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Tunability of the dielectric response of epitaxially strained SrTiO3 from first principles
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The effect of in-plane strain on the nonlinear dielectric properties of SrTiO3 epitaxial thin films
is calculated using density-functional theory within the local-density approximation. Motivated by
recent experiments, the structure, zone-center phonons, and dielectric properties with and without
an external electric field are evaluated for several misfit strains within ±3% of the calculated cubic
lattice parameter. In these calculations, the in-plane lattice parameters are fixed, and all remaining
structural parameters are permitted to relax. The presence of an external bias is treated approxi-
mately by applying a force to each ion proportional to the electric field. After obtaining zero-field
ground state structures for various strains, the zone-center phonon frequencies and Born effective
charges are computed, yielding the zero-field dielectric response. The dielectric response at finite
electric field bias is obtained by computing the field dependence of the structure and polarization
using an approximate technique. The results are compared with recent experiments and a previous
phenomenological theory. The tunability is found to be strongly dependent on the in-plane lattice
parameter, showing markedly different behavior for tensile and compressive strains. Our results are
expected to be of use for isolating the role of strain in the tunability of real ultrathin epitaxial films.

PACS numbers: PACS: 77.55.+f, 77.84.Dy, 77.22.Ej

I. INTRODUCTION

Microwave dielectric materials strongly tunable by the
application of an electric bias field are increasingly impor-
tant for a variety of applications in microwave electron-
ics, including tunable capacitors and oscillators, phase
shifters, and delay lines.1,2,3 The dependence of dielec-
tric constant ǫ on bias field E is typically strongly non-
linear, and a tunability parameter n can be defined as
n = [ǫ(0)−ǫ(E)]/ǫ(0), where E is an operational bias field
of interest. Because of the potential technological im-
pact, considerable experimental effort has been directed
toward the design, control, and optimization of highly
tunable low-loss materials.

For many applications, thin-film morphologies are re-
quired, and in recent years the growth of high-quality ul-
trathin perovskite films with unprecedented atomic-level
control has become possible, using techniques such as
molecular-beam epitaxy (MBE)4 and pulsed-laser depo-
sition (PLD).5 These efforts have achieved the growth of
single-crystal films of nanometer-scale thickness with a
minimum of defects. Even so, the dielectric properties of
these films often differ quite substantially from bulk6,7.
This difference is due to a number of factors, of which
the strain in the film is in many cases among the most
important. More specifically, the mechanical boundary
conditions on a coherent epitaxial film require the in-
plane lattice constant of the film to stretch (or contract)
to match the lattice constant of the substrate. Both
experimental and theoretical studies have found that
even small epitaxial strains can appreciably influence the
Curie temperature and the dielectric permittivity and
tunability of BaTiO3, SrTiO3, and Ba1−xSrxTiO3 (BST)
thin films.8,9,10,11

Paraelectric BST at x near 0.5 is already known to

possess a large dielectric response and high tunability at
room temperature, associated with close proximity to the
ferroelectric phase transition at about −23 K (Ref. 12).
However, significantly lower loss has been reported for
single-crystal SrTiO3 (STO) thin films,13 possibly due to
the absence of compositional disorder. The ground state
of STO is nonpolar but nearly ferroelectric, and thus
small applied stresses would be expected to have a signif-
icant influence on the Curie temperature and associated
susceptibilities. Indeed, recent experimental studies14,15

indicate that significant changes in Curie temperature
and dielectric properties occure when STO is grown epi-
taxially on substrates with different lattice constants.

One of the best-studied perovskite materials, pure
STO is the subject of considerable experimental and the-
oretical literature. STO adopts the centrosymmetric cu-
bic perovskite structure at room temperature, and un-
dergoes a structural phase transition from the cubic to
a tetragonal, nonpolar antiferrodistortive (AFD) phase
when cooled below 105 K.16 This transition, however,
is observed to have little effect on the dielectric prop-
erties. Cooling to still lower temperatures results in a
strong Curie-Weiss-like increase in the static dielectric
response, suggestive of a phase transition at about 20 K.
However, no transition actually occurs in that tempera-
ture range; instead, the dielectric constant saturates to a
value of ∼ 2 × 104 at zero temperature.17,18,19,20,21,22,23

The absence of the ferroelectric (FE) transition can be
explained by quantum fluctuations of the atoms about
their centrosymmetric cubic positions (i.e., the forma-
tion of a “quantum paraelectric” state).19,20,21,22,24,25

The proximity to a ferroelectric transition is also ev-
ident from experiments showing that modest uniaxial
stress is capable of inducing ferroelectricity.26 Several
first-principles22,23,27,28,29 and classical Monte-Carlo sim-
ulations on an effective Hamiltonian30 have already pro-



2

vided valuable insight into the structural properties and
temperature dependence of FE phase transitions in bulk
STO. In particular, the interaction between FE and AFD
instabilities in the bulk phase has been thoroughly stud-
ied from first principles by Sai and Vanderbilt.31 More-
over, a previous phenomenological study of the effects of
epitaxial strain on STO thin films by Pertsev et al.,32

based on a Landau theory fit to experimental data from
bulk phases, produced a rich temperature-strain phase
diagram and provided support for the idea that the
oxygen-octahedron rotations have little influence on the
dielectric response.

