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A �rst-principles study of the vibrational modes of PbTiO3 in the ferroelectric tetragonal phase has
been performed at all the main symmetry points of the Brillouin zone (BZ). The calculations use the
local-density approximation and ultrasoft pseudopotentials with a plane-wave basis, and reproduce
well the available experimental information on the modes at the � point, including the LO-TO
splittings. The work was motivated in part by a previously reported transition to an orthorhombic
phase at low temperatures [J. Kobayashi, Y. Uesu, and Y. Sakemi, Phys. Rev. B 28, 3866 (1983).]
We show that a linear coupling of orthorhombic strain to one of the modes at � plays a role in
the discussion of the possibility of this phase transition. However, no mechanical instabilities (soft
modes) are found, either at � or at any of the other high-symmetry points of the BZ.

I. INTRODUCTION

Due to their relatively simple structure and the variety
of phenomena they exhibit, the perovskite oxides have
become important subjects of study. Despite sharing a
common formula ABO3 and a highly symmetric high-
temperature structure (Fig. 1), this family of compounds
presents a rich and varied low-temperature phenomenol-
ogy. Among the perovskites one �nds ferroelectric crys-
tals such as BaTiO3 and PbTiO3, antiferroelectrics such
as PbZrO3 and NaNbO3, and materials such as SrTiO3

that exhibit other, non-polar instabilities.
Much progress has been made in the last �fty years

in the experimental characterization of the properties of
these compounds. One of the main conclusions to emerge
from these studies is the fascinating dependence of the
structural and dynamical behavior on details of chemi-
cal composition. Indeed, even within a given subgroup
of materials one �nds signi�cantly di�erent phase dia-
grams. For example, BaTiO3 exhibits a complicated se-
quence of phase transitions, from cubic to tetragonal to
orthorhombic to rhombohedral, while PbTiO3 shows just
one clearly established transition with Tc = 493�C from
the cubic paraelectric phase to a tetragonal ferroelectric
structure. Moreover, the replacement of Pb for Ba also
has important consequences for the dynamical processes
leading to the transition. It is acknowledged that the
soft mode in BaTiO3 is highly overdamped, and there-
fore that the transition has some order-disorder avor,
whereas PbTiO3 has been called a \textbook example of
displacive transition."1

Until recently, however, theoretical models of per-
ovskite properties could not properly take into account
the �ne chemical details that distinguish the behavior
of the di�erent materials in this family. Semi-empirical
methods are not accurate enough to model the sort of

delicate balance between e�ects (long-range dipole inter-
actions vs. short range covalent and repulsion forces, for
example), and schemes based on model Hamiltonians are
usually too simple and too focused on a given material to
be of much use in the unraveling of the chemical trends
within the perovskites.
This situation has improved in the last few years

with the use of accurate �rst-principles density func-
tional calculations to study the energy surfaces2{4 and
even the temperature-dependent phase diagrams5{7 of
various perovskite oxides. These works have achieved
a high degree of success in reproducing qualitatively and
even quantitatively the experimental observations, giv-
ing us con�dence that one can now carry out accurate
calculations to elucidate microscopic behavior (impor-
tance of hybridization, competition between long-range
and short-range interactions, etc). A good example is the
recent work of Rabe and Waghmare,7 which has helped
revise the conventional wisdom relative to the behavior
of PbTiO3. Indications of a problem with the simple dis-
placive picture were �rst seen experimentally in EXAFS
measurements,8 but the theoretical work7 has provided
the microscopic underpinnings of a partial order-disorder
character of the cubic-tetragonal transition in which the
atomic distortions in the high-temperature phase are pro-
posed to arise from a local instability.
Another issue, with which we will be mainly con-

cerned in this paper, is the possible existence of a low-
temperature transition. In the 1950s, Kobayashi et al.9

reported the observation of what appeared to be a dis-
torted (\multiple") tetragonal phase of PbTiO3 below
approximately �100�C. After several negative attempts
by other researchers to reproduce the observations,10 X-
ray and optical measurements were presented11 as cor-
roborating the existence of a low-temperature phase with
an orthorhombic structure. The transition, at �90�C,
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FIG. 1. Structure of ferroelectric (tetragonal) PbTiO3 .
The arrows represent the displacements of the atoms with re-
spect to their positions in the cubic high-temperature phase.
Pb atoms are depicted by open circles, the Ti atom by the
black dot in the center of the cell, and the O atoms (O1,
O2, and O3, displaced from the Ti atom along x, y, and z,
respectively) by shaded circles.

