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Wurtzite ZnO can be substituted with up to ∼30% MgO to form a metastable Zn1−xMgxO alloy
while still retaining the wurtzite structure. Because this alloy has a larger band gap than pure ZnO,
Zn1−xMgxO/ZnO quantum wells and superlattices are of interest as candidates for applications in
optoelectronic and electronic devices. Here, we report the results of an ab-initio study of the sponta-
neous polarization of Zn1−xMgxO alloys as a function of their composition. We perform calculations
of the crystal structure based on density-functional theory in the local-density approximation, and
the polarization is calculated using the Berry-phase approach. We decompose the changes in polar-
ization into purely electronic, lattice-displacement mediated, and strain mediated components, and
quantify the relative importance of these contributions. We consider both free-stress and epitaxial-
strain elastic boundary conditions, and show that our results can be fairly well reproduced by a
simple model in which the piezoelectric response of pure ZnO is used to estimate the polarization
change of the Zn1−xMgxO alloy induced by epitaxial strain.

PACS numbers: 77.22.Ej, 77.65.Bn, 77.84.Bw

I. INTRODUCTION

Recently, much attention has been paid to wurtzite
Zn1−xMgxO alloys as candidates for applications in op-
toelectronic devices in the blue and ultraviolet region.
ZnO is a wide-band-gap semiconductor with a direct gap
of ∼3.3 eV. The band gap becomes even larger if Zn
atoms are substituted by Mg atoms, which have a similar
ionic radius, allowing the construction of quantum-well
and superlattice devices.1 Similar behavior is well known
for the zincblende GaAs/AlxGa1−xAs system and is the
basis of much of modern optoelectronics.2 Recent trends
have led in the direction of fabricating similar structures
in wide-gap semiconductor systems such as wurtzite III-
V nitrides3 and in Zn1−xMgxO.1,4,5 There has also been
recent interest in other kinds of nanostructures based on
the ZnO and Zn1−xMgxO materials systems.6,7,8,9

Pure ZnO prefers the wurtzite crystal structure, while
MgO adopts the cubic rocksalt structure. Substitution of
Zn by Mg results in a metastable wurtzite alloy for cer-
tain magnesium concentrations. Experimental reports
concerning the growth of these alloys on sapphire sub-
strates indicate that Mg concentrations up to ∼30%,1,5

or even ∼50%,10 can be achieved.

Many ab-initio calculations of the properties of
the parent compounds MgO and ZnO have appeared
in the literature.11,12,13,14 The properties of ternary
Zn1−xMgxO alloys have been less well studied. There
have been calculations of the dependence of the band
structure and band gap on concentration x.15 Regard-
ing the question of crystal structure and stability, Kim
et al. has shown that the wurtzite Zn1−xMgxO alloy is
stable with respect to the corresponding rocksalt alloy
for x < 0.375.16 Similar results were obtained by Sanati
et al. but for x < 0.33.17 However, Sanati et al. also have
shown that Zn1−xMgxO is unstable with respect to phase
separation into wurtzite ZnO and rocksalt MgO phases
even for low x values. This means that Zn1−xMgxO al-

loys are not thermodynamically stable, consistent with a
rather low observed solid solubility limit for Mg in ZnO.18

The success in fabricating samples with higher concen-
trations indicates that the phase separation is kinetically
limited, i.e., the time scale required for the alloy to phase
segregate into the two lower-energy constituents is long
compared to the growth time at the growth temperature.

To our knowledge, there have not been any previ-
ous calculations of the the polarization properties in the
Zn1−xMgxO system. This is an important property to
study, since if an interface occurs between a ZnO re-
gion and a Zn1−xMgxO region within a superlattice or
quantum-well structure, bound charges are expected to
appear at the interface. These charges, in turn, will
create electric fields that are likely to affect the electri-
cal and optical properties of the quantum-well devices.
In the present work, therefore, we have undertaken a
study of the polarization and piezoelectric properties of
Zn1−xMgxO.

The structure of the paper is as follows. In the next
section we describe the computational methods used in
our work. In Sec. III we introduce the six supercell struc-
tures that were constructed and used as the structural
models for the alloys of interest. Then, in Sec. IV, we
report the main results of this work. Finally, a brief
summary is given in Sec. V.