In this work, we compute the effects of the in-plane
epitaxial lattice-matching constraint on the dielectric re-
sponse and tunability of SrTiO3 using first-principles
density-functional theory within the local-density ap-
proximation (LDA). We neglect the AFD instabilities in
all calculations. We also restrict our analysis to zero tem-
perature, but for simplicity neglect the quantum fluctu-
ations. Thus, our focus will be on the ferroelectric soft
mode and its coupling to strain. Despite these restric-
tions, the fact that we use a first-principles approach
means that we do not have to rely on empirical Landau
parameters as in Ref. 32. Thus, we can confidently make
predictions under conditions that vary drastically from
those under which the data determining the parameters
were obtained, allowing us to consider the effects of large
epitaxial strains and finite electric fields.

There is one major limitation of our theory, connected
with the fact that the LDA tends to underestimate lat-
tice constants. Because compression tends to suppress
ferroelectricity, this means that our LDA system is “less
ferroelectric” than true STO at zero temperature. In-
deed, we report below a soft-mode frequency of about 75
cm−1 and a dielectric constant of about 390 at zero tem-
perature for unstrained STO within the LDA, whereas
the experimental zero-temperature system is exquisitely
close to the ferroelectric transition with ωsoft ≃ 10 cm−1

and ǫ ≃ 20, 000.26 However, raising the temperature also
has the effect of suppressing the ferroelectric instability,
so that the experimental system at room temperature is
characterized by ωsoft ≃ 90 cm−1 and ǫ ≃ 290. Thus, for-
tuitously, the zero-temperature LDA system corresponds
reasonably well with the real physical system at a tem-
perature near, or a bit below, room temperature. Com-
parisons between these systems must obviously be ap-
proached with caution, but in fact we find good semi-
quantitative agreement for several of the physical prop-
erties of these two corresponding systems as will be pre-
sented below.

The manuscript is organized as follows. In Sec. II, we
provide the details of our approach and approximations
used, including our handling of finite electric fields. In
Sec. III, we present and discuss the results of our cal-
culations for epitaxially strained STO, with emphasis on
the strain dependence of the tunability by finite electric
fields. Our conclusions appear in Section IV.

II. METHOD

A. First principles calculations

First-principles density-functional calculations are per-
formed within the local density approximation (LDA) as
implemented in the PWSCF package.34 The exchange-
correlation energy is evaluated using the Ceperley-Alder
form with Perdew-Zunger parameterization. Vanderbilt
ultrasoft pseudopotentials35 are used treating 10 elec-
trons as valence for Sr (4s24p65s2), 12 electrons for Ti
(3s23p64s23d2), and 6 for O (2s22p4). To achieve well-
converged results for small changes in the lattice con-
stant, the electronic wavefunctions are expanded in plane
waves up to a kinetic energy of 50 Ry. All calculations
are performed with a 6×6×6 Monkhorst-Pack k-point
mesh.36 To establish minimum-energy configurations we
converged the Hellmann-Feynman forces acting on the
atoms to less than 0.1 mRy/a.u. Density functional per-
turbation theory (DFPT) is then used to calculate the
phonon frequencies of the structural optimized systems.

B. Structural constraints

The role of epitaxial strain on the structural properties
of STO is isolated by systematically seeking the ground-
state structure of five-atom unit cells of bulk STO con-
strained to several different in-plane lattice constants,
differing from the theoretical cubic lattice constant by
fractions ranging between −3% and +3% in steps of
0.5%, and allowing all atomic positions and the perpen-
dicular lattice constant to relax fully until the energy
is minimized. To locate the phase transition points, and
for the electric field calculations, the in-plane lattice con-
stant was varied in smaller steps of 0.1% in the paraelec-
tric region. The presence of the strain necessarily low-
ers the symmetry of the cubic STO system to tetragonal
at most; further spontaneous symmetry reduction occurs
for certain ranges of lattice constant. In the remainder
of this subsection, we provide specific details of each of
the structures considered in this work and introduce the
relevant notation.

1. Epitaxial strains near zero

The zero-strain paraelectric phase of SrTiO3 has the
ideal cubic Pm3m perovskite structure, in which the
octahedral oxygen atoms lie at Wyckoff 3c positions
(1
2
, 1

2
, 0), a single Ti atom lies at the body-centered site

1b (1
2
, 1

2
, 1

2
), and the lone Sr cation is at 1a (0, 0, 0). Our

calculations result in a theoretical lattice constant a of
7.285 a.u., i.e., ∼ 1.1 % less than the experimental value
of 7.365 a.u.; this underestimate is expected when using
the LDA and is consistent with several previous LDA-
based studies.
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For small tensile or compressive strains, the structure
of STO remains centrosymmetric, but the symmetry is
lowered to tetragonal (space group P4/mmm). In this
“pseudocubic” phase, the cations sit at Wyckoff positions
1a (0, 0, 0) for Sr and 1d (1

2
, 1

2
, 1

2
) for Ti. There are two

different Wyckoff positions for oxygen: 1c (1
2
, 1

2
, 0), which

will be referred to as O⊥ (in the Ti-O chain along [001]),
and 2e (0, 1

2
, 1

2
), (1

2
, 0, 1

2
) which will be referred to as O‖x

and O‖y and lie in the same (001) plane as Ti.

2. Compressive epitaxial strains

For large enough compressive epitaxial strains, the
symmetry of the tetragonal phase is found to be low-
ered further to non-centrosymmetric P4mm. This is a
ferroelectric tetragonal structure with polarization along
[001]. The Wyckoff positions are 1a (0, 0, z = 0) for
Sr, 1b (1

2
, 1

2
, 1

2
+ ∆T iz) for Ti, 1b (1

2
, 1

2
,∆O⊥z), and 2c

(1
2
, 0, 1

2
+ ∆O‖z) for oxygens. The presence of a zone-

boundary instability associated with rotation of the oxy-
gen octahedra has been discussed for this phase in earlier
work,28,37 and will not be considered further here.

