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Abstract

The concept of chemical hardness has been recently adopted in the frame-

work of Kohn-Sham theory as a faithful ab initio measure of pseudopotential

transferability. A fully self-consistent hardness theory has been developed

and employed to evaluate the transferability of semilocal pseudopotentials.

Hardness contains most of the relevant physical information determining the

transferability of pseudopotentials, and is an important step forward with re-

spect to the logarithmic derivatives analysis. We discuss the main features

of chemical hardness, and the relations between chemical hardness and the

original definitions of absolute and local hardness. We then apply the new cri-

terion to investigate the transferability of fully non-local Kleinman-Bylander

pseudopotentials. Hardness conservation allows us to obtain a meaningful

comparison between them and the conventional norm-conserving ones and

give us a criterion to improve the pseudopotential tranferability of fully non-

local pseudopotentials by suitably resetting their local part.

77.80.Bh, 61.50.Lt, 64.60.Cn, 64.70.-p

Typeset using REVTEX

1



I. INTRODUCTION

In the framework of density-functional theory and the pseudopotential approximation,

many efforts have been made to find physical properties able to predict a priori (i.e. just in

the atomic reference configuration) the degree of transferability of pseudopotentials. Loga-

rithmic derivative analysis has shown to be an important tool to test pseudopotential trans-

ferability, but not a sufficient criterion of transferability for all atoms of the periodic table.

The chemical hardness defined in the context of Janak theory has been proposed1 as an

optimum physical quantity to test pseudopotentials for all atoms. The fully self-consistent

hardness has been calculated2 and employed to study transferability of HSC-type semilocal

pseudopotentials.

In this work we focus on the relations between hardness and other two important quantity

in the physics of electronic systems, the absolute hardness,3 and the local hardness.4,5 Then,

we employ the hardness conservation criterion to test the transferability of norm-conserving

pseudopotentials arranged in the fully non-local structure.14

II. THEORY

A. Absolute and local hardness

Chemical hardness, along with the chemical potential, is one of the most important quan-

tities determining the physics of many-electron systems. Absolute hardness was introduced

by Parr and Pearsons3 as,

η =
1

2

(

∂2E

∂N2

)

v

=
1

2

(

∂µ

∂N

)

v

(1)

where E, N , µ and v denote total energy, number of particles, chemical potential and

external potential of the many electron system, respectively.

A local expression for the hardness has been introduced in the framework of DFT,4,5

η(r) =
1

2N

∫

dr′
δ2F

δρ(r) δρ(r′)
ρ(r′) , (2)
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with

F [ρ] = E[ρ] −
∫

dr v(r) ρ(r) (3)

It has been shown5 that

η =
∫

dr η(r) f̃(r) (4)

where f̃ is the Fukui function,

f̃(r) =

[

∂ρ(r)

∂N

]

v

=

[

∂µ

∂v(r)

]

N

(5)

Local hardness and Fukui function are key quantities to investigate the reactivity of atomic

and molecular systems.6–9

B. Hardness for fractional occupation numbers

In the framework of Janak theory, Teter1 defined the chemical hardness to be the matrix

Hij =
1

2

∂2E[ρ]

∂fi∂fj

=
1

2

∂ǫi
∂fj

(6)

where E is the Janak functional10 and fi the occupation number of the ith state. Thus, the

hardness matrix measures the first-order change of an energy eigenvalue resulting from a

variation of an occupation number, while allowing the total number of electrons to vary. The

idea of Teter was to employ the hardness matrix in the pseudopotential theory as a measure

of transferability. Due to the big amount of physical information contained in the hardness,

a comparison between its atomic all-electron and pseudo values realizes a meaningful test

of transferability.

Here we give only a very short description of formulation that has been developed to

calculate in practice Hij . All the details and the comments about the physical contents of

hardness can be found in Ref. 2.

