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One of the central challenges in materials sci-

ence is the design of functional and multifunc-

tional materials, in which large responses are pro-

duced by applied fields and stresses. A rapidly de-

veloping paradigm for the rational design of such

materials is based on the first-principles study of

a large materials family, the perovskite oxides

being the prototypical case. Specifically, first-

principles calculations of structure and properties

are used to explore the microscopic origins of the

functional properties of interest and to search a

large space of equilibrium and metastable phases

to identify promising candidate systems. In this

paper, we use a first-principles rational-design

approach to demonstrate semiconducting half-

Heusler compounds as a previously-unrecognized

class of piezoelectric materials, and to provide

guidance for the experimental realization and fur-

ther investigation of high-performance materials

suitable for practical applications.

The ABC half-Heusler compounds (with MgAgAs
structure type, also called semi-Heusler or Juza-Nowotny
compounds [1]) are a large and varied family, with al-
most 150 distinct ABC half-Heusler compounds reported
in the Inorganic Crystal Structural Database (ICSD) [2].
The half-Heusler structure, shown in Fig. 1, has F 4̄3m
symmetry and can be viewed as a rocksalt lattice formed
from two of the three constituent atoms (at Wyckoff po-
sitions 4a and 4b), with the third atom filling half of the
tetrahedral interstitial sites (either Wyckoff position 4c
or 4d); it is related to the A2BC Heusler structure by re-
moval of one of the A sublattices, and can alternately be
viewed as a stuffed AC or BC zincblende structure [3].
Following an initial wave of interest stimulated by

the observation of half-metallic ferromagnetic behavior
in half-Heusler compounds [4], there has been a resur-
gence of interest in these compounds as materials that
can display topological properties [5, 6] or be tailored for
uses as diverse as components in spintronic devices [7]
and high-performance thermoelectrics [8–10]. The half-
Heusler family is regarded as especially versatile as it
displays a wide range of functionality, lattice constants,
and band gaps.
The semiconducting half-Heusler compounds are of

particular interest. True gaps on the order of 1 eV
were predicted in Li-containing half-Heusler intermetal-
lic compounds in first-principles calculations by Wood
et al. [11] in 1985. The most well-studied of these

FIG. 1: The ABC half-Heusler structure type: A (green)
and B (orange) are arranged in a rocksalt lattice, with the
tetrahedral coordination of C (blue) by A shown.

compounds include LiMgX and LiZnX (where X=N,
P and As), LiMgSb, and the cell-doubled compounds
Li3AlN2, Li3GaN2, and Li3GaP2. Since the identification
of NiSnZr as a semiconducting half-Heusler compound
through a combination of experimental observations and
first-principles investigations [12, 13], many additional
semiconducting systems have been identified [3, 14, 15].
Some of these compounds, such as LiMgN and LiMgP,
have quite substantial gaps that may make them suitable
for solar cell applications [16–18].
As insulators, the semiconducting half-Heuslers can

also exhibit functional properties associated with elec-
tric polarization, but these properties have received very
little attention. In fact, while the F 4̄3m space group
of the half-Heusler structure allows a nonzero d14 piezo-
electric response, no measurements of piezoelectricity in
these systems have yet been reported in the literature.
In this paper, we use first-principles methods to pre-

dict the piezoelectric response and related properties of
half-Heusler compounds. We present these predictions
first for compounds already reported in the half-Heusler
structure. We then perform a high-throughput analysis
of a much larger set of candidate combinations, identi-
fying high-performance compounds for practical applica-
tion. Through targeted synthesis, which might include
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compositional substitution, epitaxial growth or artificial
structuring, half-Heusler compounds could thus be devel-
oped as a valuable class of piezoelectric materials.