3. Tensile epitaxial strains

Above a critical value of tensile epitaxial strain, STO
becomes ferroelectric and transforms to an orthorhombic
Amm2 structure. This structure is non-centrosymmetric,
exhibiting a nonzero polarization along [110]. The Wyck-
off positions associated with this phase are 2a (z = 0, 0, 0)
for Sr, 2b (1

2
+∆T ix, 0,

1
2
) for Ti, and 2b (1

2
+∆O⊥x, 0, 0)

and 4e (1
4

+ ∆O‖x,
1
4

+ ∆O‖y ,
1
2
) for oxygens. The struc-

ture is illustrated in Fig. 1. The cell-doubling oxygen-
octahedron rotation expected for this phase32 will not be
considered in the remainder of this paper.

C. Electric field

1. Field-induced forces

To describe the dielectric behavior of STO under finite
dc bias, we must evaluate its properties in the presence
of a homogeneous electric field. This turns out to be
subtle; fully first-principles methods for computing the
behavior of periodic systems in finite fields have only
recently been developed and are still in their nascent
stages.38,39 For STO, we resort to a simple and effective
approximate technique that consists of first computing
the Born effective charge tensors Z∗

i for each of the ions
i, and then adding a term −e Z∗

i E to their Hellmann-
Feynman forces fi, where e is the electronic charge and
is defined to be positive. The structure is relaxed until
the total force on each atom is close to zero, i.e., until
fi = −e Z∗

i E . Similar approximations were discussed by

(100)

(010)

OTiSr

FIG. 1: The atomic displacements giving rise to the ferroelec-
tric Amm2 structure in the tensile-strained region are shown
in a view of the primitive cubic unit cell projected along [001].
On the left: all atoms at their ideal, centrosymmetric posi-
tions. Arrows indicate displacements of the Ti and oxygen
atoms. The Sr atoms are fixed at the corners of the cell.
Right: schematic view of the Amm2 structure (the displace-
ments are exaggerated for clarity).

Rabe40 and then implemented and used by Sai, Rabe and
Vanderbilt;37 this approximation was also recently used
by Fu and Bellaiche.41

To be more precise, we ideally would determine the
structure of STO by minimizing, with respect to first
wavefunctions ψnk and then to atomic coordinates ui,
the electric enthalpy F per unit cell,

F(E) = EKS − ΩP · E , (1)

where EKS is the internal energy obtained from a
Kohn-Sham functional (e.g., within the local-density or
generalized-gradient approximation),38,42 P = Pion+Pel

is the total (ionic plus electronic) macroscopic polariza-
tion, E is the electric field, and Ω is the volume of the
unit cell. EKS and P are explicit functions of atomic
coordinates ui and wavefunctions ψnk, with the electric
field E entering into F only through multiplication of the
functional P. (Of course, F , EKS and P can also be
regarded as implicit functions of E through the depen-
dence of the equilibrium values of the ψnk upon E .) By
a Hellmann-Feynman argument,38 the total force acting
on an ion is

−∂EKS

∂ui
+ Ω

∂P

∂ui
· E = fi + Z∗

i e · E , (2)

where the Z∗
i are the Born effective charges; these also

depend implicitly on E , even at fixed ui, via the ψnk(E).
Here, we neglect the field dependence of fi and Z∗

i ,
computing these at E = 0, so that the field enters only
explicitly as the multiplier of Z∗

i e in Eq. (2). This is
essentially the approximation introduced in Ref. 37. Al-
though we are able to compute the nonlinear behavior
of the structural and dielectric properties insofar as they
arise via field-induced lattice displacements, we neglect
purely electronic nonlinearities. Thus, the results are rig-
orously correct only to first order in the field.37
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2. Modeling in a reduced subspace

In practice, we find that a straightforward minimiza-
tion of F using the forces of Eq. (2) leads to numerical
instabilities when the system is close to a second-order
phase transition. This problem arises because the en-
ergy surface has a very shallow minimum (or competing
minima and saddle points) and the Hessian matrix be-
comes poorly conditioned. These numerical difficulties
can be solved by identifying a subspace that spans, to
a good approximation, the space of field-induced struc-
tural distortions, and then parameterizing the energy in
this subspace. This modeling also helps us better under-
stand the nonlinear effects of the field on the structure
and dielectric properties.

To identify the relevant subspace, we begin by finding
the pattern of atomic displacements produced by an in-
finitesimal electric field; it is obtained by multiplying the
inverse of the force constant matrix φij,αβ with the forces
fi,α = −e∑

β Zi,αβEβ . Explicitly, the displacement ui,α

of atom i in Cartesian direction α is

ui,α = −
∑

j,β

φ−1
ij,αβfj,β. (3)

In this work we will consider electric fields applied ex-
clusively along the ẑ direction, perpendicular to the sub-
strate assuming an (001) film, so the sum over β above
is reduced to a single term. We focus our attention in
this part of the work on two structures (P4/mmm and
Amm2); for these (as well as for P4mm, which we will
not consider further) the symmetry is such that the forces
and displacements are also only along ẑ. Thus, Cartesian
indices are dropped for the remainder of this subsection,
with all quantities referring implicitly to ẑ components
only.