would be second-order, and bring about a very slight dis-
tortion of the tetragonal phase (with the orthorhombic
cell parameters a and b di�ering by just 4.5�10�4�A at
�194�C) and the direction of the lattice vectors kept un-
changed. The absence of superlattice reections would
imply a symmetry distortion without multiplication of
the size of the unit cell.
From the point of view of the microscopic dynamics

of the tetragonal structure, such a transition could be
explained by a mechanical instability of a zone-center
phonon whose associated atomic distortions break the
tetragonal symmetry and thus relax the requirement that
a and b be equal. At T = 0 the energy surface should then
present a saddle point at the con�guration corresponding
to the tetragonal phase, with the energy decreasing along
a coordinate representing the amplitude of the soft mode
and the coupled orthorhombic strain.
In this paper we have used �rst-principles calculations

to study possible mechanical instabilities in the ferroelec-
tric tetragonal phase of PbTiO3. Our focus has been
primarily on homogeneous (zone-center) distortions of
the tetragonal symmetry, aimed at a detailed theoreti-
cal assessment of the possibility of the phase transition
suggested by Kobayashi et al.11 However, in the inter-
est of completeness, we have also carried out an analysis
of the normal modes at all the main symmetry points
on the surface of the Brillouin zone (BZ). Thus we also
present for the �rst time a fairly complete collection of
normal mode frequencies and eigenvectors for ferroelec-
tric PbTiO3 computed from �rst principles.
The paper is organized as follows. In Sec. II we under-

take a classi�cation of the types of possible distortions of
the tetragonal phase of PbTiO3 according to their sym-
metry. Sec. III briey describes some technical aspects of
our calculations, whose results are presented in Sec. IV.
Sec. V discusses the implications of our work for the like-
lihood of a low-temperature transition in PbTiO3. The
Appendix is devoted to some issues related to the cou-

TABLE I. Character table and decomposition of the vector
and second-order symmetric tensor representations for point
group 4mm.

E C4; C
�1

4
C2 mx;my md;md0 V Sym[VxV]

A1 1 1 1 1 1 z x2 + y2; z2

A2 1 1 1 -1 -1
B1 1 -1 1 1 -1 x2 � y2

B2 1 -1 1 -1 1 xy
E 2 0 -2 0 0 (x;y) (zx; yz)

pling of atomic displacements to strain degrees of free-
dom.

II. THEORETICAL ANALYSIS OF POSSIBLE

INSTABILITIES

In the harmonic approximation, the calculation of
phonon frequencies and mode displacement patterns in-
volves the diagonalization of the dynamical matrix, it-
self obtained in a straightforward manner from the force

constants ���
ij which enter the expansion of the energy

to second order in the atomic displacements,

E = E0 +
X
ij��

���
ij ui�u

j
� : (1)

The force constants can easily be calculated by comput-
ing all the forces caused by a given sublattice displace-
ment.
It is well-known that the normal modes of vibration

of a crystal at a given k-point of the BZ transform ac-
cording to irreducible representations of the group of the
wavevector. Thus a judicious use of the symmetry infor-
mation available simpli�es the analysis and saves compu-
tational work. Symmetry arguments can also pro�tably
be used to determine the form of the series expansion
of the total energy of the crystal around a given con�g-
uration, including the correct couplings among various
degrees of freedom (such as atomic displacements and
strains). This is precisely what is needed for a detailed
study of the energy surface and the possible appearance
of mechanical instabilities.
In this section we present a brief account of the use

of symmetry considerations to characterize the possi-
ble instabilities of the tetragonal ferroelectric phase of
PbTiO3. Experimentally,11 it has been claimed that the
low-temperature structure has orthorhombic symmetry
and there is no sign of cell doubling. Accordingly, we de-
vote a subsection to the study of zone-center instabilities
of orthorhombic character, and to the investigation of the
form of the energy as a function of the relevant degrees
of freedom. A second subsection considers distortions
that might conceivably lead to a low-temperature phase
transition but involve a non-orthorhombic symmetry or
a doubling of the unit cell.
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TABLE II. Symmetry analysis of the normal modes at dif-
ferent points of the BZ.

k, (Group) irrep no. of copies basis
�,Z (4mm)