First-principles calculations are performed with the
ABINIT package [19–21] using the local density approxi-
mation (LDA) and an 8×8×8 Monkhorst-Pack sampling
of the fcc Brillouin zone [22]. Norm-conserving Troullier-
Martins pseudopotentials are employed, with a plane-
wave cutoff of 30Ha. For selected compounds, the results
were verified using optimized norm-conserving pseudopo-
tentials [23, 24] generated using the OPIUM code [25].

For the high-throughput search, we consider combi-
nations of three distinct elements ABC. We limit the
search to combinations with a total of 8 s and p valence
electrons, since we expect this to improve the likelihood
of band gap formation [3]. We also require that there be
at least one and at most two p-block elements among the
three constituents, with the remainder coming from the s
and/or d blocks of the periodic table. We use Roman nu-
merals to denote the valences of the constituent elements
(including d electrons) to classify the combinations into
families with 8 valence electrons (I-I-VI, I-II-V, I-III-IV,
II-II-IV, and II-III-III), 18 valence electrons (XI-I-VI, XI-
II-V, XI-III-IV, I-XII-V, II-XII-IV, III-XII-III, X-II-VI,
X-III-V, and X-IV-IV), or 28 valence electrons (X-XII-
VI, XI-XI-VI, XI-XII-V and XII-XII-IV). Among these
families, we consider members constructed from the se-
lections I=(Li, Na), II=(Be, Mg, Ca, Sr, Ba), III=(B, Sc,
Y, Al, Ga), IV=(C, Si, Ge, Sn, Pb, Ti, Zr, Hf), V=(N, P,
As, Sb, Bi), VI=(O, S, Se, Te), X=(Ni, Pd, Pt), XI=(Cu,
Ag, Au), and XII=(Zn, Cd). This generates a total of
792 candidate combinations to be searched.

We first consider the 36 combinations in our search
set that have been experimentally reported in the ICSD.
For each combination, we optimize the lattice constant
for each of the three structural variants ABC, ABC, and
ABC, where the underscore indicates the unique element
that is tetrahedrally coordinated by both of the two other
elements. First-principles results show that 23 of them,
listed in Table I, are insulating. The predicted lowest-
energy structural variant is indicated in the first column.
We find that for the five compounds (LiZnAs, AuScSn,
NiScSb, PdScSb and PtYSb) for which a refined struc-
ture, including R value and temperature factors, is avail-
able in ICSD, our prediction agrees with the experimen-
tally observed variant. Most of the computed equilibrium
lattice constants given in Table I are in excellent agree-
ment with experiment. The computed gaps range from
0.15 eV for NiScBi to 1.42 eV for PtZrSn.

For each compound, we perform a linear-response
calculation using density-functional perturbation theory
(DFPT) [26], as implemented in ABINIT, to compute

[1] The thirteen metallic combinations are LiAlSi, LiGaSi, LiAlGe,
BeAlB, CuMgSb, AgMgAs, CuMgBi, AuCaBi, NiYBi, CuCdSb,
AgCdSb, AuCdSb, and AuYPb.