Once these displacements ui have been found, an ex-
pression for the electric enthalpy F(E) is obtained as fol-
lows. We gather the ui into a n-dimensional vector ξ
normalized to unity. (Here n is the number of atoms in
the unit cell; n = 5 for STO.) For each misfit strain,
ξ defines the subspace of possible field-induced displace-
ments. The field dependence of the structure and po-
larization obtained in this model are then that obtained
by relaxing the ions and minimizing the electric enthalpy
subject to the constraint that the atomic displacements
lie along ξ. This should be a very good approximation
for small displacements considered here.

After constructing ξ, we express the electric enthalpy
in terms of the scalar amplitude u. Keeping terms only
to fourth order, we obtain

F(u) = E0 + bu2 + du4 − Ω∆PE
= E0 + bu2 + du4 − u

∑

i

ξiZ̄
∗
i E . (4)

Here Z̄∗
i is the mode effective charge given below in

Eq. (9), computed at zero field and for the zero-field

structural parameters. For each misfit strain, the ampli-
tude u was varied up to 0.03 c in steps of 0.002 c (where c
is the lattice constant perpendicular to the implied sub-
strate) to obtain the expansion coefficients b and d in
Eq. (4).43

The electric field corresponding to a given u is then
extracted from the equilibrium condition

∂E

∂u
= 2bu+ 4du3 −

∑

i

ξiZ̄
∗
i E = 0 (5)

This leads to

E(u) =
2bu+ 4du3

∑

i ξiZ̄
∗
i

. (6)

Thus, having computed the quantities P , E , and F on
a mesh of u values, we obtain parametric relations be-
tween these quantities that can be plotted to reveal the
dielectric behavior of interest in a numerically stable way.

D. Dielectric response and tunability

The dielectric function in the frequency range of the
optical phonons can be written as the sum of electronic
and phonon contributions, that is,

ǫ(ω) = ǫ∞ + ǫph(ω). (7)

In most insulating perovskite oxides (ferroelectrics and
related materials), the electronic contribution is rather
small (ǫ∞ ∼ 5) and constant, and the static dielectric
constant ǫ0 = ǫ(0) is typically in the range of 20 − 100,
so the phonon contribution is expected to dominate. In
this work, we restrict our focus to the static dielectric
response and its tunability; we calculate and analyze the
phonon contribution, neglecting ǫ∞. For the remainder
of the paper, we drop the superscripts and use the generic
term dielectric response, even though we only compute
the phonon contribution. Thus, in what follows, the di-
electric constant ǫ has the meaning of ǫph(0).

At zero bias, the zero-frequency phonon response is cal-
culated in a straightforward manner using density func-
tional perturbation theory (DFPT) to obtain the zone-
center IR-active phonon modes and their frequencies, and
using the Berry-phase theory of polarization44 to com-
pute Born effective charges by finite differences. To eval-
uate the static response in an applied field, and thus the
tunability, we use the subspace approach presented in
Sec. II C 2 above, which greatly simplifies our treatment
while retaining a high degree of accuracy. In the follow-
ing, both methods are described in detail.

1. Zero dc bias

In the absence of an electric field, the lattice contribu-
tion to the static dielectric permittivity tensor ǫ0 can be
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written

ǫph
αβ =

∑

m

4πe2

M0Ω

Z̃∗
mαZ̃

∗
mβ

ω2
m

, (8)

which includes a contribution from each of the zone-
center polar modes m. Here, Ω is the volume of the
primitive unit cell, M0 is a reference mass taken as 1
amu, and Z̃∗

mα is the mode effective charge,

Z̃∗
mα =

∑

iγ

Z∗
αγ(i)

√

M0

Mi
êm(iγ), (9)

where êm(iγ) is a dynamical matrix eigenvector. The cor-
responding real-space eigendisplacement of atom i along
γ is given by ûm(iγ) = êm(iγ)/

√
Mi. The Born effective

charge Z∗
αγ(i) is given by

Z∗
αγ(i) =

Ω

|e|
∂Pα

∂uiγ
. (10)

In practice, we evaluate the effective charges by finite
differences, computing the change in polarization ∆P in-
duced by several small mode amplitudes ∆uiγ via the
Berry-phase approach using a 6 × 6 × 20 k-point mesh.

2. Nonzero dc bias

To calculate the lattice contribution to the static di-
electric constant in an applied electric field, we use the
subspace approach presented in Sec. II C 2. The field-
induced change in the structure is specified by a single
parameter u, which determines the atomic displacements
through the normalized displacement vector ξ. We ex-
press the lattice contribution to the dielectric suscepti-
bility in terms of the change in polarization induced by
an applied electric field,

χ(E) =
dP (E)

dE =
dP

du

du

dE
=

(

∑

i

ξiZ̄
∗
i

) du

dE . (11)

The expression ǫ = 1+4πχ(E) is used to convert suscep-
tibility to dielectric constant. In practice, the derivative
du/dE is calculated numerically once E(u) is determined
from Eq. (6). For strains close to the phase boundary, the
zero-field dielectric constant computed in this manner is
identical, by construction, to that obtained in Sec.II.D.1
using DFPT to obtain phonon frequencies and eigenvec-
tors, and the Berry-phase calculations to obtain Born
effective charges. Furthermore, for strains where the pa-
rameter b was fit to energies for finite u, as described in
Sec. II.C.2, the zero-field dielectric constant is in excel-
lent agreement with the DFPT results. To obtain the
tunability, we compute the dielectric response for an ap-
propriate range of values of E(u).