The atomic hardness in non-relativistic non-spin polarized formulation is given by,
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Hnlm
n′l′m′

=
1

2

∫ ∫

dr dr′ nnlm(r) whxc(r, r
′)
δρ(r′)

δfn′l′m′

. (7)

where,

nnlm(r) = R2
nl(r) |Ylm(Ω)|2 , (8)

whxc(r, r
′) =

∂Vhxc(r)

∂ρ(r′)
, (9)

ρ(r) =
occ
∑

nlm

fnlm nnlm(r) . (10)

The density change due to the variation of occupation numbers consists of two terms:

δρ(r)

δfnlm

= nnlm(r) + ∆nnlm(r) . (11)

The first term arises from the explicit dependence of density on the occupation numbers,

while the second involves relaxation of the wavefunction with changes of occupation. We

will refer to the neglect of ∆nnlm as the “frozen wavefunction approximation” (FWA), while

the effect of the ∆nnlm term will be referred to as the “self-consistency” (SC) correction.

By defining

Vnlm(r) =
∫

dr′ whxc(r, r
′) nnlm(r′) . (12)

We obtain the following expression for the hardness:

Hnlm
n′l′m′

=
1

2

∫

dr Vnlm(r) nn′l′m′(r) +
1

2

∫

dr Vnlm(r) ∆nn′l′m′(r) (13)

The first term is the FWA hardness and it can be easily calculated. The second is the SC

correction and can be calculated to linear order in perturbation theory by considering Vnlm

as a bare potential perturbation and ∆nn′l′m′ the self-consistent change of the charge density

due to the perturbation,

∆nnlm(r) =
∫

dr′ χ(r, r′) Vnlm(r′) (14)

where χ is the linear susceptibility. The determination of the linear susceptibility follows

closely the modified Sternheimer approach discussed by Mahan and Subbaswamy.11,12
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C. Relations between chemical and absolute hardness

In this section we focus on the relations between the matrix elements of the fractional

occupation hardness and both absolute and local hardness.

We start considering a system with a zero-temperature Fermi-Dirac distribution of oc-

cupation numbers. For atomic and molecular systems, the Fukui function and the chemical

potential are discontinuous functionals of N for any integer value. Also, for insulators, a

discontinuity arises at the gap. At T = 0, the Fukui function can be immediately related to

the charge density change given by Eq.(11).

The left derivative (i.e., derivative from below) of the charge density with respect to N

(δN = δfhomo, where HOMO stands for the Highest Occupied Molecular Orbital) is given

by

f̃−(r) = |ψhomo(r)|
2 +

1,M
∑

i

fi

δ|ψi(r)|
2

δfhomo

, (15)

where M is the number of occupied states, fi = 1 for i = 1,M −1 and fi = fhomo for i = M .

The right derivative (δN = δflumo, where LUMO stands for Lowest Unoccupied Molecular

Orbital) is,

f̃+(r) = |ψlumo(r)|
2 +

1,M
∑

i

fi

δ|ψi(r)|
2

δflumo

(16)

where fi = 1 for i = 1,M .

Perdew et al.13 proved the equalities µ+ = ǫlumo and µ− = ǫhomo, where µ+ and µ− are

the right and left derivatives of the energy with respect to N . The chemical potential is

defined as µ = 1/2(ǫhomo + ǫlumo). Obviously, the absolute hardness is discontinuous for

integer N :

η− =
1

2

(

δǫhomo

δfhomo

)

(17)

η+ =
1

2

(

δǫlumo

δflumo

)

(18)
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so we take η = 1
2

(η+ + η−), where

η− =
1

2

∫ ∫

dr dr′ nhomo(r) whxc(r, r
′)
δρ(r′)

δfhomo
. (19)

η+ =
1

2

∫ ∫

dr dr′ nlumo(r) whxc(r, r
′)
δρ(r′)

δflumo
. (20)

where nhomo(lumo) = |ψhomo(lumo)|
2. Thus, we have related the absolute hardnesses η− and η+

back to the diagonal elements Hhomo,homo and Hlumo,lumo of the hardness matrix, respectively.