A1 4 Pbz,Tiz,O1z+O2z,O3z

B1 1 O1z�O2z

E 5 (2D) Pbx,Tix,O1x,O2x,O3x

Pby,Tiy,O1y,O2y,O3y

X,M 0 (mm2)
A1 5 Pbz,Tix,O1z,O2z,O3x

A2 3 Tiy,O2y,O3y

B1 2 Pby,O1y

B2 5 Pbx,Tiz,O1x,O2z,O3z

M ,R (4mm)
A1 2 Pbz,O1y+O2x

A2 1 O1x�O2y

B1 1 O1y�O2x

B2 3 Tiz,O1x+O2y,O3z

E 4 (2D) Pbx,Tiy,O2z,O3y

Pby,Tix,O1z,O3x

A. Orthorhombic instabilities with no cell doubling

The ferroelectric phase of PbTiO3 (Fig. 1) is tetrago-
nal, with space group P4mm. At the � point, the group
of the wavevector is the point group of the crystal, 4mm,
characterized by a four-fold rotation axis and four sym-
metry planes which contain it. Table I displays the char-
acter table for 4mm. There are �ve symmetry classes and
thus �ve irreducible representations (irreps), of which one
(E) is two-dimensional.
The decomposition of the vibrational representation at

� can be shown by standard techniques to be

Vib(�) = 4A1 � B1 � 5E : (2)

Physically, this means that the problem of diagonalizing
the 15 � 15 dynamical matrix reduces to three simpler
tasks: the diagonalization of a 4� 4 matrix to decouple
the four copies of the A1 irrep, a similar 5� 5 diagonal-
ization for E, and a simple calculation of a force constant
to obtain the frequency of the B1 mode (its displacement
pattern being completely determined by symmetry). The
atomic motions are, therefore, coupled only within sub-
spaces of the original �fteen-dimensional con�guration
space. The four-dimensional A1 subspace corresponds
to coupled motions with basis [Pbz, Tiz, O1z+O2z, O3z]
and the one-dimensional B1 subspace represents a normal
mode with a displacement pattern of the form [O1z�O2z].
Of course, at � there are three zero-frequency acoustic
modes. Two are degenerate (movements along x or y)
and transform according to E, and the third is polar-
ized along z and belongs to A1. The complete symmetry
speci�cation of all the normal modes at � and at other
high-symmetry k-points appears in Table II.13

It is simple to use this symmetry information to ana-
lyze the possible mechanisms leading to the experimen-

M
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FIG. 2. Sketch showing the irreducible wedge of the Bril-
louin zone associated with the 4mm space group, and the
positions of the symmetry points considered in this work.

tally suggested phase transition from the tetragonal to
an orthorhombic structure. By looking at the � entry in
Table II and considering the characters in Table I, it is
immediate to conclude that the B1 mode has the right
transformation properties. In this mode the O1 and O2

atoms move in opposite directions along the z axis, thus
breaking the four-fold symmetry.
A calculation of the frequency of this mode is not

enough to determine the existence of an instability, since
one should take into account possible couplings of the
atomic displacements to changes in the size and shape of
the unit cell (strain variables). The possible strains that
can be applied to the cell are represented by the compo-
nents of a second-order symmetric tensor (�), and can be
classi�ed according to irreducible representations of the
point group of the crystal as shown in the last column in
Table I. In what follows we use the notation

r = �zz ;

s = (�xx + �yy)=2 ;

t = (�xx � �yy)=2 :

Portions of � transforming according to the identity rep-
resentation A1 leave the tetragonal symmetry unchanged.
Such is the case for r and s, which refer to symmetric
axial and in-plane strains, respectively. The other strain
irreps are associated with lower lattice symmetries: mon-
oclinic for E, and orthorhombic for B1 and B2. While a
B2 (�xy) distortion leads to an orthorhombic structure
with axes rotated by 45� with respect to the tetragonal
basis, a pure B1 (t) strain transforms the cell into an or-
thorhombic one without a change in the orientation of the
axes. The latter is precisely the kind of low-temperature
phase suggested for PbTiO3.

11

Apart from the change in the orientation of the axes,
there is an important di�erence between B2 (�xy) and B1

(t) cell distortions. Since the orthorhombic strain t trans-
forms according to the B1 irrep, it can couple linearly to
the B1 normal coordinate.14 Therefore, the crystal en-
ergy expansion considering only the B1 mode and strain
is of the form
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TABLE III. Character table for the point group mm2. The
symbols m1,m2 stand for mx, my or md, md0 , depending on
the orientation of the axes.