-3 -2 -1 0 1 2 3
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/m
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FIG. 2: Polarization as a function of misfit strain. Solid
circles and squares denotes polarization along [001] and [110],
respectively.

III. RESULTS AND DISCUSSION

A. Response to epitaxial strain

1. Structural properties

As described in Sec. II B, we first find the minimum-
energy structure of SrTiO3 for values of the misfit strain
between −3% and +3%. For compressive strains less
than −0.75%, the lowest-energy structure is ferroelec-
tric tetragonal P4mm, with polarization along [001]. At
−0.75%, there is a continuous transition to the nonpolar
tetragonal P4/mmm phase. At +0.54%, there is another
continuous transition to the ferroelectric orthorhombic
Amm2 structure, with polarization along [110].

Figure 2 shows the polarization along [001] and [110]
directions. The polarization increases dramatically with
strain, and for large strains above 2% (tensile or compres-
sive), the magnitude of the polarization becomes com-
parable to that of bulk BaTiO3, a prototypical ferro-
electric. This suggests that by simply choosing the ap-
propriate substrate, the polarization of thin ferroelectric
STO films, when under short-circuit electrical boundary-
conditions, could be tuned to a wide range of values.

In Fig. 3 we show the c/a ratio as a function of misfit
strain. For tensile (positive) misfit strains, c/a drops
almost linearly as the magnitude of the misfit strain
increases and is largely unaffected by the development
of the in-plane ferroelectric instability at the transition
to the Amm2 phase. For compressive epitaxial strains,
in contrast, a noticeable nonlinearity emerges when ap-
proaching the transition to the P4mm phase; this may
be indicative of the mounting structural frustration that
is eventually relieved by the occurrence of the transition.
Once the phase boundary has been crossed, the onset
and growth of the c-axis polarization in the P4mm phase
further increases the c/a ratio, and c/a once again be-
comes very nearly linear with misfit strain in the strongly
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-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
misfit strain [%]

0.97

0.98
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1.03
c/

a-
ra

tio

FIG. 3: Calculated c/a as a function of misfit strain in
SrTiO3. The behaviors for c/a < −1.5% and c/a > +1.5%
(not shown) are very nearly given by linear extrapolation.
The open circles denote the samples measured by Hyun and
Char (Ref. 14).

compressive regime. Also shown in Fig. 3 are some mea-
surements of Hyun and Char14 at 77 K that, while noisy,
show a trend that is roughly consistent with the theory,
as will be discussed further in Sec. III B 2.

It is of interest to compare our misfit phase diagram
with that of Pertsev et al.32,33 The latter is obtained by
expressing the free energy as a function of misfit strain,
temperature, polarization, and several additional order
parameters corresponding to the linear oxygen displace-
ments that account for possible rotations of the oxygen
octahedra. The parameters in this Landau-theory ex-
pression are obtained phenomenologically.

Regarding the nature of the polarization in the se-
quence of phases at zero temperature, the present first-
principles results are in very good agreement with the
Landau analysis. There are several detailed differences,
however. First, our window of strains over which the sys-
tem remains paraelectric (between −0.75% and +0.54%)
is noticeably wider than that previously obtained (be-
tween −0.2 and −0.02% in Ref. 32,33). Our overesti-
mate of the stability of the paraelectric phase can largely
be attributed to the LDA. Specifically, since our zero-
temperature calculations within the LDA result in a
slightly smaller lattice constant than experiment, and
since the smaller volume stabilizes the paraelectric phase,
our description of the bulk system yields a more sta-
ble paraelectric phase, as our underestimate of the bulk
static dielectric constant attests (calculated ∼ 400 com-
pared to the ∼2×104 observed experimentally). In addi-
tion, octahedral rotations, not included in our analysis,
might also alter the critical strain corresponding to the
FE phase transitions in this region.

Another difference between the present work and
Refs. 32,33 is the prediction in the latter of a low-
temperature [100]-polarized ferroelectric phase under in
a narrow window of tensile strain. Our results are consis-
tent with only a single phase in this strain regime, with

-3 -2 -1 0 1 2 3
misfit strain [%]

0

50

100

150

200

ei
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cm

-1
]

P4mm

Pm3m

P4/mmm Amm2

FIG. 4: FE soft-mode frequencies as a function of misfit
strain. Solid circles indicate the FE soft mode polarized along
[001]. Solid squares indicate the FE soft mode polarized along
[110]. The vertical lines indicate the phase transition points
at −0.75% and +0.54% misfit strain. Open circles denote
the FE soft-mode frequency if the polarization along [110] is
suppressed by keeping the atoms on their centrosymmetric
positions.

a polarization along [110]. Their polar [100]-oriented or-
thorhombic phase might be stabilized by the rotations
not included here, but since it occurs only in a very small
strain region, we did not investigate it further. For larger
tensile strains, Pertsev et al.33 predicted a phase where
the polarization is directed along [110] (like ours), with
an octahedral rotation around the same axis.

2. Dielectric properties

In this section, we compute the misfit strain depen-
dence of the lattice contribution to the dielectric response
ǫ in zero electric field; finite electric fields will be consid-
ered in the next section. First, we discuss separately the
zone-center phonons and the Born effective charges that
together determine ǫ according to Eq. (8).