Also, taking

η± =
∫

dr f̃±(r) η±(r) (21)

from Eq. (18) and (19) we obtain an expression for the local hardness,

η−(r) =
∫

dr′ whxc(r, r
′) nhomo(r

′) (22)

η+(r) =
∫

dr′ whxc(r, r
′) nlumo(r

′) (23)

It should be noted that calculation of f̃+, η+ and η+(r) of atoms and molecules will be

strongly affected by LDA error.

For a metallic system there is no discontinuity in the chemical potential. The various

HOMO- and LUMO-related quantities coincide and all the previous expressions involving

left and right limits simplify to just one.

It is an artifact of the LDA that for many open-shell systems, the ground state has de-

generate eigenvalues with fractional occupation numbers. In such a case, a relation between

the change of electron number and the occupation of eigenstates is difficult to obtain. The

added fraction of electron number will be redistributed among one-electron states to min-

imize the total energy, and we can argue δN should be a linear combination of δf for all

fractionally occupied states, the weights being generally hard to predict.

For open-shell atoms, the fractional occupations of the degenerate HOMOs are typically

equal, so that the spherical symmetry of the potential is preserved. In such a case, the
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occupation numbers are simply linearly related to the electron number, and there are no

discontinuities. Letting l be the angular momentum of the HOMO (suppressing the n index

and spin), the Fukui function is given by

f̃ =
1

2l + 1

−l,+l
∑

m

δρ

δflm

(24)

having taken

δflm

δN
=

1

2l + 1
. (25)

Thus we have

η =
1

2

1

2l + 1

−l,+l
∑

m′

δǫlm
δflm′

. (26)

Then, from Eq. (24) we obtain,

η =
1

2

∫ ∫

dr dr′ nlm(r) whxc(r, r
′) f̃(r′) . (27)

It should be noted that η in Eq. (27) does not really depend onm, because the Fukui function

has spherical symmetry. The above formulation can easily be extended to closed-shell atoms,

for which the discontinuities will clearly reappear.

In Table 1 we showed the absolute hardness values for some atoms calculated by means

of Eq.(26), and compared with experimental values3 calculated in according to the finite

difference expression ηexp = (1/2)(I − A), being I and A the ionization potential and the

electronic affinity, respectively. For the open-shell atoms (C,O and Si) the agreement is

very good. For T i2+ η is computed as the average between its left and right values. In

such a case the deviation from the experimental value is reasonable at all, because for

closed-shell atoms the difference between HOMO and LUMO eigenvalues contributes to the

finite-difference expression of hardness as well.

D. Hardness generalization to non-diagonal occupation numbers

The hardness matrix has been further generalized to non diagonal occupation numbers.2

This extension allows one to consider the change of occupation with respect to any specified
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angular component of the density. In a perturbation theory framework, the density of the

perturbed system in terms of the eigenstates of the unperturbed one will be,

n(r) =
∑

ij

fij ψ
∗

i (r)ψj(r) (28)

Instead of working in the explicit atomic representation fij = fnlm,n′l′m′ , we find it convenient

to work in a representation (nn′ll′LM) in which LM are labels of total angular momentum,

and L = |l − l′|, |l − l′| + 2, ..., l + l′ following the usual angular-momentum addition rules.

Introducing the index α = nn′ll′, we thus have

n(r) =
∑

αLM

fαLM nα(r) YLM(Ω) (29)

where nα = Rnl Rn′l′ and

fαLM =
∑

mm′

C(LM ; lm, l′m)fnlm,n′l′m′ (30)

The C(LM ; lm, l′m) are Clebsch-Gordon coefficients. The generalized Kohn-Sham eigenval-

ues are given by

ǫαLM =
∂E

∂fαLM

, (31)

and the generalized hardness matrix, because of the radial symmetry of unperturbed con-

figuration, is

HαβLL′MM ′ =
1

2

∂2E

∂fαLM ∂fβL′M ′

= HαβL δLL′δM,−M ′ . (32)

where

HαβL =
1

2

∫ ∫

dr dr′ r2 r′2 nα(r) w
(L)
hxc(r, r

′)
δρ(r′)