ABC aexpt. a Egap d14 C44 k14 ǫ0

(Å) (Å) (eV) (pC/N) (1011Pa)
LiMgP 6.02 5.94 1.38 3.2 0.46 0.07 11.33
LiMgAs 6.19 6.10 1.15 2.2 0.41 0.04 12.61
LiMgBi 6.74 6.52 0.69 0.3 0.31 0.00 15.76
LiZnN 4.87 4.85 0.72 7.6 0.82 0.18 15.39
LiZnP 5.78 5.64 1.11 12.1 0.57 0.24 15.92
LiZnAs 5.94 5.81 0.61 13.5 0.58 0.24 20.08
LiCdP 6.09 6.02 0.51 0.4 0.44 0.01 19.18
AuScSn 6.42 6.41 0.22 10.2 0.56 0.17 22.57
NiTiSn 5.94 5.82 0.50 0.2 0.90 0.00 29.04
NiZrSn 6.11 6.13 0.60 13.7 0.67 0.22 28.38
NiHfSn 6.08 6.06 0.52 10.9 0.79 0.19 28.38
PdZrSn 6.32 6.35 0.56 13.1 0.61 0.21 25.02
PdHfSn 6.30 6.29 0.51 10.8 0.71 0.19 24.71
PtTiSn 6.16 6.08 1.09 0.7 0.94 0.02 21.92
PtZrSn 6.32 6.35 1.42 9.3 0.74 0.19 20.00
PtHfSn 6.31 6.29 1.40 7.3 0.85 0.16 19.28
NiScSb 6.06 6.04 0.30 12.6 0.70 0.23 22.96
NiScBi 6.19 6.30 0.15 4.1 0.57 0.06 27.99
NiYSb 6.31 6.43 0.28 242.3 0.05 0.77 23.30
PdScSb 6.31 6.29 0.31 10.9 0.59 0.19 21.12
PdYSb 6.53 6.63 0.19 33.0 0.25 0.35 21.81
PtScSb 6.31 6.27 1.04 9.9 0.72 0.19 20.31
PtYSb 6.54 6.59 0.34 58.2 0.21 0.50 24.50

TABLE I: Properties of experimentally synthesized half-
Heuslers, grouped by family. Experimental lattice constants
are from the ICSD. Also presented are the theoretical lattice
constant a, band gap Egap, piezoelectric coefficient d14, elec-
tromechanical coupling coefficient k14, and free-stress static
dielectric constant ǫ0.

the dynamical charges and zone-center phonon frequen-
cies and eigenvectors, from which the free-stress static
dielectric constant ǫ0 can be obtained [27].

We also carry out calculations of the strain response
[28, 29] to obtain the C44 elastic constant and d14 piezo-
electric coefficient. All this information can be com-
bined to obtain the electromechanical coupling coeffi-
cient k14 as described in Ref. 28 using the formula k14 =
|d14|

√

C44/(ǫfsǫ0), where ǫfs is the permittivity of free
space, and ǫ0 is our computed dimensionless free-stress
dielectric constant.

The results are included in Table I. The computed
values of the piezoelectric constant d14 mostly fall in the
range from 2.0 to 14pC/N. All but five compounds have
d14 > 2.6 pC/N, the experimentally measured piezoelec-
tric coefficient of GaAs. The highest values found are for
NiYSb, PdYSb and PtYSb, and can be associated with
their small bandgap, large ǫ0 and low elastic constant.
These three compounds also have the highest values of
electromechanical coupling k14, as shown in Table I, aris-
ing from their large d14 and low elastic constant, though
limited by the size of ǫ0.

It is remarkable that no piezoelectric response data for
any half-Heusler compound has yet been reported. With
a single-crystal sample of sufficiently low conductivity,
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the piezoelectric coefficient should be readily measurable
for most if not all of these compounds. Moreover, mea-
surements of the dielectric response and elastic coeffi-
cients, which also have not been reported to date, would
provide an additional test of these theoretical predictions
and a more complete characterization of the polarization-
related properties of these otherwise much-studied com-
pounds.

Next, we consider the properties of the full set of 792
hypothetical and real ABC combinations identified ear-
lier for study. As before, for each combination we opti-
mize the lattice constant for each of the variants ABC,
ABC, and ABC. Choosing the variant having the lowest
total energy, we determine whether our LDA calculations
predict it to be insulating. Of the 792 combinations, we
find 234 insulators having either 8 or 18 valence elec-
trons, while the compounds containing 28 valence elec-
trons are all found to be metallic. For the insulators, we
perform linear-response calculations using ABINIT as de-
scribed above, except that we also compute the C11 and
C12 elastic constants. This allows us to screen for local
elastic stability by requiring that the elastic constants
satisfy C11 + 2C12 > 0, C44 > 0, C11 − C12 > 0, as de-
scribed in Ref. 30 and references therein. Furthermore,
we calculate phonon frequencies at three additional high-
symmetry points (X,L and W ) and eliminate combina-
tions which exhibit any unstable modes. This reduces
the combinations further from 234 down to 189.