The zone-center phonons of each phase are calculated
at each misfit strain using density-functional perturba-
tion theory. The lowest-frequency (softest) polar modes
dominate the dielectric response, and we show the fre-
quencies of the softest in-plane and out-of-plane trans-
verse zone-center optical phonons as a function of mis-
fit strain in Fig. 4. Their behavior reflects the phase
transition sequence discussed in the previous section.
By symmetry, these modes are degenerate at zero mis-
fit strain. However, the lowest-frequency (or soft) mode
polarized along [001] softens to zero as the misfit strain
approaches the critical value of −0.75%, signaling the
second-order transition from the paraelectric P4/mmm
to the [001]-polarized P4mm structure. Similarly, the
lowest-frequency in-plane soft mode softens to zero at
+0.54% misfit strain, marking the second-order transi-
tion from P4/mmm to Amm2, which has its FE polariza-
tion along the [110] direction. As can be seen in the fig-
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FIG. 5: Calculated Born effective charges Z∗
33 (full

symbols) and Z∗
11 (open symbols) as a function of mis-

fit strain. The cubic-structure values (at zero misfit
strain) are Z∗

33(Ti)=7.25, Z∗
33(Sr)=2.55, Z∗

33(O1)=−2.06, and
Z∗

33(O3)=−5.69. For O atoms, up-triangles represent O3,
down-triangles O2, and diamonds O1.

ure, the in-plane soft mode is only weakly affected at the
P4/mmm–P4mm transition, while the out-of-plane soft
mode shows a significant hardening in the Amm2 phase.
The hardening is produced by coupling to the in-plane
polarization that develops in the Amm2 phase. If the
polarization is suppressed by keeping the atoms on their
centrosymmetric positions, the mode evolves smoothly
with increase of the in-plane lattice constant through the
phase boundary, as is shown by the open circles in Fig. 4.

We now examine the Born effective charge tensors Z∗
i

as a function of misfit strain. In Fig. 5 we present, for
brevity, only the Z∗

11 and Z∗
33 components of the ten-

sors, where ‘1’ and ‘3’ refer to the [100] and [001] di-
rections, respectively. While the Born effective charge
tensors are not diagonal in the Cartesian frame in the
Amm2 phase (whose principal axes, by symmetry, are
along [110], [11̄0], and [001]), the computed off-diagonal
components (not shown) are found to be quite small. In
what follows, O1, O2, and O3 refer to the oxygen atoms
forming Ti-O chains in the x̂, ŷ, and ẑ directions, respec-
tively.

Figure 5 shows that in the paraelectric region, the Born
effective charges are very close to the values for the cubic
structure, 7.25 for Z∗

33(Ti) and −5.69 for Z∗
33(O3). As

is well known, the fact that these are anomalous (in the
sense of exceeding the nominal valence) arises from the
hybridization of Ti and O orbitals in the Ti-O3 chains
and is quite sensitive to polar distortions of the chain.45

Thus, in the ferroelectric phases, we expect a significant
misfit strain dependence of the Born effective charges for
these atoms. The effective charge of Ti, Z∗

33(Ti), drops
by almost 16% in the ferroelectric region for compressive
strain, with a corresponding increase of Z∗

33(O3). In com-
parison, Z∗(Sr) is rather insensitive to misfit strain over
the whole region, showing a weak trend towards lower
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FIG. 6: Dielectric constant as a function of misfit strain.
Solid circles and squares denote ǫ33 and ǫ11 respectively, where
3 always denotes the [001] direction and 1 refers to [100] in
the P4mm region and [110] in the Amm2 region. Solid lines
are fits proportional to (η − ηc)

−1, where η and ηc are the
actual and critical misfit strains, respectively. Open circles
are the ǫ33 measured by Hyun and Char (Ref. 14).

values with increasing misfit strain.
In the tensile-strain-induced Amm2 ferroelectric phase,

the orthorhombic symmetry (see Fig. 1) implies that
Z∗

11(O1) = Z∗
22(O2) 6= Z∗

11(O2) = Z∗
22(O1). In the range

of strains shown, Z∗
11(O1) shows a continuous increase

of 18%, while the Z∗
11 for O2 and O3 split slightly. The

charge neutrality sum rule for the Z∗ is maintained by a
corresponding decrease for Z∗

11(Ti).
In Fig. 6, we show the lattice contribution to the

static dielectric response in zero electric field over the
full range of computed misfit strains. The softening to
zero frequency of the relevant phonons at the second-
order phase boundaries produces divergences in the di-
electric response near the critical strains. These transi-
tions show nearly perfect inverse-power-law behavior, ex-
cept at the points closest to the phase transitions where
the low eigenfrequencies lead to numerical inaccuracies.
Throughout the paraelectric phase, both ǫ11 and ǫ33 are
well over 100. The abrupt drop of ǫ33 in the tensile-strain
region is related to the hardening of the lowest-frequency
phonon polarized along [001] shown in Fig. 4. The com-
parison with the experimental data of Hyun and Char14

will be discussed further in Sec. III B 2.

B. Response to electric field

Application of a finite electric field to epitaxially
strained STO leads to changes in the structure and di-
electric response that depend on misfit strain. In par-
ticular, the sensitivity to applied field is expected to be
largest near the phase boundaries discussed above. In
this section, we focus our attention on the strain regime
corresponding to the zero-field paraelectric phase, with
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TABLE I: Normalized displacement vector ξ for selected
strained states in the paraelectric phase.

strain u(Ti) u(O3) u(O1)
−0.7% 0.0929 −0.5081 −0.6055
−0.5% 0.0839 −0.5111 −0.6049
−0.3% 0.0726 −0.5129 −0.6049
−0.1% 0.0616 −0.5143 −0.6049

0.0% 0.0571 −0.5156 −0.6045
0.1% 0.0518 −0.5158 −0.6047
0.3% 0.0424 −0.5176 −0.6043
0.5% 0.0325 −0.5192 −0.6039

particular interest in the behavior as the transition to
the P4mm phase is approached. This regime is most rel-
evant to practical applications, as the ferroelectric state,
its associated hysteresis, and the presence of ferroelectric
domains are generally undesirable for tunable device ap-
plications. We also consider electric fields only along the
[001] direction, in which case all displacements also occur
only along [001].

