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Smooth gauge for topological insulators
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We develop a technique for constructing Bloch-like functions for 2D Z2-insulators (i.e., quantum
spin-Hall insulators) that are smooth functions of k on the entire Brillouin-zone torus. As the initial
step, the occupied subspace of the insulator is decomposed into a direct sum of two “Chern bands,”
i.e., topologically non-trivial subspaces with opposite Chern numbers. This decomposition remains
robust independent of underlying symmetries or specific model features. Starting with the Chern
bands obtained in this way, we construct a topologically non-trivial unitary transformation that
rotates the occupied subspace into a direct sum of topologically trivial subspaces, thus facilitating a
Wannier construction. The procedure is validated and illustrated by applying it to the Kane-Mele
model.

PACS numbers: 72.25.Dc, 73.20.At, 73.23.-b, 73.43.-f

I. INTRODUCTION

In recent years the band theory of solids has been aug-
mented by new chapters to account for geometric and
topological effects that had not been considered previ-
ously. The introduction of the Berry phase1 allowed
the systematic description of many observable effects
of purely geometric origin, such as the Aharonov-Bohm
effect,2 and its applications in the band-theory context
have included the theory of electric polarization3,4 and
the anomalous Hall conductance.5,6

The recent discovery of topological insulators7,8 has
widened the role of geometry and topology in band the-
ory even further. The classification of non-interacting
insulating Hamiltonians in 2D predicts two topologically
non-trivial scenarios.9–11 The first scenario is that of a
Chern insulator, i.e., an insulator that exhibits an inte-
ger quantum Hall effect even in the absence of an external
magnetic field.12 Such a material, also known as a quan-
tum anomalous Hall insulator, is classified according to
the value of transverse conductance in integer multiples
of e2/h, i.e., a Z classification. The Z invariant con-
tains information about the excess chirality of current-
carrying edge states of a 2D sample. Hamiltonians that
correspond to different integers represent distinct topo-
logical phases, meaning that they cannot be adiabatically
connected without closing the insulating gap.9–11 Chern
insulators break time-reversal (TR) symmetry, since σxy
is odd under TR. The name arises from the fact that the
exact quantization of conductance is of topological origin,
i.e., the conductance is written as σxy = C(e2/h) where
C is called the Chern number or TKNN invariant.5,13,14

The second scenario in 2D is that of a TR-symmetric
Z2 insulator15 that possesses either an odd or even num-
ber of Kramers pairs of edge states. According to the
number of these pairs at the edge, the insulator is either
Z2-odd or Z2-even. These two phases are topologically
distinct and cannot be adiabatically connected to one
another without gap closure. A Z2-odd insulator realizes
the quantum spin Hall (QSH)15,16 state, while a Z2-even
one is adiabatically connected to a normal insulator. In
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FIG. 1. Brillouin zone in 2D represented as (a) a torus, and
(b) a cylinder. We choose the gauge discontinuity to be dis-
tributed along the cross-sectional cut of the torus that maps
onto the end loops of the cylinder at ky = ±π.

what follows we will sometimes refer to the QSH insual-
tor as a “Z2 insulator.” Unlike the Chern-insulator state,
the QSH-insulator state has been realized experimentally,
e.g., in CdTe/HgTe/CdTe quantum wells17 following a
theoretical prediction.18,19

On the level of conventional band theory of crystalline
solids, Chern and Z2 insulators are also different from or-
dinary ones. For an ordinary insulator the Bloch states
ψnk are usually assumed to be smooth and periodic in
the Brillouin zone (BZ), meaning that a translation by a
reciprocal lattice vector G returns the Bloch wavefunc-
tion back to itself with the same phase, ψn,k+G = ψnk,
and that ψ is a smooth function of k. Regarding the BZ
as a torus, as in Fig. 1(a), this just means that ψ is a
smooth function of k on the torus. This turns out to be
impossible for Chern insulators;20,21 the occupied space
of a Chern insulator cannot be represented by smooth
and periodic Bloch states. Usually periodicity is still as-
sumed, in which case a point discontinuity or branch cut
must appear in the phase of at least one occupied Bloch
state somewhere in the BZ. It is now established that no
gauge transformation – i.e., no k-dependent unitary rota-
tion of the bands in the occupied subspace – can smooth
out this discontinuity.20,21

In the case of Z2 insulators, the presence of TR sym-
metry forces the total Chern number to vanish, guaran-
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teeing the existence, in principle, of a smooth and peri-
odic gauge in the BZ.22 However, it has been shown that
any gauge that respects TR symmetry cannot be smooth
on the torus for this class of topological materials.23–25

Thus, the construction has to break TR symmetry if it
is to lead to a smooth gauge. An explicit construction of
this type for the QSH model of Kane and Mele demon-
strated that this is possible,26 but the method used there
was explicitly model-dependent, and it remained unclear
how one should choose a smooth gauge for a generic Z2

insulator.

In the present paper we address this question and de-
velop a general procedure for constructing smooth and
periodic Bloch states for QSH insulators. We limit our-
selves to the minimal case of two occupied bands and
show how they can be disentangled into two single-band
subspaces having equal and opposite Chern numbers, in
such a way that these subspaces are mapped onto each
other by the TR operator θ.

Each of these “Chern bands” has the same type of
gauge discontinuity on the boundary as is present in a
Chern insulator. The possibility of such a decomposition
has been discussed before in different contexts,24,27–29

but the previous approaches all have relied on some spe-
cific feature of the system, such as separation of states
according to the action of the Sz or mirror symmetry op-
erators. Instead, our construction is based on topological
considerations alone, and should remain robust for any
Z2 insulator. We further impose on these Chern bands a
special “cylindrical gauge” in which the gauge discontinu-
ity is spread uniformly around the circular cross section
of the BZ torus, i.e., connecting the end loops at ky = ±π
in Fig. 1(b). Finally, we develop a procedure that mixes
these two topologically non-trivial states in such a way
that they become smooth and periodic in the BZ, thus
obtaining a smooth (but TR-broken) gauge.

Apart from the purely theoretical motivation, the
problem of constructing smooth Bloch states for Z2 insu-
lators has a direct practical application. When working
with ordinary band insulators it is often convenient to use
a real-space formulation in terms of the Wannier repre-
sentation. In this representation, the occupied subspace
is described by a lattice of Wannier functions that are
exponentially localized in real space. The Wannier repre-
sentation is very useful for computing many properties of
insulating materials, such as electric polarization, charge
distributions, or bonding properties, or when construct-
ing model Hamiltonians.30–33 However, exponentially lo-
calized Wannier functions may be constructed only out
of a set of smooth Bloch states. Thus, construction of
a smooth gauge for Z2 insulators allows for the use of
well-established Wannier-based methods in the study of
these materials.