II. COMPUTATIONAL METHODS

Calculations of structural and polarization properties
are carried out using a plane-wave pseudopotential ap-
proach to density-functional theory (DFT). We use the
ABINIT code package19 with the local-density approxi-
mation (LDA) implemented using the Teter parametriza-
tion of the exchange-correlation20 and with Troullier-
Martins pseudopotentials.21 For the Zn pseudopotential
the 3d valence electrons are included in the valence, as
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their presence has a significant effect on the accuracy of
results.22 A plane-wave basis set with an energy cutoff of
120 Ry is used to expand the electronic wave functions.
A 6 × 6 × 4 Brillouin-zone k-point sampling is used for
pure wurtzite ZnO, and equivalent k-point meshes are
constructed for use in all wurtzite supercell calculations.
The electric polarization is calculated using the Berry-
phase approach.23

III. SUPERCELL STRUCTURES

In the present work we study the properties of six dif-
ferent models of the ternary Zn1−xMgxO alloy, to be de-
scribed shortly. However, first consider pure wurtzite
ZnO. It can be viewed as two identical hexagonal closed-
packed (hcp) lattices; we take the O sublattice to be
shifted in the +ẑ direction relative to the Zn sublattice.
Three parameters determine this structure: a and c are
the lattice constants of the hcp lattice, and u describes
the shift between the two sublattices.

Replacing some of the Zn atoms by Mg atoms, we get
a ternary Zn1−xMgxO alloy. Of course, the real alloy
is highly disordered. In order to carry out calculations
using periodic boundary conditions, we construct ordered
supercells having the same Mg concentration x as the
alloy of interest. By comparing properties of different
supercells having the same x, we may obtain a rough
estimate of the size of the errors that result from the
replacement of the true disordered alloy by an idealized
supercell model.

When constructing supercells, we restricted ourselves
to structures having hexagonal symmetry about the z-
axis, since real Zn1−xMgxO alloys have this symmetry
on average. This makes the calculation and interpreta-
tion of the results easier. We constructed six model alloy
structures: one for x = 1/6 (Model 1), two for x = 1/4
(Models 2 and 3), one for x = 1/3 (Model 4) and two for
x = 1/2 (Models 5 and 6), as follows.

The simplest alloy one can make (Model 5) is obtained
by replacing the Zn atoms by Mg atoms in every second
Zn layer along z, giving a structure with Mg concentra-
tion x = 1/2 and retaining the primitive periodicity of
pure ZnO (four atoms per cell). Similarly, if one replaces
every fourth layer of Zn by Mg, one arrives a model with
x = 1/4 (Model 2); this has an eight-atom supercell with
the primitive 1×1 in-plane periodicity but with a doubled
periodicity along the z-direction.

In the remaining models, we retain the primitive peri-
odicity along z but expand the size of the supercell in the
x-y plane, as illustrated in Fig. 1. Models having 2 × 2
in-plane periodicity (Models 3 and 6), and those having√

3×
√

3 periodicity (Models 1 and 4), are specified with
reference to Figs. 1(a) and (b), respectively. Models 3
and 6 thus have 16 atoms per supercell, while Models 1
and 4 have 12 atoms. In Model 3 we assign b = c = Zn
and a = d = Mg in Fig. 1(a), obtaining a model with
x = 1/4 in each cation layer and x = 1/4 overall. Model
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FIG. 1: (Color online.) Top view of cation layers of super-
cell models for Zn1−xMgxO alloys. (a) Structures with 2 × 2
periodicity (Models 3 and 6). (b) Structures with

√
3 ×

√
3

periodicity (Models 1 and 4). Atoms ‘a’ and ‘b’ lie in the top
cation layer, while ‘c’ and ‘d’ are one layer below (see text).

6 corresponds to b = d = Zn and a = c = Mg; this results
in alternating cation layers with x = 1/4 and x = 3/4,
for an overall Mg concentration of x = 1/2. Turning to

the
√

3 ×
√

3 structures in Fig. 1(b), one can see that
the hexagonal symmetry requires that all atoms must be
the same (c atoms) in one of the layers. We construct
Model 1 by assigning b = c = Zn and a = Mg, yielding
alternating layers with x = 0 and x = 1/3 for an average
x = 1/6. Finally, for Model 4 we set a = c = Zn and
b = Mg so that the layer concentrations are x = 0 and
x = 2/3, averaging to x = 1/3.