To briefly re-cap our approach as presented in
Sec. II C 2, we parametrize the electric field dependence of
the atomic displacements up to fourth order. Combined
with a linearized form of the functional dependence of
the polarization on atomic displacement, this allows us
to express the lattice contribution to the dielectric sus-
ceptibility in terms of the change in atomic displacements
with electric field. We first discuss the displacements in-
duced by the applied electric field, and then, in the fol-
lowing subsection, the resulting lattice contribution to
the static dielectric response.

1. Structural properties

Using the approximate treatment of electric fields de-
scribed in Sec. II C 1, we calculate the misfit-strain de-
pendence of the displacement response to a small elec-
tric field. The resulting displacements, defined relative
to the Sr atom, are then normalized to give the vector
ξ reported in Table I for selected misfit strains. The O
displacements in an electric field are relatively insensitive
to misfit strain, while the Ti displacement in an electric
field grows with in-plane compressive strain, reflecting
the fact that in-plane compression, which is accompa-
nied by a substantial expansion of the c lattice constant
(see Fig. 3), leads to an opening of the oxygen octahedron
in the z-direction and compression in the xy plane. The
negative sign of the displacements of O atoms in a posi-
tive electric field results from the negative signs of their
Born effective charges, while Ti is expected to exhibit
a positive displacement since its Born effective charge is
larger than that of Sr.

For the larger compressive strains in Table I, we find
that our field-induced displacement vectors (Eq. (3) are
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FIG. 7: Dielectric constant vs electric field for epitaxial STO
in the paraelectric phase, for a series of compressive strains
approaching the transition to the ferroelectric P4mm phase.

very similar to the atomic displacement patterns of the
[001]-polarized soft mode at zero electric field. For ex-
ample, the normalized atomic displacements of our com-
puted normalized soft-mode eigenvector at −0.7% (near
the critical misfit strain of −0.75%) are (Ti, O3, O1) =
(0.0910, −0.5103, −0.6081), almost identical to the dis-
placement vector ξ at the same misfit strain. This shows
that close to the phase boundary the structural response
to an electric field is almost entirely dominated by the
soft mode.

2. Dielectric properties and tunability

We now investigate the electric-field dependence of the
lattice contribution to the dielectric response along the
[001] direction as the in-plane compressive strain ap-
proaches the phase boundary with the P4mm phase. The
results are shown in Fig. 7. As the magnitude of the mis-
fit strain approaches the critical value of −0.75%, the
dielectric response at low electric fields grows substan-
tially.

We now gain further insight into our calculations
through a quantitative comparison with experiment. The
curves in Fig. 7 resemble Lorentzians, and this is ex-
pected from a phenomenological analysis, as follows.46

Within the Landau-Devonshire formalism, the ferroelec-
tric phase transition can be described by a free-energy
functional F expanded about the paraelectric phase in
even powers of the polarization P , i.e.,

F (P, T ) = F0 +AP 2 +BP 4 + CP 6 + . . . (12)

The coefficients depend on misfit strain and temperature;
A is generally assumed to have the strongest dependence,
while the variation of B and higher order coefficients is
small or even negligible. Keeping only terms in F to
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TABLE II: Zero-field dielectric constant ǫ(0) and field scale

E0 (reported as the slowly varying combination ǫ(0)3/2
E0) ob-

tained from the fit of Eq. (16) for each strain state in the
paraelectric compressively-strained region.

strain ǫ(0) ǫ(0)3/2
E0[V/cm]

0.0% 391 8.3
−0.1% 473 9.0
−0.2% 584 9.3
−0.3% 760 9.6
−0.4% 1088 10.0
−0.5% 1877 10.3
−0.6% 4125 10.1
−0.7% 19903 10.4

fourth order, the electric field is then given by

E =
∂F

∂P
= 2AP + 4BP 3, (13)

and the dielectric susceptibility by

1

χ
=
∂E
∂P

= 2A+ 12BP 2 (14)

In the present discussion, the system is in the paraelectric
phase (A > 0) so that these relations uniquely determine
functions P (E) and χ(E). From Eqs. (13) and (14), it
is easy to see that in this fourth-order approximation we
expect χ→ constant for P → 0, while χ ∝ E−2/3 at large
P . A useful approximate interpolation formula is then

χ(E) = χ(0)

[

1 +

( E
E0

)2
]−1/3

(15)

as has been used previously in the literature.47,48 Making
the approximation ǫ≫ 1 so that ǫ ≃ 4πχ, we can write

ǫ(E) = ǫ(0)

[

1 +

( E
E0

)2
]−1/3

(16)

with ǫ(0) = 4πχ(0).