Another interesting aspect of the present work arises
from the fact that a smooth gauge allows one to compute
the Z2 topological invariant directly by tracing the con-
nectivity of the states between some special points in the
BZ.23 In the presence of inversion symmetry this task is

greatly simplified,34 since inversion symmetry allows one
to choose states that are smoothly connected in the BZ.
In the absence of inversion symmetry, however, the same
is not true, and the computation of the topological in-
variant also becomes more complicated.35–38 Thus, one
can consider the present method as an alternative recipe
for computing topological invariants.
The paper is organized as follows. The specific gauge

that we want to establish and the concept of individual
Chern numbers are introduced in Sec. II. The procedure
for disentangling the occupied subspace of a Z2 insula-
tor into Chern subspaces is described in Sec. III, where
we also discuss the relation of our decomposition proce-
dure to ones discussed elsewhere. Sec. IV introduces a
general procedure for constructing a smooth gauge out
of the two Chern subspaces. We give our conclusions in
Sec. V. Finally, the paper includes three appendices. In
App. A we describe the parallel transport of states, a
procedure that is used heavily in the construction of the
Chern bands. App. B presents a brief summary of the
Kane-Mele model15 that we use to illustrate our method.
Finally, the relation of the smooth gauge constructed in
the present paper to the one discussed by Fu and Kane
in Ref. 23 is discussed in App. C.

II. CYLINDRICAL GAUGE AND INDIVIDUAL

CHERN NUMBERS

In this section we consider the definition of the Chern
number of a Bloch band in 2D and introduce a cylin-
drical gauge for Chern bands. This is a gauge that is
continuous in the BZ but is periodic in kx only. That
is, it is continuous on the cylinder in Fig. 1(b), but not
across the boundary connecting top to bottom, i.e., not
on the torus of Fig. 1(a). We then establish the notion of
individual band Chern numbers in the multiband case.

A. Single band case

Let us first consider a single isolated Bloch band ψk(r)
in 2D and its cell periodic part unk(r) = e−ik·rψk(r).
We assume the lattice vectors to have unit length and
to be aligned with the Cartesian axes, i.e., a1 = x̂ and
a2 = ŷ, so that kx runs from 0 to 2π and ky runs from −π
to π. (In the general case, a linear transformation triv-
ially rescales the k indices into this form.) The Abelian
Berry connection1 associated with these Bloch functions
is introduced as

A(k) = i〈uk|∇k|uk〉 (1)

and the corresponding curvature becomes

F = ∇k ∧A = −2Im〈∂kx
uk|∂ky

uk〉. (2)

It is important to note that, unlike the Berry connection,
the curvature is a gauge-invariant quantity. Since we are
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in 2D, the BZ is represented by the torus T 2 shown in
Fig. 1(a), which is a closed manifold. The integral of the
Berry curvature over the closed manifold is necessarily a
multiple of 2π, and the integer number

C =
1

2π

∫

BZ

d2kF(k), (3)

is called a Chern number.14 In general, the non-zero
Chern number reflects the impossibility of constructing
a periodic gauge without the presence of points or lines
in the BZ where the wavefunction would have a phase
discontinuity.
To have a particular example of a gauge that leads

to a nonzero Chern number C, consider a gauge that is
smooth everywhere on the BZ torus except on a circle as
shown in Fig. 1(a). Any gauge discontinuity that might
be present has thus been pushed to this circular bound-
ary, where the phase of the wavefunction can experience
a jump when crossing it. Such a gauge is continuous on
the cylinder formed by cutting the torus along the dis-
continuity, shown in Fig. 1(b), but is not periodic in the y
direction. We now define a “cylindrical” gauge to be one
in which the gauge discontinuity is uniformly distributed
around the boundary. That is, such a gauge obeys the
boundary conditions

ψk+2πx̂ = ψk,

ψk+2πŷ = ψk e
iCkx , (4)

or, equivalently,

uk+2πx̂ = e−2πix uk,

uk+2πŷ = e−2πiy uk e
iCkx , (5)

where C is the Chern integer. The cylindrical gauge is
assumed to be continuous inside the rectangle of the BZ
and Gx-periodic in kx, so it is continuous on the cylinder.
This leads to the continuity of the vector field A(k) on
the cylinder and, hence, Gauss’s theorem may be applied
to the definition (3) to write

C =
1

2π

∮

∂BZ

A(k) · dk, (6)

where the boundary ∂BZ of the BZ consists of the top
and bottom loops (S1 ⊕ S1) of the cylinder at kx = −π
and π. From Eq. (6) the consistency of the chosen gauge
with the definition of the Chern number becomes obvi-
ous. That is, C in the exponent of the boundary con-
ditions of Eqs. (4-5) is exactly the Chern number. Note
that since we consider here a single isolated band, this
Chern number is a gauge-invariant quantity.

B. Multiband case and individual Chern numbers

Let us now consider N > 1 bands separated by en-
ergy gaps from the rest of the spectrum. The Abelian

connection of Eq. (1) is now replaced by its non-Abelian
multiband generalization39,40

Amn,α = i〈umk|∂α|unk〉 (7)

and the non-Abelian curvature is defined as

Fmn,αβ = Fmn,αβ − i[Aα,Aβ ]mn, (8)

where the k-dependence is implicit. F is gauge-covariant
and Tr[F ] is gauge-invariant14 under a general unitary
transformation U ∈ U(N ) of the occupied bands, i.e.,

|unk〉 =
∑

j

Ujn(k)|ujk〉. (9)

The Chern number is now assigned to the entire space of
N bands and is defined as

C =
1

2π

∫

BZ

d2kTr[F ] =
1

2π

∫

BZ

d2kTr[F ], (10)

where the trace is taken over the band index.
If we now suppose that in the group of bands under

consideration each of the N bands is isolated – that is,
separated from the others by finite gaps – then the total
Chern number of the subspace is just the sum

C =

N
∑

n=1

cn (11)

of the individual Chern numbers of all the bands in the
subspace,41 where cn are computed for isolated bands
as described in the preceding section. Being treated in
this way, each cn is an integer. However, one might be
tempted to define the quantity

c̃n =
1

2π

∫

BZ

d2kFnn,xy(k) (12)

as the single-band contribution of band n to C. Thus
defined, c̃n is not necessarily an integer, since it is now
allowed to mix the bands by a transformation of the
form of Eq. (9), which can change Fnn,xy. Hence, in the
multiband case the partial Chern contributions defined
by Eq. (12) are not topologically invariant.
The example of a group of isolated bands suggests

that in certain gauges the subspace under consideration
may be decomposed into the direct sum of smaller sub-
spaces for which Chern numbers are well defined. In
this particular example the gauge that naturally realizes
this decomposition is the Hamiltonian gauge, that is, the
gauge in which the Hamiltonian is diagonal. However,
one might wonder whether such a decomposition is still
possible for overlapping bands.
A QSH insulator has a non-trivial topology,15 which

can be seen as an obstruction for constructing smooth
Bloch functions in a gauge that respects the TR symme-
try of the Hamiltonian.23–25 In what follows we describe
a generic procedure for decomposing the occupied sub-
space of such an insulator into a direct sum of Chern
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subspaces, i.e., disentangling the occupied subspace into
bands with well-defined individual integer Chern num-
bers cn. We also show that each of these Chern bands
may be represented in the cylindrical gauge of Eq. (5)
with C replaced by cn.

