Centrosymmetric materials

We start by illustrating the method with the examples
of Bi and Bi2Se3. Although Bi is a semimetal, its ten
lowest-lying valence bands are separated from higher ones
by an energy gap everywhere in the BZ, so in this case the
topological indices describe the topological character of a
particular group of bands. Since this is not the occupied
subspace of an insulator, these topological indices are not
“physical,” but it is still of interest to compute them and
compare with methods based on the parity eigenvalues.6

According to the latter approach, the group of ten lowest-
lying bands of Bi was shown to be topologically trivial.6

Bi2Se3, on the other hand, is a true insulator, and the
parity approach demonstrated that it is a strong topo-
logical insulator.7

Bi and Bi2Se3 both belong to the rhombohedral space
group R3̄m (#166), which has a 3-fold rotational axis.
Thus, it is enough to compute only one weak Z2 index,
say for n1 = 1, since all three of them are equal by sym-
metry. To get the strong index, one just needs to compute
just one more of the Z2 invariants, say for n1=0.
Our results for Bi, obtained with the lattice parameters

used in previous studies,36 are presented in Fig. 2. Panels
(a) and (b) show the determination of the Z2 invariant
at n1=0 and n1=1 respectively, with k2 treated as the
pumping parameter (like t) for an effective 1D system
with wavevector k3. The k2 axis was initially discretized
into ten equal intervals (m = 1, ..., 10) running from 0 to
π, but for reasons discussed below an extra point (number
10 on the horizontal axis of the plot) was inserted midway

 

-0.5

0.0

0.5

0 1 2 3 4 5 6 7 8 9 10

(a) 

 

-0.5

0.0

0.5

 

0 1 2 3 4 5 6 7 8 9 10 11

(b) 

FIG. 2. Evolution of Bi WCCs x̄n (circles) in the r3 direction
vs. k2 at (a) k1=0; (b) k1=π. Red rhombus marks midpoint
of largest gap. k2 is sampled in ten equal increments from 0
to π, except that an extra point is inserted midway in the last
segment in panel (b) (see text).

in the last segment to make a total of eleven m values
in Panel (b). As noted above, we are treating a group of
ten valence bands labeled by n, so we have an array of

WCC values x̄
(m)
n whose values are indicated by the black

circles in the plot. These form Kramers pairs at k2=0
and π, but not elsewhere. Each red rhombus indicates

the center z(m) of the largest gap between adjacent x̄
(m)
n

values, as discussed in Sec. III.
Looking first at Fig. 2(a), we see that the gap center

jumps over one WCC atm=1, and then over three WCCs
at m=7, for a total of four, which is even. In Fig. 2(b)
we get a total of 2+7+3+4 = 16 jumps, which is again
even. The visual determinations of the number of jumped
bands is confirmed by the application of the automated
procedure of Eqs. (15-17). Thus, both Z2 indices are 0,
and the 3D index is 0; (000), indicating a normal band
topology as anticipated.6,19

We now discuss the above-mentioned insertion of one
extra k2 point in Fig. 2(b). This was necessary because
the gap center z(9) at k2 = 0.9π had almost the same
value as one of the WCC values at k2 = π (now labeled as
‘11’ on the horizontal axis), making it ambiguous whether
or not that xn value should be counted as one of the ones
that has been jumped over. To resolve this difficulty, we
included an extra step at k2 = 0.95π (now labeled as ‘10’
on the horizontal axis). The reason for the fast motion
of the WCC in this case is that the minimum gap to the
next higher (eleventh) band becomes rather small near
k2 = π.
Note that the detection of this kind of problem does

not have to be done by visual inspection, but can be au-
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FIG. 3. Evolution of Bi2Se3 WCCs x̄n (circles) in the r3
direction vs. k2 at (a) k1=0; (b) k1=π. Red rhombus marks
midpoint of largest gap. k2 is sampled in ten equal increments
from 0 to π.

tomated in the context of Eqs. (15-17). As already men-

tioned in Sec. III B, we simply test whether any x̄
(m+1)
n

approaches within a certain threshold of z(m) (mod 1);
if so, we flag the interval in question for replacement by
a finer mesh. Still, it is recommended to choose a mesh
that is fine enough so that this threshold is rarely encoun-
tered, with a finer mesh recommended in cases where the
minimum band gap is small.37

The analysis of the same n1=0 and n1=1 faces for the
28 WCCs of Bi2Se3 is illustrated in Fig. 3. The experi-
mental lattice parameters38 were used. Here there are no
jumps over WCCs except for a single one in the very first
step in the top panel (n1=0). It follows that the topo-
logical index is 1; (000), in accord with previous studies.7

B. Noncentrosymmetric materials

We now proceed to systems without inversion symme-
try, which are the principal targets of our method since
an analysis based on parity eigenvalues is not possible.
GeTe belongs to the rhombohedral R3m space group