A detailed analysis shows that E0 ∝ ǫ
−3/2

0 , where the
constant of proportionality is determined by B, indepen-
dent of A. That is, ǫ(0)3/2E0 is not expected to depend
strongly on proximity to the ferroelectric phase transi-
tion, and thus is expected to vary only slowly with tem-
perature and misfit strain, and to be only weakly affected
by the LDA lattice-constant error. Fuchs et al.48 used
Eq. (16) to fit their experimentally-measured ǫ-vs.-E data
at 200 K, and they observe dielectric constants between
1480 and 5270; they find values of ǫ(0)3/2E0 ranging from
7.5 V/cm to 14.3 V/cm for films of 200-500 nm thickness.
Fitting our theoretical data to the same form, we extract
values of ǫ(0)3/2E0 ranging from 8.3 V/cm to 10.4 V/cm,
in general agreement with the findings of Fuchs et al. The
results of our comparison are summarized in Table II.

TABLE III: Measured misfit strain, c/a, and zero electric
field dielectric constant for STO films on various substrates.14

CRO and LAO stand for CaRuO3 and LaAlO3, respectively.

strain c/a ǫ(E=0) materials
−0.3073% 1.0072 640 Au/STO/CRO/LAO
−0.1536% 1.0056 690 Au/STO/CRO/STO
+0.2305% 0.9937 400 Au/STO/SRO/LAO
+0.7170% 0.9942 360 Au/STO/SRO/STO

Hyun and Char14 have grown SrTiO3 on different sub-
strates to investigate the influence of epitaxial strain on
the tunability of SrTiO3. For four samples, they report
measurements at 77 K of in-plane lattice constants, c/a
ratios, and dielectric constants, as summarized in Table
III. There is good agreement between measured and cal-
culated c/a ratios for the values of misfit strain observed
in Ref. 14, as shown in Fig. 3. For three of the sam-
ples, the dielectric constant increases with compressive
misfit strain in the paraelectric phase, in agreement with
our calculations. The first sample is an exception: we
expect it to exhibit a higher tunability, given its strain
state. This discrepancy can be attributed to the poorer
quality of samples grown on LaAlO3.

14 Comparing our
zero-temperature calculations in III) with the measured
value of 690 for the −0.1536% sample, and an additional
computation of 319 for strain = +0.2% with the mea-
sured value of 400 for the +0.2305% sample, (see Ta-
ble III), we find surprisingly good agreement. This may
be partly due to slight shifts in the experimental phase
boundaries owing to finite temperature; because of our
underestimate of lattice constants, our paraelectric phase
is over-stabilized, mimicking the effect of temperature
and shifting the calculated phase boundary towards more
compressive misfit strains.

Unlike the first three samples listed in Table III, which
we expect to be paraelectric based on their in-plane lat-
tice constants, the fourth sample should already be in the
orthorhombic, tensile FE region, according to our calcu-
lations and to the phase diagram of Pertsev et al. For
this reason, we did not include this experimental data
point in Fig. 8. We should like to note, however, that
the trends in the dependence of c/a and ǫ(0) on in-plane
strain in Table III do not seem consistent regarding this
last data point. As the strain changes from +0.23% to
+0.72%, the measured c/a and ǫ(0) remain almost iden-
tical. The behavior of c/a, for example, seems inconsis-
tent with the roughly linear dependence of c/a on misfit
strain predicted in our Fig. 3, suggesting that more thor-
ough checks of the experimental behavior in the region
of strong tensile strain may be called for.

Finally, we have calculated the strain dependence of
the tunability parameter in the paraelectric phase for
two different values of the bias field, E = 10 V/µm and
E = 25 V/µm, with results shown in Fig. 8. Although
a direct comparison is not possible because the theoreti-
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FIG. 8: Tunability n = [ǫ(0) − ǫ(E)]/ǫ(0) as a function of
misfit strain. The values for ǫ(E) were taken at E = 10 V/µm
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are the experimental results of Hyun and Char for E = 10
V/µm.

cal and experimental conditions are rather different, the
measurements of Hyun and Char for E = 10 V/µm are
also shown. These results are closer to our calculated
tunability for E = 25 V/µm than the one for E = 10
V/µm, consistent with the fact that our LDA-computed
zero-temperature system is further from its ferroelectric
transition (as indicated, e.g., by the smaller zero-field di-
electric constant) than for the experimental system at
77 K, and therefore less tunable. Nevertheless, our re-
sults do tend to confirm that a substantial variation in
the tunability can be attained by growing STO on sub-
strates having different lattice constants.

IV. SUMMARY

In this work, we examined the effects of in-plane biax-
ial strain and an applied electric field on SrTiO3 using

first-principles density-functional theory within the local
density approximation. We computed the tunability of
STO, and found this quantity to be highly sensitive to
epitaxial strain. We also find that the dielectric constant
itself varies significantly with strain, and for sufficiently
large compressive strains, STO can be made ferroelectric
with a polarization similar to that of bulk BaTiO3. Our
results are in good agreement with available experiments.

Our studies complement and extend previous theo-
retical work on STO films using a phenomenological
Landau theory. Our parameter-free description pro-
vides structural parameters and phonon frequencies that
can be compared with future experiments; in addi-
tion, we observe significant differences between our zero-
temperature phase diagram and that obtained using Lan-
dau theories fit to empirical data.

These results should be useful for the analysis of ul-
trathin epitaxial films and superlattice structures in-
volving STO. In the latter, high strain states, achieved
through layering, can result in novel artificial materials
with enhanced properties over those of their bulk con-
stituents, as was recently predicted for BaTiO3/SrTiO3

superlattices.49

For coherent epitaxial systems more complex than
STO and at finite temperatures, it seems clear that epi-
taxial strain will generally be a crucial factor in deter-
mining properties. In particular, we expect our results
for STO to be a useful guide in understanding the strain
dependence of more complex ferroelectric thin films with
high tunability, such as BST.
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