III. DECOMPOSITION INTO CHERN

SUBSPACES

In this section we develop a general procedure for dis-
entangling a Kramers pair of occupied states of a 2D Z2-
insulator into two Chern bands with individual Chern
numbers c1 = −1 and c2 = 1. The decomposition
method makes heavy use of the concept of parallel trans-
port described in Appendix A. The procedure is illus-
trated by its application to the Kane-Mele model that is
reviewed in Appendix B. We start by using parallel trans-
port of the Bloch states to move the gauge discontinuity
to the edge of the BZ. This makes the gauge continuous
on the cylinder in k-space. The next step is to apply cer-
tain gauge transformations to split the occupied subspace
into a direct sum of two subspaces that are mapped onto
one another by TR. We then explain how to impose the
cylindrical gauge on the two disentangled bands. Since
by the time of this step the bands are already continuous
in the interior of the cylinder, it is only the form of the
discontinuity at the edge that has to be modified. Fi-
nally, we discuss the relation of our decomposition to the
previously proposed “spin Chern numbers.”

A. Moving the gauge discontinuity to the BZ edge

We now consider a general model of a TR-symmetric
insulator in 2D. For simplicity we consider a minimal
model with two occupied bands only, since it is the
Kramers pairs near the Fermi level that are responsible
for a topological phase. Thus, we consider the solution of
the Schrodinger equation H(k)|unk〉 = Enk|unk〉 under
the TR-invariance condition θH(k)θ−1 = H(−k). As
was discussed above, the BZ is assumed to have been
reduced to a square spanning [0, 2π]× [−π, π].
We start by taking two occupied states |u1〉 and |u2〉

resulting from numerical diagonalization at (0, 0). By
TR invariance, these must be Kramers-degenerate at this
point. Numerical diagonalization brings random phases
to both states; we accept the random phase assigned to
|u1〉, but ensure that the second state is a Kramers part-
ner to the first by setting |u2〉 = θ|u1〉. Starting from
these states we move the gauge discontinuity to the edge
of the BZ in several steps.
Parallel transport along kx at ky = 0. As a first step

of our procedure, we carry out a multiband parallel trans-
port from k = (0, 0) to (2π, 0) along the kx axis. This
procedure is described in detail in Appendix A, but in
brief it works as follows. Starting from the the two occu-
pied states at (0, 0), we step along a mesh of kx values,

each time carrying out a 2 × 2 unitary rotation of the
two states at the new kx such that the 2 × 2 matrix of
overlaps with the states at the previous kx is as close
as possible to the identity. The 2 × 2 unitary matrix
U relating the states ψnk at (2π, 0) to those at at (0, 0)
(i.e., the Λ matrix of Eq. (A5)) is then constructed; its
eigenvalues λn = eiφn yield the non-Abelian Berry phases
φn.

39,40 In the present case, the TR symmetry insures
that λ1 = λ2, so that U is just the identity times eiφ

where φ = φ1 = φ2. Finally, the gauge discontinuity
from (2π, 0) back to zero is “ironed out” by applying the
gradual phase rotation e−iφkx/2π to the two states at each
kx.

As a result of this procedure, we have a set of states
that are smooth functions of kx on the circular cross sec-
tion of the BZ torus at ky = 0, including across the seam
connecting kx=0 to kx = 2π. This is illustrated schemat-
ically in Fig. 2(b-c).

Parallel transport along ky at each kx. Next, at each
mesh point kx, we carry out two independent parallel-
transport procedures, one from (kx, 0) to (kx, π) along +ŷ
and another from (kx, 0) to (kx,−π) along −ŷ. At each
new ky point, the states are rotated by a unitary matrix
so that the matrix of overlaps with the previous pair is as
close to unity as possible. Starting this procedure from
the line ky = 0 guarantees that the states on this line
remain unchanged, preserving the smoothness obtained
previously. Moreover, the entire parallel-transport pro-
cedure is identical at kx = 0 and kx = 2π, ensuring that
the states selected in this way are continuous across the
entire seam where kx = 0 has been glued to kx = 2π.
Thus, we end up with two states defined everywhere on
the mesh of k-points in such a way that they are smooth
inside the BZ and periodic in kx, or equivalently, smooth
everywhere on the cylinder of Fig. 1(b). This step is il-
lustrated in Fig. 2(d). The above procedure relates the
states at (kx,−π) to those at (kx, π) by a unitary matrix

Vmn(kx) = 〈um(kx,ky=−π)| e2πiy |un(kx,ky=π)〉, (13)

which plays a role similar to Λ of Eq. (A5). This matrix
encodes the information about the gauge discontinuity
that occurs on the boundary of the cylindrical BZ. Its
off-diagonal elements contain information about entan-
glement of the two states, while the diagonal ones carry
information about phase discontinuity of the states.

Restoring periodicity in ky at kx = 0. The fact that
the two states at k = 0 form a Kramers pair guarantees
that the matrix V (kx) is diagonal at kx = 0 with two
degenerate eigenvalues λ(kx = 0) = eiϕ0 . (Incidentally,
the same is true at kx = π; we shall use this fact later.)
Now we want to restore the smoothness across ky = ±π
at kx = 0, but in such a way as to preserve the smooth-
ness inside the cylindrical BZ. We do this by multiplying
all states by a phase factor that depends smoothly on ky
only:

|unewn(kx,ky)
〉 = e−ikyϕ0/2π|un(kx,ky)〉 (14)
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FIG. 2. (a) BZ in k-space. (b) States are parallel transported along ky = 0, but are not periodic. (c) Periodicity is restored at
ky = 0. (d) Parallel transport of states at all kx from ky = 0 to ky = ±π. (d) Periodicity is restored at kx = 0, and, hence,
kx = 2π, but not at other kx.