δfβ

. (33)

As in the diagonal case, the density variation due to the change of occupation numbers

consists of the FWA contribution and the SC one. Calculation of HαβL has been performed

with the same procedure used before for the diagonal case.2
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III. RESULTS

Hardness conservation can be considered as an important step forward with respect to

the logarithmic derivative criterion. It contains all the most important “first principles”

properties needed to characterize pseudopotential transferability. It gives information about

changes of both the electrostatic and exchange-correlation part of pseudopotential with

respect to occupation number changes of any angular character.

Moreover, the fully self consistent hardness takes into account wavefunction relaxations

caused by charge rearrangement. This feature gives us a sound guide to analyze pseudopo-

tential transferability. Analysis of the hardness matrix enables us not only to carry out

meaningful transferability tests in a large ensemble of physical environments, but also to

detect what kind of atomic characteristic can damage the transferability of pseudopoten-

tials. Also, it inserts norm-conservation and the Louie-Froyen-Cohen correction in a more

rigorous theoretical framework. Hardness is a linear-order property. Its range of accuracy

might be be insufficient to test pseudopotential features involving large deviation from the

atomic reference configuration. For instance, considering fully non-local pseudopotentials,

hardness is generally insensitive to the presence of possible ghost states below the reference

atomic eigenvalue. In fact, wavefunction relaxation needed to pinpoint a ghost level16 can’t

be achieved by means of a linear-order approximation. Nonetheless, many atomic species

show a quite extended linearity interval around eigenvalues, and in those cases, hardness is

meaningful and accurate. Detailed hardness analysis characteristics for a set of representa-

tive atoms with HSC-type pseudopotentials15 can be found in Ref. 2. In what follows, we

present a hardness comparison between semilocal HSC and fully non local KB14 pseudopo-

tentials employing the non-diagonal hardness formulation. To this end, its useful to consider

the average hardness error.2 This quantity consists of a weighted average of hardness matrix

elements that represent at best the typical changes occurring in the occupation numbers

when we pass from reference to hybridized configurations. In such a way, the large amount

of physical information of the whole matrix is compressed into a single number.
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The average hardness error X is defined as

X2 =
∑

αβL

wαβL (∆HαβL)2 . (34)

∆H is the difference between all-electron and pseudopotential hardness matrix elements,

and wαβL is a weight. Thus, X is just a weighted RMS average of the errors in the hardness

matrix elements. The weights are taken to be

wαβL = (2L+ 1) ηlα ηl′α
ηlβ ηl′

β
, (35)

and

ηl = (2l + 1)
√

2fl(1 − fl) (36)

We refer the reader to Ref. 2 for the discussion of this choice. It’s clear from Eq. (35) that

X tends to weight more shells which are partially occupied than empty or fully occupied

ones.

In general, the fully non-local modification of semilocal pseudopotentials should produce

an overall deterioration of its transferability. KB-like pseudopotentials are constructed as to

be equal to semilocals in the reference atomic configuration. Such a correspondence is lost

once we movie out of that. Thus, the FWA hardness of semilocal and KB potentials will be

the same, but the SC part will not. The arbitrariness contained in the choice of local part

of KB potentials should be employed to optimize at best the transferability. In practice this

is taken to be equal to the non-local component of pseudopotentials allowing us to get rid

of ghost states. Actually, the guideline to reduce both the loss of transferability and the

risk to get ghost states is to choose the local part so as to minimize as much as possible

the non-local contributions. Optimization of the local part by means of a hardness criterion

satisfies this request.

Here, we parameterize the local part of the KB pseudopotentials as a linear combination

of the l-dependent radial potentials for s, p, and d

V KB
loc = α Vs + β Vp + γ Vd . (37)
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and determine the coefficients α, β, and γ in order to minimize the average hardness error

(under the constraint α + β + γ = 1 to ensure the correct behavior of the pseudopotential

tail). The hardness error is monitored as function of pseudopotential core radii to focus on

the loss of transferability occurring when we enlarge them.