E C2 m1 my

A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

E = E0 +
1

2
ku2 +

1

2
Ct2 + ut + ::: : (3)

It is shown in the Appendix that the linear coupling in
Eq. (3) implies a renormalization Ce� = C � 2=k. Thus
strain coupling could create instabilities against B1 (or-
thorhombic) distortions even if the \bare" second order
coe�cients k and C are positive.
In contrast, any coupling of the B2 strain to a given

atomic displacement u must be at least of second order,

E = E0 +
1

2
ku2 +

1

2
C�2xy +

+u2�2xy + �u4 + ��4xy + ::: ; (4)

with no renormalization of the elastic constant C (see
Appendix).
In summary, if the purported low-temperature phase

transition in PbTiO3 is indeed to an orthorhombic phase
with no cell doubling, and with the basis parallel to the
tetragonal one, it should be linked to a negative e�ective
elastic constant Ce� for a t strain. If one allows for the
possibility of a rotation of the axes, the transition could
be associated with a negative \bare" elastic constant for
a B2 strain.

B. Other instabilities

Apart from the experimentally suggested instability of
the tetragonal phase in favor of an orthorhombic struc-
ture with no cell doubling, there are, in principle, other
distortions that might conceivably lead to phase transi-
tions.
To begin with, and by reference to Table I, one could

think of an instability leading to a phase with mono-
clinic symmetry (but still without multiplying the size of
the unit cell) associated with distortions transforming ac-
cording to the E irreducible representation. The analysis
of this case is conceptually very similar to the one carried
out for the B1 distortions, with the di�erence that there
are eight optical E modes capable of coupling to strain
(four for each of the rows of the two-dimensional irrep
E). Thus x- and y-polarized normal modes will couple
linearly to xz and yz strains, respectively, resulting in a
renormalized elastic constant Ce� for E distortions.
Next to consider is the possibility of structural phase

transitions associated with a multiplication of the size

TABLE IV. Structural parameters of PbTiO3. Theory I
and II refer to a relaxation with constrained lattice constants,
and a free relaxation, respectively. z atomic coordinates are
given in lattice units. Experimental values are taken from
Ref. 21.

Theory I Theory II Experiment
a (a.u.) 7.380 7.298 7.380
c=a 1.063 1.054 1.063
z(Ti) 0.549 0.537 0.540
z(O1,O2) 0.630 0.611 0.612
z(O3) 0.125 0.100 0.112

of the unit cell. These would come about through the
instability of non-� modes. Since there is no possibility
of coupling of these modes to homogeneous strain at �rst
order, one needs only to compute the eigenvalues of the
force-constant matrix to check for any saddle points in
the energy surface. It is not feasible to study the modes
at all the wavevectors in the BZ, so we focus on a few
high-symmetry k-points on the zone surface (see Fig. 2)
which represent cell-doubling distortions.
The symmetry analysis of zone-boundary modes pro-

ceeds along the same lines as those for �. Operations
that leave the wavevector invariant will, in general, form
subgroups of 4mm. For the purposes of our work it suf-
�ces to consider just one more point group, mm2, whose
character table is given in Table III.12 We show the sym-
metry decomposition of atomic displacements at the zone
boundary points in Table II.

III. DETAILS OF CALCULATIONS

The determination of the force constants involves the
consideration of appropriately distorted crystal con�gu-
rations. Symmetry arguments are used to reduce to the
minimum the number of di�erent calculations that need
to be carried out, and to obtain the relevant information
in the most direct form. For z-polarized modes at the
� point, for example, it is only necessary to consider the
four linearly independent atomic distortions (1; 0; 0; 0; 0),

(0; 1; 0; 0; 0), (0; 0; 1;�1; 0)=p2, and (0; 0; 1; 1;�2)=p6,
where the basis is formed by unit z displacements of Pb,
Ti, O1, O2, and O3.
Strain parameters are determined by subjecting the

crystal to pure strains and �tting the energy to a poly-
nomial form. The strain-phonon couplings are computed
by �nding the forces on the atoms caused by a suitable
strain, since, from Eq. (3),

�@E
@u

�
u=0

= t : (5)

We use ultrasoft pseudopotentials, a plane-wave basis
set, and a conjugate-gradients algorithm to compute total
energies and forces for a variety of crystal con�gurations.
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TABLE V. Frequencies of optical modes at � in cm�1. In-
frared-active modes exhibit LO-TO splitting. See text and
Table IV for the meaning of Theory I and Theory II. Experi-
mental values as compiled in Ref. 19.