(#160) and has no inversion symmetry, although like
Bi and Bi2Se3 it has a 3-fold rotational symmetry, so
that only two reciprocal-space faces have to be studied.
The experimental lattice parameters39 were used, and the
evolution of the 10 WCCs is presented in Fig. 4 follow-
ing similar conventions as for Bi and Bi2Se3. For both
faces Eq. (17) gives a trivial Z2 index, with the center
of the largest gap making no jumps, so that GeTe is in
the topologically trivial state 0; (000). This result could
have been anticipated from the fact that the spin-orbit
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FIG. 4. Evolution of GeTe WCCs x̄n (circles) in the r3 di-
rection vs. k2 at (a) k1=0; (b) k1=π. Red rhombus marks
midpoint of largest gap. k2 is sampled in ten equal incre-
ments from 0 to π.

interaction in GeTe is weak, as reflected in the approxi-
mate pairwise degeneracy of the WCCs throughout the
evolution.

Finally, let us consider the more interesting case of
strained HgTe. In the absence of strain this is a zero-
band-gap material. Any anisotropic strain breaks the
four-fold symmetry at Γ, making it possible that the gap
might open. Based on an adiabatic continuity argument,
HgTe was predicted to be a strong topological insula-
tor under compressive strain in the [001] direction.6 This
was later verified with tight-binding calculations.5,40 Ap-
plication of our approach to HgTe under uniaxial strain
also confirms that HgTe is a strong topological insulator,
with index 1; (000), under both positive and negative6

2% strains along the [001] direction (not shown). This
means that although the positive-strain and negative-
strain states are separated by a gap closure at zero strain,
there is no topological phase transition associated with
this gap closure.

We also studied strains in the [111] direction. Un-
der compressive strains of −2% and −5% the system
becomes metallic and the direct band gap vanishes, so
that no topological index can be associated with the oc-
cupied space. Under tensile strain of +2% we find that
HgTe becomes a narrow-gap semiconductor with an in-
direct energy gap of Eg = 0.054 eV, while for +5% strain
it becomes metallic. Even at +5% strain, however, the
lowest 18 bands remain separated from higher ones by an
energy gap at all k, so that, as for Bi, one can still assign
a topological index to this isolated group of bands. The
computed band structures for both cases are illustrated
in Fig. 5 along lines connecting the high symmetry points
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FIG. 5. Band structure along high-symmetry lines of the
undistorted FCC structure for HgTe under tensile strain in
the [111] direction. (a) +2% strain. (b) +5% strain.
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FIG. 6. Evolution of WCCs for HgTe under +2% strain in
the [111] direction. WCCs x̄n (circles) in the r3 direction are
plotted vs. k2 at (a) k1=0; (b) k1=π. Red rhombus marks
midpoint of largest gap. k2 is sampled in ten equal increments
from 0 to π, except that an extra point is inserted midway in
the first segment in panel (a) (see text).

of the undistorted FCC structure.

The space group of [111]-strained HgTe is rhombohe-
dral R3m (#166), the same as for GeTe, so that again
only two Z2 indices need to be calculated. The results of
our WCC analysis for the case of +2% strain are shown
in Fig. 6. We find Z2=1 and Z2=0 for n1=0 and n2=1
respectively, so that the topological class is 1; (000). The
behavior in Panel (b) is rather uninteresting, since the
gap is large everywhere on the n2=1 face. However, in
Panel (a) we again find an example of a rapid change
of WCCs with k2, which was repaired by inserting an
extra point (the one now labeled ‘1’ on the horizontal
axis) at k2 = 0.05π. Actually, we anticipated the need
for this denser sampling for small k2 from the fact that
the zero-strain gap closure occurs at Γ, so that a delicate
dependence on k near the BZ center was expected.

V. SUMMARY AND CONCLUSIONS

We have proposed a new approach for calculating topo-
logical invariants in T -invariant systems. The method
is based on following the evolution of hybrid Wannier
charge centers, and is very general, being easily applica-
ble in both tight-binding and DFT contexts. The needed
ingredients are the same as those needed for the cal-
culation of the electric polarization or the construction
of maximally-localized Wannier functions, and are thus
readily available in standard code packages. The present
algorithm is relatively inexpensive, however, because the
analysis is confined to a small number of 2D slices of
the 3D Brillouin zone. The method is easily automated
and remains robust even when many bands are present.
We hope that our method can help to make the search
for topological phases in noncentrosymmetric materials a
routine task, and that it will lead to further progress in
this rapidly developing field.
Note: In the final stages of preparing this manuscript,

we became aware of independent work by Yu et al.41 that
is closely related. These authors carry out a similar anal-
ysis based on WCCs, but without the automated analysis
described in our Sec. III.
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