After this transformation, the V (kx) matrix is the iden-
tity at kx=0. Thus, the gauge discontinuity, which has
already been segregated to the edges at ky = ±π, has
now been further excluded from the point lying at kx=0
(or 2π) on the edge. Fig. 2(e) illustrates this, where red
crosses on the edges represent the gauge discontinuity
and the black dots indicate continuity.
Note that the entire procedure up to this point pre-

serves the TR symmetry, so that the states obtained so
far on the BZ respect the constraints

θ|u1k〉 = |u2−k〉,
θ|u2k〉 = −|u1−k〉. (15)

This in turn implies that

V (−kx) = σy [V (kx)]
T σy (16)

so that det[V (−kx)] = det[V (kx)].
Removing the U(1) gauge discontinuity. Obviously,

V (kx) ∈ U(2), which can always be written as a U(1)
phase times an SU(2) matrix. For our next step, we find
it convenient to reduce V (kx) to SU(2) form by multiply-
ing the states |unk〉 by a k-dependent phase factor. To
do so, we define

γ(kx) = Im log detV (kx) (17)

with the branch choice that γ = 0 at kx=0 and γ(kx) is
a continuous function of increasing kx. This results in
γ = 0 again at kx = 2π because the TR symmetry forces
the total Chern number C of the two bands to be zero.
Indeed, C is just given by the winding number of the
U(1) → U(1) mapping from kx to γ. This follows from

2πC =

∫ 2π

0

dkx

[

TrA(ky=−π)
kx

− TrA(ky=π)
kx

]

=

∫ 2π

0

dkx ImTr
[

V †∂kx
V
]

=

∫ 2π

0

dkx ∂kx
γ(kx)

= γ(kx)
∣

∣

∣

2π

0
(18)

after some algebra.

Thus, our next step is simply to shift the phases of all
states according to

|unewn(kx,ky)
〉 = e−iγ(kx)ky/4π|un(kx,ky)〉. (19)

This conserves all of the previous properties (smooth
gauge inside the cylindrical BZ and on all boundaries
except at ky = ±π). Moreover, V (kx = 0) is still the
identity, but now in addition, detV (kx) is real and posi-
tive at all kx. That is, V (kx) has been reduced to SU(2)
form. We also note that Eqs. (15) and (16) continue
to hold. However, V (kx) remains off-diagonal at general
kx, thus signaling that the decomposition of the occupied
subspace into the direct sum of the two TR-symmetric
subspaces is not yet complete.
As noted earlier, the fact that our procedure starts

from Kramers-degenerate pairs at (kx, ky) = (0, 0) and
(π, 0) and respects TR symmetry at all stages enforces
that V (kx) must be a constant times the identity at
kx = 0 and kx = π. Since V ∈ SU(2) as well, V must
be I or −I at these two kx values. Previous gauge-fixing
choices insure that V (0) = I, but is V (π) = I or −I? It
can be shown that these choices correspond to the case of
the Z2 index being even or odd, respectively. Indeed, ac-
cording to homotopy theory, the mapping U(1) → SU(2)
is characterized by a Z2 index; this is precisely the case
here. In fact, the procedure up to this point can be used
as an alternative to the method we presented earlier in
Ref. 36 to compute the Z2 invariant. From the numer-
ical perspective, however, such a method does not have
any significant advantages compared to the previously
suggested one, apart from its straightforward geometric
interpretation. In fact, for large systems it might not be
very convenient to carry out all the transformations of
the wavefunctions described above.
In what follows, we assume that the Z2 index is odd.

B. Disentangling the two bands

In order to proceed, we want to make V (kx) diago-
nal at each kx. When this is accomplished we will have
two disentangled bands 1 and 2, although each will still
have its own phase discontinuity along the boundaries at
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ky = ±π. We take a first step in this direction by tak-
ing advantage of the freedom that we had when choosing
the initial representatives of the occupied subspace at
k = (0, 0). These two states may be changed by a uni-
tary transformation U , which we take to belong to SU(2)
so that the TR symmetry is fully preserved. So, we first
look for the global SU(2) rotation that will minimize the
sum of all the off-diagonal terms of the V matrices at all
kx. Once this is done, a further adjustment can be made
so as to make V (kx) exactly diagonal at each kx without
losing smoothness on the cylinder. We now explain the
procedure in detail.

1. Steepest-descent minimization of VOD

Let us introduce a functional

VOD =
1

Nx

∑

kx

∑

m 6=n

|Vmn(kx)|2 (20)

that is a measure of the degree to which V (kx) fails to be
diagonal along the discontinuity at ky = ±π. The sum on
kx runs over a uniform grid of Nx mesh points. We want
to use the freedom of choosing the initial pair of states
at k = (0, 0) to minimize this functional by rotating the
states at all k-points by the same unitary matrix U0. To
do so, we consider the gradient of VOD with respect to
an infinitesimal k-independent unitary transformation

Umn = δmn + dWmn, (21)

where dW = −dW † for U to be unitary. A transforma-
tion of this form rotates the states according to

|ũnk〉 = |unk〉+
∑

m

dWmn|umk〉. (22)

To first order in dW the change in V (kx) is

dVmn = [V, dW ]mn . (23)

To compute the gradient

Gmn =

(

dVOD

dW

)

mn

=
dVOD

dWnm
(24)

we note that Eq. (20) can be rewritten in the form

VOD = N − 1

Nx

∑

kx

N
∑

n

|Vnn(kx)|2. (25)

Then, using Eq. (23), one can write

dVOD = − 2

Nx
Re

∑

kx

∑

nm

V ∗
nn(VnmdWmn − dWnmVmn)

= − 2

Nx

∑

kx

ReTr [R(kx) dW ] (26)

(the kx dependence of V is suppressed for brevity) and

Rmn(kx) = Vnm[V ∗
nn − V ∗

mm]. (27)

The second line of Eq. (26) is obtained by interchanging
the dummy nm indices in the second term of the first
line. It then follows that

G =
1

Nx

∑

kx

[

R(kx)−R†(kx)
]

. (28)

We emphasize that the gradient G is independent of kx
since it generates a global unitary rotation to be applied
simultaneously to all states. Also, G is not only anti-
hermitian but also traceless, so that it generates a SU(2)
unitary rotation. We now follow an iterative steepest-
descent procedure, choosing a small positive damping
constant β and letting dW = −βG† (i.e, dW = βG)
so that dVOD = Tr[GdW ] = −β||G||2 to first order in β.
We use this to update the states according to

|u(j+1)
n 〉 =

∑

m

[

e∆W (j+1)
]

mn
|u(j)n 〉 (29)

and the V matrices according to

V (j+1) =
[

e∆W (j+1)
]†

V (j)e∆W (j+1)

(30)

where the upper index refers to the iteration step. The it-

eration stops when V(j)
OD−V(j+1)