Of course, it would be possible to generate more su-
percell models of the alloy by expanding the periodicity
or reducing the symmetry. However, the six models de-
scribed above provide a reasonable coverage of concen-
trations in the range 0 ≤ x ≤ 1/2 with some redundancy
(for x = 1/4 and x = 1/2). We have thus chosen to limit
ourselves to these six models in the present work.

IV. RESULTS

A. Pure ZnO and MgO

To determine the crystal structures and cell parame-
ters of pure ZnO and MgO, we carried out DFT calcula-
tions for both materials in both the wurtzite and rocksalt
structures. For wurtzite ZnO we obtained lattice param-
eters a = 3.199 Å, c = 5.167 Å and u = 0.379. While
these results are very close to previously reported the-
oretical values,24 they slightly differ from experimental
values25 (a = 3.258 Å, c = 5.220 Å and u = 0.382). The
cohesive energy (defined as the energy per formula unit
needed to separate the crystal into atoms) is found to be
8.26 eV. Comparing this to the cohesive energy of rock-
salt ZnO (8.03 eV), one may conclude that ZnO prefers
the wurtzite structure, in agreement with experiment.
For rocksalt MgO we found a = 4.240 Å and a cohe-
sive energy of 10.00 eV. We find that if we start with a
plausible wurtzite MgO structure with a, c and u simi-
lar to that of ZnO, the crystal can monotonically lower
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TABLE I: Theoretical equilibrium lattice parameters for bulk
ZnO and for models of Zn1−xMgxO. Subscript ‘free’ indicates
zero-stress elastic boundary conditions, while ‘epit’ indicates
that a is constrained to be identical to that of bulk ZnO (the
values in column V are thus identical by construction).

x afree (Å) (c/a)
free

aepit (Å) (c/a)
epit

ZnO 0.0 3.199 1.615 3.199 1.615
Model 1 0.17 3.216 1.605 3.199 1.624
Model 2 0.25 3.230 1.593 3.199 1.625
Model 3 0.25 3.225 1.600 3.199 1.628
Model 4 0.33 3.238 1.589 3.199 1.630
Model 5 0.5 3.266 1.564 3.199 1.635
Model 6 0.5 3.256 1.580 3.199 1.640

its energy along a transformation path in which a in-
creases, c decreases, and u tends toward 1/2 in agree-
ment with the previous results of Ref. 13. The minimum
occurs at u = 1/2, which corresponds to the higher-
symmetry h-MgO structure.13 For this structure we ob-
tain a = 3.527 Å and c = 4.213 Å, in good agreement11,13

with previous calculations. We find its cohesive energy
to be 9.81 eV, consistent with the fact that MgO prefers
the rocksalt structure. (For more details concerning the
previous theoretical literature on lattice parameters and
binding energies, see Ref. 11.)

The main goal of the present work is to study the po-
larization and piezoelectric properties of Zn1−xMgxO.
For reference, our calculated spontaneous polarization
for pure ZnO is found to be −0.0322C/m2, and its
piezoelectric coefficients are e31 = −0.634C/m2 and
e33 = 1.271C/m2. Note that the value of the sponta-
neous polarization differs somewhat from the previous
theory of Dal Corso et al.,12 who reported a polarization
of −0.05C/m2 when using the experimental u = 0.382;
our value becomes much closer to theirs if we also use the
experimental u. Since we are primarily interested in dif-

ferences of the polarization with respect to pure ZnO, we
do not believe that these small discrepancies are impor-
tant. The values of piezoelectric coefficients are in good
agreement with previous theoretical calculations of Wu et

al.26 who found e31 = −0.67C/m2 and e33 = 1.28C/m2

(and who also provide comparisons with other theoretical
and experimental results).