We present results for Ti, Rh and Ge. The first two are characterized (as are most of

the transition metals) by strong pseudopotential non-locality. Obviously these are the most

interesting cases to investigate (the more the pseudopotential is local, the less important is

the choice of local part).

In Figs. 1 and 2, the average errors for Ti are shown. 〈Rc〉 is the average value of

the three core radii Rs, Rp and Rd. We varied 〈Rc〉 equally enlarging Rs and Rp while

Rd has been taken fixed (being the d wavefunction without nodes). In Fig. 1 we see the

configuration (α, β, γ) = (0, 0, 1) (i.e. Vloc = Vd) gives an error close to that of the semilocal

pseudopotential for close 〈Rc〉.

Configurations (1, 0, 0) and (0, 1, 0) strongly worsen the error. In Fig. 2 we see that a

nearly equally weighted mixture of pseudopotentials (0.3, 0.3, 0.4) doesn’t give good results,

while a combination of the d component with a small fraction of p improves significantly the

behavior of the (0, 0, 1) arrangement.

In Fig. 3 we compare for rhodium semilocal and KB pseudopotentials with local part

(0, 1, 0), (0, 0, 1) and (0.8, 0.1, 0.1). The first two give small errors, but the third configuration

makes the KB errors almost indistinguishable from the semilocal one. Here change of 〈Rc〉

is obtained by varying all the core radii.

Finally, results for germanium are showed in Fig. 4. Non-locality is weaker here than in

the two first cases. We found configurations (0, 1, 0) and (0.2, 0.4, 0.4) are the best suited to

fit with semilocal error.

Unfortunately, we do not have any rigorous argument nor a practical recipe to predict

the best configuration of the local part. We have to employ qualitative considerations about

localization of pseudopotentials, and then to try a good guess. Nonetheless, a few trials are

usually sufficient to find mixed configurations giving KB pseudopotentials with improved
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transferability.

Of course, the (α, β, γ) configurations found for the three atoms treated here are not

necessarily optimal, and with further adjustments the errors could probably be further re-

duced.

IV. CONCLUSION

In this work we presented a theoretical analysis of the connection between our hardness

matrix and the absolute hardness.

Also we showed an application of the hardness-conservation criterion to compare the

transferability of semilocal and KB pseudopotentials. As could be expected, use of the KB

form produces a general decrease of transferability, which however can be strongly limited

by a proper choice of local part. We showed that the parameterization of the local part

in terms of non-local components gives us a sufficient variational freedom to generate KB

pseudopotentials with high transferability as measured by hardness conservation.
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TABLES

TABLE I. Table1: calculated absolute hardness values (in Rydberg units) compared with the

experimental ones for open- and closed-shell atoms. In cases where the discontinuity doesn’t occur,

the agreement is quite good

atom ηexp η η+ η−

C 0.3674 0.3644

O 0.4470 0.4953

Si 0.2484 0.2477

T i2+(4s2, 3d0) 0.5144 0.4439 0.5984 0.2894
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FIGURES

FIG. 1. Average hardness errors of semilocal and relative KB pseudopotentials arranged with

different local parts as functions of the core radii average 〈RC〉. Numbers in the legend correspond

to the parameters α, β, γ. Taking the d component as local part of KB pseudopotential makes its

average error very close to that of the semilocal one for small 〈RC〉.

FIG. 2. The choice of a suitable mixed configuration for the local part of KB pseudopotential

consistently improves the transferability with respect to take the d component of semilocal as local

part.

FIG. 3. The configuration (0.8,0.1,0.1) makes the error for KB pseudopotential almost indis-

tinguishable with respect to that of the semilocal one.

FIG. 4. The two local parts considereds both make the KB pseudopotential in optimum agree-

ment with the semilocal one.
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