OD stays consistently below
some pre-chosen tolerance ε.
To give a flavor of how steepest descent works we give

the values obtained for the Kane-Mele model in the QSH
regime (λv/t = 1, λSO/t = 0.6, λR/t = 0.5) with a
120 × 120 k-mesh, ε = 10−6 and β = 0.25. Initially
VOD = 0.0226, while after minimization VOD = 0.0021,
so it becomes approximately ten times smaller. The cru-
cial thing is that this final value of VOD suggests that the
average off-diagonal element of V has is of order ×10−2,
meaning that the V matrix is almost diagonal.
Note that at this stage the two subspaces are still not

completely disentangled into two well-defined Chern sub-
spaces. However, the gauge is very close to what we need.
For example, the winding of V (kx) already has the nec-
essary features: if one plots V11 in the complex plane as a
function of kx, one will see that it winds once around the
origin in the counterclockwise direction as kx goes from
0 to 2π, as illustrated in Fig. 3. Since V are not diagonal
yet the trace is not the unit circle, although it is close.
V22 winds in the opposite direction.

2. Diagonalization and final decomposition

Now we are in a position to make the final step in de-
composition procedure. As a result of the steps above,
the off-diagonal elements of the V (kx) matrices should be
small compared to the diagonal ones, so that the matrices
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11 ]
1

1

−1

Im[ V

Re[ V11 ]

−1

FIG. 3. Trajectory of V11 in the complex plane as kx runs
across the BZ, before (red dashed line) and after (solid black
line) the global U0 rotation that minimizes VOD for a Z2-odd
insulator. In neither case is the graph exactly a unit circle
(dotted line), but V11(0) = 1 and V11(π) = −1.

are almost diagonal. This means that V (kx) can be diag-
onalized by a unitary transformation U(kx) that is only
slightly different from the unit matrix. Since diagonaliza-
tion of V (kx) does not fix the phases of the eigenvectors,
and we need the phases to vary smoothly, we need an ex-
tra step to fix these phases. We do this by enforcing that
the dominant component of each eigenvector of V (kx) is
real and positive.42 We then apply U(kx) to rotate the
states at all ky for each given kx (except at kx = 0 or π,
where V was already diagonal).
As a result of this step the occupied subspace has been

disentangled into a direct sum of two subspaces corre-
sponding to states n = 1 and 2. Moreover, they should
form Kramers pairs and satisfy the constraint (15). Each
subspace has a gauge that is smooth on the cylinder
but not on the torus, since there is still a phase mis-
match, corresponding to Vnn(kx), across the boundary
at ky = ±π. For the Z2-odd case this phase discontinu-
ity can never be completely removed, since the subspaces
have Chern numbers of ±1.
To check the procedure, we apply it to the Kane-Mele

model and compute the individual Chern numbers of
the two disentangled bands. The computation is done
for each band separately using the Abelian definition of
Berry curvature, Eq. (3). The result is C1 = −1 and
C2 = +1. The fact that the two states have well-defined
Chern numbers is a signature of disentanglement, so that
the individual Chern numbers of Eq. (12) have integer
values (c1 = −c2 = −1). The TR constraint of Eq. (15)
is indeed respected at each k-point. Thus we conclude
that we have succeeded in finding a decomposition of
the occupied subspace into a direct sum of two Chern
subspaces that are mapped onto each other by the TR
symmetry. Once again, we see that the TR-symmetric
gauge for topological insulators is discontinuous on the

BZ torus.

C. Establishing a cylindrical gauge

In Sec. II A we introduced a special “cylindrical gauge”
for which the states satisfy Eq. (5). The defining char-
acteristic of this special gauge is that the phase disconti-
nuity at the cylinder boundary evolves at a constant rate
as a function of kx. As we shall see in Sec. IV, it is useful
to have such a “standard gauge” enforced on the states
when using them in some subsequent operations. Here
we show how to extend our procedure so as to conform
to the requirements of the cylindrical gauge.
As was mentioned above, the diagonal elements of

V (kx) wind around zero in the complex plane in oppo-
site directions, changing by 2π when kx goes from 0 to
2π. Since we have carried out the diagonalization of the
V matrices, we know that the Vjj elements follow a unit

circle in the complex plane of the form eiρj(kx). How-
ever, the speed of this rotation given by vj(kx) = dρj/dkx
(where ρj remains on the same branch of the logarithm)
is not constant, in contrast to the requirement of the
cylindrical gauge.
To change the speed of winding of V (kx) we apply the

gauge transformation

W (kx, ky) =
[

Vtarg(kx)V
†(kx)

]ky/2π
(31)

to the the occupied states at each (kx, ky). Here

Vtarg(kx) =

(

eikxc1 0
0 eikxc2

)

.

gives the target shape of v that corresponds to the cylin-
drical gauge. Note that the choice of sign should be corre-
lated with the individual Chern number of the band it is
applied to. Such a gauge transformation is obviously con-
tinuous on the cylinder and does not change the topology
of the individual bands. It also preserves the TR sym-
metry of the states and the relation of Eq. (15) is still
satisfied.
We note that if the above decomposition is applied

to a normal insulator (say, the Kane-Mele model in the
normal-insulator regime), then c1 = c2 = 0 and a smooth
gauge is obtained at this step.

D. Relation to spin Chern numbers

Finally, we would like to compare our approach to dis-
entangling Z2 bands into Chern bands to some other ap-
proaches suggested previously. In the work of Ref. 27 the
authors suggested to associate a Chern number with each
possible spin projection value. This is especially conve-
nient when ŝz is conserved; then it is natural to assign
individual Chern numbers to each of the bands identified
by a particular value of sz. Such Chern numbers were
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called “spin Chern numbers.” For example, in the case
of the Kane-Mele model with no Rashba coupling (i.e.,
λR = 0), ŝz is conserved and the Hamiltonian becomes
block-diagonal with respect to the spin projection, al-
lowing for well-defined spin Chern numbers. When the
Rashba interaction is turned on the mirror symmetry of
the model is broken and ŝz is no longer conserved, thus
making the original concept of a spin Chern number ob-
scure.
This issue was clarified further by Prodan,29 who