B. Crystal structure and energies of alloys

For each model described in Sec. III, we calculated the
hcp lattice parameters a and c in the equilibrium state.
Since we are interested in properties of Zn1−xMgxO lay-
ers that might be grown on a ZnO substrate, we also
calculated the lattice parameters for epitaxially strained
structures (i.e., a fixed to that of pure ZnO). The results
are given in Table I. In both cases, the c/a ratio exhibits
an almost linear dependence on x. However, this ratio
is found to decrease with x for the fully relaxed struc-

TABLE II: Theoretical cohesive and formation energies (eV
per formula unit) for bulk ZnO and MgO and for each super-
cell model.

x Ecoh Eform

ZnO 0.0 8.258 0.0
Model 1 0.17 8.496 −0.053
Model 2 0.25 8.602 −0.093
Model 3 0.25 8.612 −0.083
Model 4 0.33 8.729 −0.123
Model 5 0.5 8.955 −0.176
Model 6 0.5 8.958 −0.173
MgO 1.0 10.004 0.0

tures, while it increases with x when the epitaxial strain
condition is enforced.

In Table II we give cohesive and formation energies
for each alloy. One can see that in every case the for-
mation energy is negative. Thus, according to our LDA
calculations, at zero temperature the Zn1−xMgxO alloy
is never stable with respect to phase-separated wurtzite
ZnO and rocksalt MgO. (Of course, at T > 0 a small
solid solubility of Mg in wurtzite ZnO is expected.18)

C. Polarization and piezoelectric properties

The results of the calculations of spontaneous polariza-
tion are given in Table III, both for the fully relaxed and
for the epitaxially strained cases. Note that the values
of polarization for models having the same x are fairly
consistent with one another; the choice of supercell does
not significantly affect the overall trend with x, which is
reasonably smooth. A linear fit P (x) = P (ZnO) + Ax
yields coefficients of Afree = (−0.088 ± 0.009)C/m2 and
Aepit = (0.024 ± 0.002)C/m2. The latter value may be
of direct interest for experimental studies of epitaxial su-
perlattices and quantum wells.

Thus, with increasing Mg concentration x, the abso-
lute value of the polarization increases for the relaxed
structures and decreases for the epitaxial structures with
fixed a. This behavior is very similar to what we saw
in Sec. IV B for the c/a ratios, suggesting that the c/a
ratio may be a dominant factor in determining the total
polarization. Indeed, since 2e31 + e33 ≃ 0, one expects
the polarization to be almost independent of a change
in volume (isotropic strain), so that the change of c/a
should be the most important strain effect.

In order to study more thoroughly the role of strain
and other factors in determining the polarizations of the
Zn1−xMgxO structures, we first define ∆Ptot to be the
polarization of the alloy superlattice structure relative to
that of pure ZnO. We then decompose ∆Ptot into “elec-
tronic,” “ionic,” and “piezoelectric” contributions as fol-
lows. First, we construct an artificial Zn1−xMgxO super-
lattice structure in which the structural paramters (a,
c, and all internal coordinates) are frozen to be those
of pure ZnO, and define ∆Pelec to be the polarization
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TABLE III: Calculated values of total polarizations of
Zn1−xMgxO alloy models (C/m2). Subscript ‘free’ indicates
zero-stress elastic boundary conditions, while ‘epit’ indicates
that a is constrained to be identical to that of bulk ZnO.
Superscript ‘est’ indicates value estimated by the model of
Eq. 1).

x Pfree Pepit P est
epit

ZnO 0.0 −0.0322 −0.0322
Model 1 0.17 −0.0423 −0.0277 −0.0279
Model 2 0.25 −0.0501 −0.0247 −0.0247
Model 3 0.25 −0.0470 −0.0244 −0.0250
Model 4 0.33 −0.0565 −0.0230 −0.0239
Model 5 0.5 −0.0789 −0.0199 −0.0222
Model 6 0.5 −0.0699 −0.0202 −0.0225

of this structure relative to that of pure ZnO. Next, we
allow only the internal coordinates of the Zn1−xMgxO su-
percell to relax, while continuing to keep a and c frozen
at the pure-ZnO values, and let ∆Pion be the polariza-
tion change produced by this internal relaxation. Finally,
we allow the lattice constants to relax as well, and de-
fine ∆Ppiezo to be the associated change in polarization.
Clearly ∆P = ∆Pelec + ∆Pion + ∆Ppiezo.