Theory I Theory II Experiment

A1(TO) 151 146 147
A1(TO) 355 337 359
A1(TO) 645 623 646
E(TO) 81 82 88
E(TO) 183 195 220
E(TO) 268 237 289
E(TO) 464 501 505
B1 285 280 289

A1(LO) 187 186 189
A1(LO) 449 447 465
A1(LO) 826 799 796
E(LO) 114 125 128
E(LO) 267 273 289
E(LO) 435 418 436
E(LO) 625 675 723

The method and the details of the pseudopotentials em-
ployed have been described elsewhere.4 For this work we
�nd that a (4,4,4) Monkhorst-Pack15 sampling of the BZ
is enough to provide good precision in the calculated coef-
�cients (see next section). Force constants are computed
using the Hellmann-Feynman theorem, with atomic dis-
placements of 0.002 in lattice units.
A �nal methodological note concerns the calculation of

the frequencies of longitudinal optic (LO) modes at the
� point. Since our calculations use periodic boundary
conditions, we are not able to introduce a macroscopic
electric �eld, such as it would arise in an ionic crystal in
the presence of a q ! 0 longitudinal vibration. This �eld
creates a splitting of the frequencies of infrared-active
phonons, with the coupling constants being the ionic ef-
fective charges Z�. The force constant matrix has to
be augmented by the e�ect of a screened (by electronic
e�ects only) Coulomb interaction among those e�ective
charges,

���
ij = ���

ij +
4�e2


�1
Z�i Z

�

j : (6)

The e�ective charges can be obtained from�rst-principles
calculations. Here we use those computed for cubic
PbTiO3 by Zhong and Vanderbilt.16

IV. RESULTS

A �rst concern is the determination of the struc-
tural parameters of the ferroelectric tetragonal phase of
PbTiO3. First-principles LDA calculations typically un-
derestimate the lattice constants of perovskite oxides by
around 1%. Our �nal objective is the study of dynami-
cal properties of the crystal, and it would be debatable

TABLE VI. Computed frequencies of zone-edge phonons,
classi�ed by symmetry label. The base structure used in the
calculations is Theory I of Table IV. Experimental values are
given when available (Ref. 19).

k irrep Frequencies (cm�1) Exp.

Z A1 102, 189, 447, 831
B1 292
E (2) 46, 151, 184, 270, 454 59, 168

X A1 66, 237, 285, 309, 486 72
A2 131, 233, 426
B1 54, 321
B2 99, 177, 337, 608, 672

M A1 74, 452
A2 412
B1 138
B2 247, 635, 716
E (2) 57, 203, 294, 398

M 0 A1 67, 110, 272, 406, 415
A2 152, 270, 401
B1 57, 329
B2 58, 188, 312, 579, 794

R A1 90, 411
A2 401
B1 135
B2 200, 626, 803
E (2) 65, 136, 322, 386

whether it is better to compute phonon frequencies and
other dynamical parameters at the experimental or at
the theoretical lattice constant. Past experience with
perovskites has shown that the displacement patterns as-
sociated with some soft modes, and even the existence of
the latter, depend on lattice constant and strain.2;3 In
the case of ferroelectric PbTiO3 there is an additional
complication, namely the existence of internal atomic
displacements, which are of course coupled to the cell
dimensions. Our �rst strategy was to use the experi-
mental lattice constants a=7.380 a.u., c=a = 1:0635 and
optimize the internal atomic positions to obtain a base
reference con�guration with zero forces with which to
compute phonon frequencies and strain coe�cients. We
call this \Theory I." Later we determined an optimized
structure (cell shape and atomic positions coupled) via a
special minimization procedure (see Appendix); we call
this \Theory II." Table IV summarizes the structural in-
formation. While, as we shall see, we obtain substantially
the same phonon frequencies in either case, the second
approach, using as a reference the structure which gives a
theoretical energy minimum with respect to strain, is in
principle more appropriate for the calculation of elastic
properties and strain-phonon couplings.
As part of the investigation of the possible mechan-

ical instabilities,17 we have obtained a complete set of
calculated phonon frequencies for PbTiO3. These are
given, along with experimental results when available, in
Tables V and VI.18 The agreement of our theoretical re-
sults with experiment for the zone-center modes (both
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TABLE VII. Test of the convergence of mode frequencies
with k-point grid. (4,4,4) and (6,6,6) grids are used for the
\Theory I" choice of Table IV. The frequencies (in cm�1) are
those of the transverse z-polarized modes at �.