showed that even with the spin-mixing Rashba term it
is possible to define spin Chern numbers by diagonaliz-
ing ŝz in the occupied space of Z2 insulator at each k.
In other words, one diagonalizes the operator P̂kŝzP̂k,
where P̂k is the projector onto the occupied states at k.
Then, if the eigenvalues turn out to be separated by a
spectral gap from one another at each value of k, one
can identify these “bands” as the desired manifolds, and
carry out a unitary rotation of the original bands into
these states to disentangle them. The spin Chern num-
bers thus defined for these bands are well defined and, in
fact, correspond to the individual Chern numbers of our
work. However, when the spectral gap between any two
eigenvalues of the projected spin operator closes, such a
decomposition becomes impossible. One could still con-
sider some other projection operators based on mirror or
other symmetries, as in Ref. 28, and use these eigenval-
ues in a similar way to disentangle the occupied states.
However, such a method always relies on some symme-
try of a particular model, and is thus not universal. The
method suggested in the present work, in contrast, does
not depend on any symmetries of the underlying system.
Thus, we conclude that individual Chern numbers pro-
posed in the present work are robust and arise solely from
the topology of the occupied subspace of the system.
Finally, it was discussed elsewhere that the spin Chern

numbers do not contain any more information than the
Z2 invariant, because their sign can be changed without
closing the insulating gap.23,29,43 This is the case for in-
dividual Chern numbers as well, since obviously, one can
simply change the labeling of the states by a simple uni-
tary transformation that interchanges |u1k〉 with |u2k〉.
Therefore, individual Chern numbers are merely an al-
ternative way of describing the occupied subspace of a
Z2 insulator in terms of disentangled bands, and do not
contain any more information about the topological state
of the whole system than a Z2 invariant alone.

IV. ROTATION INTO A SMOOTH GAUGE

We now discuss the final step in our construction of a
smooth gauge for a QSH insulator starting from the two
Chern bands obtained at the previous steps. The task
of unwinding the topological twists of these bands re-
quires a unitary transformation that is also topologically
non-trivial in the following sense. Obviously, a transfor-
mation that is smooth on the BZ torus, being periodic in

the ky direction, cannot make a cylindrical gauge smooth.
One needs instead a unitary transformation G(k) ∈ U(2)
that has a discontinuity on the torus that exactly cancels
out the discontinuities of the cylindrical-gauge states. Of
course, since the total Chern number of the whole occu-
pied space is a topological invariant,41 the transformation
will preserve the condition that the total Chern number
is zero. In particular, the rotation we are looking for
makes c1 = c2 = 0.

A unitary transformation that solves the problem of
unwinding the two QSH bands with Chern numbers ±1
is given naturally by the solution of the Haldane model12

of a Chern insulator (CI), or for that matter, of any two-
band model of a CI. Indeed, the unitary transformation
G(k) that diagonalizes the Hamiltonian in that case is one
that rotates the two topologically trivial tight-binding
basis states (1, 0)T and (0, 1)T into the eigenstates of the
model. Obviously, G−1(k) = G†(k) rotates the topologi-
cally non-trivial states back into the trivial ones, and thus
can be used to unwind our QSH states. In order for this
procedure to produce a smooth gauge, the Hamiltonian
eigenstates of the CI model also have to be smoothly de-
fined on the cylinder and obey the same cylindrical gauge
of Eqs. (4-5). Assuming this has been done, the applica-
tion of the resulting G†(k) to the QSH states defined by
our procedure will finally result in a gauge that is smooth
everywhere on the torus and that generates new bands
with c1 = c2 = 0, as desired.

The numerical implementation of this procedure is
done most conveniently by solving the CI model on the
same 2D k-space mesh as was used to solve for the QSH
states. If the latter have been computed in the con-
text of first-principles calculations or of some complex
tight-binding model, then some known CI model such
as the Haldane model can be used to provide the needed
G(k). However, when working with a minimal 4×4 tight-
binding model for a QSH system, it may be more conve-
nient to use a 2 × 2 spin-up (or spin-down) block of the
original 4 × 4 QSH model itself. After all, this already
lives on the needed k-mesh and generates bands with
Chern numbers of ±1. For example, for an application
to the Kane-Mele model in the QSH regime (λv/t = 1,
λSO/t = 0.6, λR/t = 0.5), we used the spin-up block of
the original Hamiltonian and obtained two states |u′ik〉
with Chern numbers c′1 = −1 and c′2 = 1, where the hat
is used to distinguish the CI quantities from the QSH
ones.

As mentioned earlier, it is also necessary to bring the
CI bands |u′ik〉 into the cylindrical gauge in order to en-
sure that the resulting G†(k) exactly cancels the discon-
tinuity of the QSH bands at the edge of the cylinder.
For this purpose, a parallel-transport procedure is car-
ried out across the BZ in close analogy to what was
described in Sec. III A, but now it is done in a single-
band U(1) context applied to each of the CI states in
turn. It is useful to refer again to Fig. 2. First, a par-
allel transport of |u′1k〉 is carried out along the kx axis
(with an arbitrary choice of phase at k = 0), and a
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graded phase twist is applied to match phases at kx = 0
and 2π as in Figs. 2(b-c). Then parallel transport is
performed along the vertical directions as in Fig. 2(d),
and a (kx-independent) phase change that is graded
along ky is applied to restore continuity at the corner
points of Fig. 2(e). This defines a phase discontinuity
V ′
11(kx) = 〈u′1(kx,−π)|u′1(kx, π)〉 whose phase-winding

rate d ln(V11)/dkx is initially nonuniform, but is made
uniform by the same trick as for the QSH states. The
procedure is repeated for the second CI band.
The above procedure results in Chern bands obeying

the cylindrical gauge as required. We can now simply
form the desired unitary matrix G(k) as the 2× 2 matrix
whose first and second columns are filled with the column
vectors |u′1(k)〉 and |u′2(k)〉 respectively. We emphasize
again that this matrix is not topologically trivial; its co-
efficients are continuous on the cylinder, but not continu-
ous across ky = ±π, just like the CI that has produced it.
Applying G†(k) to the QSH bands constructed in Sec.III,

|ũnk〉 =
∑

m

G†
mn(k)|umk〉 , (32)

we finally end up with two bands that have c1 = c2 = 0
and that span the Hilbert space defined by the original
occupied bands of the QSH model. Thus, we have con-
structed a smooth and periodic gauge for the target Z2

insulator.
It should be stressed that rotation into a smooth gauge

as described above breaks TR symmetry, since G(k) re-
sults from a TR-broken CI model. Thus, the two smooth
subspaces are not mapped onto each other by the TR op-
erator, so that 〈ũ1,k|θ|ũ2,−k〉 6= 0 except at TR-invariant
momenta k = −k + G. Similarly, if Wannier functions
are constructed from the Bloch spaces defined in this
way, they will not form Kramers pairs.26 Finally, we note
that although the gauge is now smooth and periodic, it
can be smoothed further by using this gauge as a start-
ing point for a Wannier-function maximal-localization
procedure.30

In summary, we have demonstrated a general method
for constructing a smooth gauge for a Z2 topological in-
sulator. At this final stage we start with a gauge that still
respects TR symmetry, but then we carry out a unitary
mixing operation that violates this symmetry in order
to avoid the topological obstruction. Application to the
Kane-Mele model allows us to compute the Z2 invari-
ant with the smooth-gauge formula of Fu and Kane23 as
discussed in Appendix C.