We thus arrive at 189 combinations that are predicted
to be insulating and locally stable in the lowest-energy
variant of the three possible ABC half-Heusler struc-
tures. Since DFT tends to underestimate band gaps, we
expect that the actual fraction of insulating structures
will be slightly higher than our calculations would indi-
cate. The computed band gaps and lattice parameters for
these 189 compounds are shown in Figure 2. We expected
no particular correlation between lattice parameter and
band gap, and indeed we find none. Both quantities are
rather broadly distributed, suggesting that there could
be considerable flexibility in choosing materials over a
substantial range of desired gap or lattice constant.

For these 189 compounds, we also compute d14, k14,
and ǫ0 using the same methods as before. To give a sense
of how the range of properties in the full set of known
and hypothetical compounds compares with that of the
subset of known compounds, we present a scatter plot of
k14 vs log d14 in Figure 3.

It can be seen that there are hypothetical compounds
with k14 and d14 values well above those of known com-
pounds (some have k14 close to one and d14 up to several
hundred). We also find that these two quantities show
the expected positive correlation. The twelve compounds
with the highest values of d14 are listed in Table II. As d14
is determined both by the polarization-strain response
e14 and the shear elastic constant, large values can arise
either from the former being large, the latter being small,
or both; this is reflected in the examples in Table II,
where all C44 are small.
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FIG. 2: Cell parameters (in Å) of insulating ABC combina-
tions as well as their range of band gaps (in eV) are depicted
as open black circles. Known combinations, from Table 1, are
highlighted as filled red circles.
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FIG. 3: Electromechanical coupling factor k14 of insulating
ABC combinations as a function of piezoelectric constant d14.
Known combinations, from Table 1, are highlighted as filled
red circles

ABC a Egap d14 C44 k14 ǫ0

(Å) (eV) (pC/N) (1011Pa)
SrCdSi 7.01 0.11 2878.8 0.01 0.97 24.98
SrAlGa 6.87 0.13 1122.3 0.01 0.86 48.85
NaZnP 6.07 0.37 344.1 0.06 0.90 17.79
NaBGe 5.56 0.43 304.2 0.03 0.79 18.12
MgSrSi 7.09 0.87 280.4 0.04 0.80 20.63
NiYSb 6.43 0.28 242.3 0.05 0.77 23.30
MgSrGe 7.11 0.36 230.4 0.05 0.75 21.95
CuYSi 6.36 0.50 217.0 0.05 0.76 19.87
NaMgN 5.46 0.72 190.6 0.09 0.87 11.33
BeScB 5.39 0.33 133.4 0.13 0.72 23.84
MgSrSn 7.41 0.72 127.2 0.07 0.58 25.56
LiCaP 6.63 1.73 123.2 0.07 0.72 10.82

TABLE II: Top twelve half-Heusler compounds, ranked ac-
cording to piezoelectric coefficient d14.
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ABC a Egap d14 C44 k14 ǫ0

(Å) (eV) (pC/N) (1011Pa)
LiYC 5.83 0.72 58.5 0.17 0.52 17.54
CuYGe 6.36 0.47 55.3 0.19 0.49 20.18
AgYSi 6.55 0.56 47.3 0.14 0.40 18.79
MgCaSi 6.79 0.62 44.0 0.19 0.43 18.17
MgCaGe 6.81 0.57 42.6 0.19 0.41 19.25
NaScC 5.77 0.61 38.2 0.32 0.44 21.12
LiYSi 6.58 0.54 38.2 0.17 0.35 19.91
LiYGe 6.58 0.52 37.5 0.17 0.34 20.41
ZnScB 5.63 0.28 36.9 0.32 0.41 23.70
AgYGe 6.56 0.52 36.2 0.17 0.34 19.35
MgZnC 5.22 0.80 35.5 0.50 0.51 20.14
NaAlSi 6.26 0.34 35.4 0.27 0.41 19.25
NiScP 5.79 0.49 34.1 0.30 0.41 19.75
CaSrGe 7.57 0.30 33.9 0.12 0.25 24.27
MgCaSn 7.10 0.34 32.6 0.19 0.31 21.78

TABLE III: Best fifteen remaining half-Heusler compounds,
ranked according to piezoelectric coefficient d14. None of the
initial top twelve presented in Table II remain after consider-
ing band gap, stability, cost and toxicity.