k-point grid (4,4,4) (6,6,6)

A1(TO) 151 153
B1 285 289
A1(TO) 355 359
A1(TO) 645 648

TO and LO) is quite good. We are thus con�dent that
our computational approach can be trusted in its predic-
tions of zone-edge vibrational frequencies that have not
yet been determined experimentally. To our knowledge,
the only other calculation of vibrational frequencies and
modes for tetragonal PbTiO3 was carried out by Freire
and Katiyar.19 An important di�erence with our work is
that those authors used an empirical �tting procedure to
adjust the parameters of a rigid-ion model. We use no
empirical parameters of any kind, just the atomic num-
bers and masses of the atoms involved. Table V can be
used also to estimate the degree of dependence of the
phonon frequencies upon the details of the base struc-
ture used in the calculations (\Theory I" or \Theory II"
above). Phonons at zone-boundary points are computed
using the \Theory I" structure.
To test the convergence of our results with respect to

the density of the k-point grid for BZ integrations, we
recomputed the frequencies of z-polarized � modes using
a (6,6,6) Monkhorst-Pack grid. The results, displayed in
Table VII, indicate a high level of convergence.
As for the question of the existence of a phase transi-

tion at low temperature, we �nd that all the vibrational
frequencies are real, as can be seen from the positive sign
of all the mode force constants k. Thus there are no
mechanical instabilities in the \bare" vibrational degrees
of freedom, either at � or at the edges of the BZ. How-
ever, there still remains the question of whether the linear
coupling to strain degrees of freedom could result in any
instability.
We deal �rst with the renormalization of the elastic

constant corresponding to a B1 orthorhombic strain. By
applying pure B1 strains of di�erent magnitudes (for
which we set b � a 6= 0 while keeping the sum a + b
constant) and computing the resulting values of the to-
tal energy, we obtain the data plotted in Fig. 3. A �t
to a simple parabola is very good up to sizable strains.
The elastic constant C [see Eq. (3)] turns out to be 5.0
hartree.20 As mentioned above, we use the optimized
structure (\Theory II") for this and the rest of the cal-
culations involving elastic constants and strain-phonon
couplings.
From the same set of calculations, but extracting this

time the forces on the atoms and taking the scalar prod-
uct (in con�guration space) with the eigenvector of the
B1 mode, we obtain fromEq. (5) (see also Fig. 3)  = 0:15

FIG. 3. Upper panel: Change in crystal energy (per cell)
as a function of the orthorhombicity parameter t (B1 strain).
The curve is a �t to a parabola. Lower panel: Derivative of the
crystal energy with respect to the B1 normal mode amplitude
at zero amplitude, as a function of B1 strain. According to
Eq. (5), it measures the degree of coupling between the normal
mode and the strain.

hartree/bohr. The force constant for the B1 mode is
0.048 hartree/bohr2, so the renormalized C is Ce�= 4.5
hartree. We see that even though there is a 10% change
in the value of the elastic constant, the renormalization
due to the coupling to the phonons is not enough to cause
a B1 instability of the tetragonal cell.
We performed a similar set of calculations for the anal-

ysis of the monoclinic distortion with E symmetry. The
forces along the x axis appearing upon application of
an �xz strain translated into coupling constants of 0.17,
0.05, 0.06, and 0.00 hartree for the optical x-polarized E
modes of respective force constants 0.014, 0.042, 0.077,
and 0.155 hartree/bohr2. The bare elastic constant for
�xz strain is 5.4 hartree. Adding up the contributions to
the renormalization from the four modes we obtained an
e�ective elastic constant Ce� of 3.3 hartree. In this case
the renormalization amounts to 40% of the bare value,
but still is not enough to drive an E instability.
As discussed above, there is no linear coupling of B2

orthorhombic strains to atomic displacements. The cal-
culated elastic constant for this type of strain is positive
(6.0 hartree), so there should be no instabilities of B2

symmetry either.
Finally, recall that there is no �rst-order coupling of

zone-boundary modes to homogeneous strain. Thus we
need only check the bare force constants, which are all
found to be positive (see Table VI). This means that
we do not expect any mechanical instabilities associated
with a cell doubling.
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V. CONCLUSIONS