V. CONCLUSIONS

In this paper we have developed a general method for
decomposing the occupied space of a Z2 insulator into a
direct sum of two TR-symmetric Chern subspaces with
non-trivial individual Chern numbers. We then described
a general procedure for breaking the TR symmetry be-
tween the two bands and rotating them into subspaces

that are smooth everywhere on the torus. Our meth-
ods are general in the sense that they do not make use
of any special symmetries or assumptions about gaps in
the spectrum of spin operators. This establishes the con-
struction of a smooth gauge for 2D topological insulators.
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Appendix A: Parallel transport

Let us discuss how to construct a parallel-transport
gauge starting from a set of randomly chosen eigenstates
of the Hamiltonian on a k-mesh. In what follows we
distinguish single-band and multiband parallel transport
procedures. The general idea in both cases is to carry the
Bloch states along a certain path in the BZ in such a way
that they remain as parallel as possible to the previous
states at all points. If the path is closed, the states might
return to the initial point with some phase differences rel-
ative to the initial states, thus violating singlevaluedness.
However, singlevaluedness of the wavefunction can be re-
stored by spreading the extra phase uniformly along the
path, as explained in more detail below. For simplicity,
we consider parallel transport along one direction in the
BZ, say kx. In this case, a closed loop is obtained when
the state is transported by a reciprocal lattice vector Gx.
The generalization to an arbitrary direction should be
obvious.
Consider a single isolated band |unk〉. To carry the

state to k + ∆k via parallel transport, the phase of the
Bloch state at this new point should be chosen in such
a way that the overlap 〈unk|un,k+∆kx

〉 is real and pos-
itive, so that the change in the state is orthogonal to
the state itself. It is straightforward to implement this
numerically. Consider a discrete uniform mesh of k-
points {kj}, j ∈ [1, N + 1], where kj+1 = kj +∆kx and
kN+1 = k1 + Gx. The states |ũkj

〉 at these points are
obtained by a numerical diagonalization procedure and
thus have random phases. At the initial point j=1 we
set |u′

k1
〉 = |ũk1〉. Then at each subsequent kj+1 we let

βj+1 = Im ln 〈ũ
kj+1

|u′
kj
〉 and then apply the U(1) phase

rotation

|u′kj+1
〉 = eiβj+1 |ũkj+1〉 , (A1)

which makes 〈u′
kj
|u′

kj+1
〉 real and positive. Once this is

done at each k-point, the state at k1 differs from that
at kN+1 by a phase factor eiφ, where φ is chosen on
a particular branch, say φ ∈ (−π, π]. φ is the Berry
phase associated with the traversed path. Unless φ = 0,
periodicity in kx is lost. To restore it, the extra phase
should be spread uniformly along the string of k-points,
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i.e.,

|ukj
〉 = e−iφkj/2π|u′

kj
〉 = e−i(j−1)φ/N |u′

kj
〉, (A2)

where in the last equality the uniformity of the k-mesh
was used.
In the multiband case one deals with the non-Abelian

generalization of the Abelian Berry phase.39,40 We now
consider an isolated set of N bands and describe parallel
transport in the kx-direction in the non-Abelian case.30,44

The parallel transport gauge is constructed by requiring
that the overlap matrix

M̃ (kj ,kj+1)
mn = 〈ũmkj

|ũnkj+1〉 (A3)

must be Hermitian, with all positive eigenvalues, at each
step. This is uniquely accomplished by means of the
singular value decomposition in which an N ×N matrix
M is written in the form M = V ΣW †, where V and W
are unitary and Σ is positive real diagonal. If the states
at kj+1 are rotated by U =WV †, i.e.,

|u′nkj+1
〉 =

N
∑

m

Umn(kj+1)|ũmkj+1〉, (A4)

the new overlap matrix M
′ (kj ,kj+1)
mn will be of the form

V ΣV †, which is Hermitian with positive eigenvalues as
desired. Repeating this procedure up to j = N , one
obtains that the new states |u′nkN+1

〉 are related to the

states |u′nk1
〉 by a unitary transformation Λ according to

|u′nk1
〉 = e2πix

N
∑

m

Λmn|u′mkN+1
〉. (A5)

The eigenvalues of this matrix are of the form λn = e−iφn ,
where the phases φn = Im lnλn (again chosen according
to some definite branch cut) are the analogues of the
Abelian Berry phases.
To restore periodicity we follow the same trick as in the

single-band case, but generalized to the matrix form. To
do this one finds the unitary matrix R that diagonalizes
Λ, and then rotates all states at all kj by this same uni-
tary R, so that the new states correspond to a diagonal
Λ with its eigenvalues λn = eiφn on the diagonal. Now it
is straightforward to obtain periodicity by applying the
graded phase twists

|unkj
〉 = e−i(j−1)φj/N |u′nkj

〉. (A6)

This results in a gauge that is smooth along kx and Gx-
periodic.

Appendix B: Kane-Mele model

Here we briefly summarize the Kane-Mele model15 of a
quantum spin Hall system. This model is represented by
a tight-binding (TB) Hamiltonian on a honeycomb lattice

with dimensionless lattice vectors a1,2 = (
√
3ŷ ± x̂)/2.

The Hamiltonian is

H = λv
∑

i

ξic
†
i ci +

∑

<ij>

c†i

(

t+ iλR[s × d̂ij ]z

)

cj

+ iλSO

∑

≪ij≫

νijc
†
is

zcj , (B1)

where the three terms represent on-site, first-, and
second-neighbor interactions respectively. Here ξi = ±1
represents a staggered on-site interaction (breaking the
inversion symmetry of the original honeycomb lattice),
and λSO and λR represent the effects of spin-orbit in-
teraction (the latter breaks Sz conservation and vio-

lates mirror symmetry in the xy-plane). Also, d̂ij is a
unit vector directed from site i to site j, while νij =

(2/
√
3)[d̂1× d̂2] = ±1, where d̂1 and d̂2 represent the di-

rections of the two bonds along which the electron hops
in going from site i to site j.