As a guide for experimental investigation of piezoelec-
tric half-Heusler compounds, we also present an alterna-
tive selection of compounds chosen according to relevant
practical considerations. We filter the list to eliminate
compounds with toxic (Pb, Cd, As) or expensive (Be, Pd,
Pt) elements. In addition, we require a DFT band gap
above 0.4 eV to favor low sample conductivity. Lastly, to
promote cation ordering into the lowest-energy variant,
we require ∆E > 0.15 eV, where ∆E is the difference in
energy between the lowest-energy and next-lowest-energy
variants. Of the remaining 65 compounds that satisfy
these criteria, 59 have d14 > 2.6 pC/N, the experimental
value of GaAs. The fifteen with the largest d14 values are
presented in Table III.
Further investigation of the hypothetical half-Heusler

piezoelectrics hinges on the possibility of experimentally
realizing the desired compounds in the half-Heusler struc-
ture. Additional information about bulk equilibrium
ABC phases can be obtained from the ICSD. In the
cases where no phase is reported, it could be that ei-
ther no stable bulk phase exists with that stoichiom-
etry, or simply that the relevant composition has not
been studied. ABC combinations are also reported in
several structures other than the half-Heusler structure.
Specifically, we find that nine combinations listed in Ta-
ble III are reported in the ICSD with other structures:
MgSrSi, MgCaSi and MgCaGe are reported with struc-
tures in the Pnma space group, while NaBaP, AgYSi
and LiYSi are reported to have structures with P 6̄2m
symmetry. The latter space group is piezoelectric, so

these compounds can offer an additional route to new
piezoelectrics. Moreover, 13 compounds of the origi-
nal 792 combinations are reported in two different space
groups, namely LiMgN, LiSrP, LiBaP, LiAlGe, CuMgAs,
AgCaBi, CuScSn, CuYSn, AuScSn, CaZnSn, PdTiGe,
NaAgO and LiAuS. Of these, only AuScSn is reported in
the half-Heusler structure, while none are found in either
Tables II or III.

This structural variety should encourage interest in
further exploration of these systems for piezoelectricity
and other functional behavior. Polymorphism suggests
the possibility of intentionally stabilizing one of several
competing structures, or of switching between them at
will, via the application of external stresses, fields, or
other perturbations.

First-principles calculations of the total energy of al-
ternative structures could be used both to predict ground
state structures and to identify systems with piezoelec-
tric structures as low-energy alternatives that would be
suitable candidates for stabilization through composi-
tional substitution or epitaxial strain. Furthermore,
half-Heusler systems offer the opportunity to combine
piezoelectricity with other functional properties, includ-
ing magnetism, to produce multifunctional behavior of
fundamental scientific interest and for groundbreaking
technological applications.

In summary, we have used a first-principles rational-
design approach to demonstrate semiconducting half-
Heusler compounds as a previously unrecognized class
of piezoelectric materials. We have presented these pre-
dictions first for compounds already reported in the half-
Heusler structure, and then for a much larger set of can-
didate combinations that were generated and screened
for high performance via a high-throughput analysis.
We hope that our results may provide guidance for
the experimental realization and further investigation of
high-performance materials suitable for practical appli-
cations. We also suggest that the combination of piezo-
electric properties with other characteristic properties of
Heuslers, especially magnetic properties, may offer invit-
ing avenues for further development of multifunctional
materials.
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