The results of such a decomposition are given in Table
IV for the stress-free case. For scale, recall that these are
changes relative to P (ZnO)=−0.0322C/m2. The purely
electronic contributions ∆Pelec are quite small, showing
a relatively poor correlation with x. The contribution
∆Pion associated with the ionic relaxations is also quite
small, although it is typically 2-3 times larger than ∆Pelec

and shows a clearer trend (becoming more negative with
increasing x). By far the largest contribution comes from
the piezoelectric effect of the strain relaxation, being typ-
ically 5-10 times larger than the ionic one. A similar table
can be constructed for the case of epitaxial strain; its first
four columns would be identical to Table IV because of
the way ∆Pion and ∆Pelec are defined, and the values in
the remaining columns can be deduced from the infor-
mation given in Tables III and IV. The results indicate
that the piezoelectric contribution also dominates in the
epitaxial-strain case.

This being the case, it seems likely that many of the
polarization-related properties of the Zn1−xMgxO alloy
can be estimated by using a model based on the piezo-
electric effect alone. For example, one might hope that
δP = Pepit−Pfree, the difference between the epitaxially-
constrained and free-stress polarizations at a given x,
could be estimated by a linear approximation of the form

δP = 2e31

aepit − afree

afree

+ e33

cepit − cfree

cfree

. (1)

In fact, we find that this is the case even if we use the
piezoelectric constants of bulk ZnO, already obtained in
Sec. IVA, in this formula. Using the computed value of
Pfree reported in the third column of Table III, together
with the constrained a values and epitaxially-relaxed c

TABLE IV: Theoretical values of electronic, ionic, piezoelec-
tric and total contributions to polarization (C/m2) for each
model, relative to bulk ZnO.

x ∆Pelec ∆Pion ∆Ppiezo ∆Ptot

ZnO 0.0 0.0 0.0 0.0 0.0
Model 1 0.17 0.0001 −0.0022 −0.0081 −0.0101
Model 2 0.25 0.0018 −0.0023 −0.0175 −0.0180
Model 3 0.25 0.0000 −0.0027 −0.0122 −0.0148
Model 4 0.33 0.0009 −0.0038 −0.0214 −0.0243
Model 5 0.5 0.0023 −0.0063 −0.0427 −0.0467
Model 6 0.5 −0.0019 −0.0062 −0.0296 −0.0377

values given in the last two columns of Table I, we report
the computed estimates P est

epit = Pfree + δP in the last
column of Table III. The use of the piezoelectric coef-
ficients of pure ZnO is not obviously justified except at
small x, but the results show excellent agreement with
the computed Pepit values in the fourth column even up
to x = 0.5, where the error is only about 10%. This
approximation thus seems to work quite well.

V. SUMMARY

We have investigated the polarization-related prop-
erties of wurtzite Zn1−xMgxO alloys using calculations
based on density-functional theory in the local-density
approximation and the Berry-phase approach to calcu-
lating electric polarization. In particular, we have stud-
ied the dependence of the spontaneous polarization on
Mg concentration using six alloy supercell models with
hexagonal symmetry, spanning the range of Mg concen-
tration from x = 1/6 to 1/2. We performed these cal-
culations both for free-stress and epitaxial-strain elastic
boundary conditions.

Our results indicate a roughly linear dependence
of spontaneous polarization on Mg concentration, al-
though the sign of the linear coefficient is opposite
in the free-stress and epitaxial-strain cases. In or-
der to understand this behavior in more detail, we de-
composed the change in polarization into electronic,
lattice-displacement-mediated, and strain-mediated com-
ponents, and found that the latter component is dom-
inant. This means that the change in polarization is
mostly governed by piezoelectric effects connected with
the x-dependent changes of the a and c lattice constants.
We further confirmed this picture by showing that the
polarization changes could be well approximated by a
model in which the only first-principles inputs to the
model are the piezoelectric coefficients of pure ZnO and
the x-dependence of the equilibrium lattice constants of
the Zn1−xMgxO alloy. These results suggest that charg-
ing effects associated with polarization discontinuities
in ZnO/Zn1−xMgxO superlattices and quantum wells
should be subject to prediction and interpretation in a
fairly straightforward manner.
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