Using the TB convention χjσk(r) =
∑

R
eik·Rϕs(r −

R − tj), where ϕ are TB basis functions, s stands for
the spin index, and tj is the vector from the origin to
the j-th atom in the home unit cell, the Hamiltonian is
written as

H(k) =
5

∑

α=1

dα(k)Γ
α +

5
∑

α<β=1

dαβ(k)Γ
αβ . (B2)

Here the Dirac matrices are Γ1,2,3,4,5 = (I ⊗ σx, I ⊗
σz, sx⊗σy , sy⊗σy, sz⊗σy) with the Pauli matrices σk and
sk acting in sublattice and spin space respectively, and
the commutators are Γαβ = [Γα,Γβ]/(2i). The original
reciprocal-lattice coordinates κ1 and κ2 may be changed
into kx ∈ [0, 2π] and ky ∈ [−π, π] via kx = κx/2−

√
3κy/2

and ky = κx/2+
√
3κy/2. The resulting d coefficients are

given in Table I. This model respects time-reversal sym-

d1 t(1 + 2 cosα cosβ) d12 −2t cosα sin β
d2 λv d15 2λSO(sin 2α− 2 sinα cos β)
d3 λR(1− cosα cosβ) d23 −λR cosα sin β

d4 −
√
3λR sinα sin β d24

√
3λR sinα cos β

TABLE I. Nonzero coefficients in Eq. (B2). Here α = (kx +
ky)/2 and β = (ky − kx)/2 with kx = κx/2 −

√
3κy/2 and

ky = κx/2 +
√
3κy/2. The lattice constant is assumed to be

of unit length.

metry and realizes the QSH regime, i.e., it represents a
2D Z2 topological insulator in some regions of its pa-
rameter space.? For our illustrative tests we have used
λv/t = 1, λSO/t = 0.6 and λR/t = 0.5 for the topological
phase, and have changed λv/t to 5 to access the normal
phase.
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Appendix C: Time-reversal constraint and smooth

gauge

In Ref. 23 Fu and Kane developed a theory of a Z2 peri-
odic spin pump of a 1D insulating system. That work es-
tablished a formula for computing the Z2 invariant given
a smooth gauge. In this Appendix we review this result
and discuss it from the perspective of the smooth gauge
constructed in the present work.

The work of Ref. 23 focuses on the pumping process
in 1D gapped periodic Hamiltonians subject to the con-
ditions H(t+ T ) = H(t) and H(−t) = θH(t)θ−1, where
t is the pumping parameter. Such a pump becomes TR-
invariant at t = 0 and t = T/2. The Hamiltonian of
a 2D TR-symmetric insulator can easily be put in this
context by treating kx as the wavevector k of a 1D peri-
odic system while treating ky as the pumping parameter
t. Assuming at the TR-invariant values of t a gauge of
the form

θ|u1k〉 = eiχk |u2−k〉
θ|u2k〉 = −eiχ−k |u1−k〉, (C1)

that is smooth in k, it was shown that one can com-
pute the Z2 invariant associated with the pumping pro-
cess from a knowledge of the occupied states at the TR-
invariant points of the pumping cycle only. However, for
this purpose the gauge must be smooth on the whole
torus formed by k and t.23

Let us now look at how all this is reformulated in
terms of the gauges introduced in the present paper for a
2D system. The Hamiltonian gauge of an ordinary TR-
symmetric insulating system corresponds to χk = 0 in
Eq. (C1), and it is possible to define Bloch states in a
smooth fashion on the whole torus subject to this con-
dition. However, for a Z2 insulator such a constraint in-
troduces a topological obstruction for a smooth gauge.23

This can be understood in terms of the cylindrical gauge
introduced in Sec. II. Taking into account that the TR-
symmetric values of the pumping parameter now corre-
spond to ky = 0 and ky = ±π, note that in the cylindrical
gauge the TR operator maps the states at (kx, ky = 0)
to (−kx, ky = 0) and the states at (kx, ky = ±π) to
(−kx, ky = ∓π) according to Eq. (15). If we now take
into account the boundary conditions of Eq. (5) for the
cylindrical gauge and use them to relate the states at
(kx, ky) to those at (−kx, ky), one then arrives at a rela-
tion of the form of Eq. (C1) with

χk = 0

at ky = 0 and

χk = ±kxC

at ky = ±π. For an ordinary insulator C = 0, and this
obviously reduces to the standard case of χk = 0 both at
ky = 0 and ky = ±π.
To derive an expression for the Z2 invariant a concept

of partial polarization was introduced23 using the gauge
of Eq. (C1) via

P
(S)
t =

1

2π

[

i

∫ π

0

〈uS,t,k|∂k|uS,t,k〉dk + (χt,k=π − χt,k=0)

]

(C2)
where the index S = 1, 2 differentiates between the two
states of a Kramers pair. This expression is U(2) invari-
ant modulo a lattice vector (a = 1), provided that the
transformation is globally smooth in 1D. The Z2 invari-
ant was defined as

ν = (P
(1)
t=0 − P

(2)
t=0)− (P

(1)
t=T/2 − P

(2)
t=T/2), (C3)

when the gauge is also smooth in t from 0 to T/2. With
the χk suggested by the cylindrical gauge, and taking into
account that C has opposite sign for S = 1 and S = 2,

one has P
(1)
ky=0 − P

(2)
ky=0 = 0 and P

(1)
ky=±π − P

(2)
ky=±π =

±C, obviously giving the correct value of the topological
invariant.
As was shown above, the construction of a smooth

gauge starting with the cylindrical gauge proceeds by
means of a unitary rotation that unwinds the gauge dis-
continuity of the cylindrical gauge. The unitary matrix
that realizes this transformation is smooth and periodic
in kx. Thus, when establishing a smooth gauge at the
TR-invariant values of ky the gauge condition (C1) on
the 1D system is changed smoothly and, as was discussed
in Sec. IV, the smooth occupied subspaces are no longer
mapped onto each other by θ. However, the TR polariza-
tion does not change under such a transformation, and
as was nicely shown in Ref. 23, one can compute the Z2

index using the formula

(−1)ν =

4
∏

i=1

√

det[w(k∗
i )]

Pf[w(k∗
i )]

, (C4)

where k∗ are TR-invariant momenta (i.e., k∗ = −k∗+G)
and

wij(k) = 〈ui−k|θ|ujk〉. (C5)

Note, that w(−k∗) = −wT (k∗), so that the Pfaffian
in (C4) is well defined.
The application of the smooth-gauge construction de-

veloped in the main text of this paper to the Kane-Mele
model in the QSH regime indeed results in the odd value
for ν. The TR constraint takes the form w12(k

∗) = ±1
and, as was mentioned above, is satisfied only at the TR-
invariant momenta, with |w12(k)| < 1 at other values
of k. In particular, our parameter choice (λv/t = 1,
λSO/t = 0.6, λR/t = 0.5) results in w12(0, 0) = 1 but
w12(0, π) = w12(π, 0) = w12(π, π) = −1, thus signaling a
band inversion at Γ = (0, 0).
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