The low-temperature transition proposed by Kobaya-
shi et al.11 on the basis of X-ray and optical measure-
ments is supposed to involve a slight orthorhombic dis-
tortion of the tetragonal phase, maintaining the orienta-
tion of the cell axes with no cell doubling. Our analy-
sis of the energetics of B1 distortions shows that a low-
temperature transition of this kind is possible in princi-
ple, but not likely in ferroelectric PbTiO3. In this con-
nection, it should be noted that, to our knowledge, the
experimental observations of Ref. 11 have not been re-
produced since 1983.
We also checked more generally for other kinds of low-

temperature structural transitions. However, we �nd
that all unit-cell-preserving distortions exhibit positive
elastic constants, thus apparently ruling out transitions
to a monoclinic structure (E distortions) or to a 45�-
rotated orthorhombic structure (B2 strain). Further-
more, we show that there are no mechanical instabilities
associated with zone-boundary normal modes that could
cause a phase transition with cell doubling.
Since we have not exhaustively explored the vibra-

tional spectrum of the crystal, it is conceivable that a
mechanical instability at a k-point not on the BZ bound-
ary may have been missed. However, our work shows
fairly clearly that a simple transition is not likely in fer-
roelectric PbTiO3 at low temperatures.
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APPENDIX

1. Renormalization of energy-surface coe�cients

We show �rst how the linear coupling of u to t in the
energy expansion of Eq. (3) implies a renormalization of
C (or, equivalently, of k). After a transformation of the
quadratic form to \principal axes" by a linear change of
variables, the �rst partial derivatives of the energy will
be zero. We can achieve the transformation implicitly by
setting the derivative of E with respect to u to zero, and
solving for u, to get u = �t=k. When this condition is
inserted back into Eq. (3), we obtain an expression for E
as a function of the free variable t,

E(t) =
1

2
(C � 2

k
)t2 =

1

2
Ce� t2 ; (A1)

from which it follows that the e�ective elastic constant
is Ce� = C � 2=k. (If instead u is chosen as a free
variable, one obtains a renormalized spring constant
ke� = k � 2=C. However, the physical mode frequency
is not renormalized, because of the \in�nite mass" asso-
ciated with the strain degrees of freedom.)
In the case of the B2 distortion with quadratic cou-

pling, Eq. (4), one needs � > 0 and � > 0 or else there
would be unphysical divergences to �1 in the energy.
But then, setting the u-derivative of the energy to zero,
one gets either u = 0 (trivial) or u2 = �(k + 2t2)=4�
(meaningless since u would be imaginary). Thus there is
no renormalization of the elastic constant.

2. Optimization of structural parameters

Using the symmetry constraints of the 4mm point
group, one can write down the expression (to second or-
der in the strain and atomic displacements) for the energy
of a general tetragonal phase of that symmetry as

E = E0 + Estrain + Einternal+ Estrain�ph ; (A2)

where

Estrain = �1s + �1r + �2s
2 + �2r

2 + �sr (A3)

is the part that depends only on the s and r strains,

Einternal =
3X

i=1

1

2
kiu

2
i (A4)

is the change in energy due to internal atomic dis-
placements compatible with the symmetry (and thus ex-
panded as combinations of the three A1 phonons polar-
ized along the z axis), and

Estrain�ph =
3X

i=1

(isuis + iruir) (A5)

are the symmetry-allowed couplings of s and r to the A1

phonons (both s and r transform according to A1).
The fourteen coe�cients in this expansion are easily

computed for a given base con�guration. In our case,
the starting point is a tetragonal cell with a and c given
by experiment and the internal atomic positions along
the z axis optimized theoretically to eliminate residual
forces (column labeled \Theory I" in Table IV). Com-
puted A1 phonon frequencies directly give the force con-
stants ki, and the strain and strain-coupling coe�cients
are obtained in a manner analogous to that described in
the main body of the paper. Once the quadratic form
for E is known, it is a simple matter to �nd the struc-
tural parameters which correspond to the minimum en-
ergy (column labeled \Theory II" in Table IV). As is
typical of �rst-principles calculations, the calculated lat-
tice parameters are smaller than the experimental values
by around 1%.
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