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Spin-orbit coupling can lead in two- and three-dimensional solids to time-reversal-invariant insu-
lating phases that are “topological” in the same sense as the integer quantum Hall effect and sim-
ilarly have protected edge or surface states. The three-dimensional topological insulator is known
to have unusual magnetoelectric properties referred to as “axion electrodynamics”: it supports an
electromagnetic coupling ∆LEM = (θe2/2πh)E · B with θ = π, giving a half-integer surface Hall
conductivity σxy = (n + 1/2)e2/h. An approach to θ in any three-dimensional crystal is devel-
oped based on the Berry-phase theory of polarization: θe2/2πh is the bulk orbital magnetoelectric
polarizability (the polarization induced by an applied magnetic field). We compute the orbital mag-
netoelectric polarizability for a simple model and show that it predicts the fractional part of surface
σxy, computed using a slab geometry. Although θ is not quantized once time-reversal and inversion
symmetries are broken, it remains a bulk quantity for the same reasons as ordinary polarization.

PACS numbers: 73.43.-f, 85.75.-d, 73.20.At, 03.65.Vf, 75.80.+q

The behavior of electric and magnetic fields can be
strongly modified inside an insulating solid. Changes to
the dielectric constant or magnetic permeability could be
regarded as just numerical renormalizations of vacuum
properties, but the solid environment can also yield en-
tirely new behavior. For example, it has been known for
two decades that three-dimensional (3D) insulators can
generate an electromagnetic coupling of the form (c = 1)

∆LEM =
θe2

2πh
E ·B =

θe2

16πh
ǫαβγδFαβFγδ. (1)

This coupling was labeled “axion electrodynamics” [1]
since a Lagrangian density of this form can describe the
interaction of a dynamical “axion field” θ(x, t) with the
electromagnetic field. It plays no role in vacuum electro-
dynamics since the parameter θ couples to a total deriva-
tive, ǫαβγδFαβFγδ = 2ǫαβγδ∂α(AβFγδ), and so does not
modify the classical equations of motion if θ is constant.

This theory is invariant under θ → θ + 2π, and the
time-reversal operator T maps θ → −θ (since E → E

and B → −B), so T invariance is consistent with θ = π
as well as θ = 0. [1] Thus θ is a “topological invariant”
of T -invariant insulators, that is, a property stable under
continuous changes as long as the material remains in-
sulating and T -symmetric. The prototypical invariant of
this type is the TKNN integer C that gives the quantum
Hall conductance, σxy = Ce2/h. [2]

T -invariant band insulators turn out to have topo-
logical invariants beyond those of the TKNN type. In
2D there is a Z2 invariant [3] that distinguishes “or-
dinary” from “Z2-odd” insulators, with “quantum spin
Hall” states [4, 5] providing examples of the latter. In
3D there is a similar invariant [6–8] that can be com-
puted either from the 2D invariant on certain planes [6]
or, with additional symmetry, from a certain index at the
eight time-reversal-invariant momenta [8]. The resulting

“strong topological insulator” in 3D has Dirac surface
modes that have recently been observed in photoemis-
sion on Bi0.9Sb0.1 [9]. The θ = π value in Eq. (1) is
related to these surface Dirac modes [1, 10–13]: the fact
that each gapless 2D Dirac mode, under a weak applied
field, becomes a gapped Hall insulator with |σxy| = e2/2h
is the microscopic origin of the θ coupling.

Insulators that instead have broken time-reversal T
and also inversion P—so-called “magnetoelectric” (or
“multiferroic”) materials—have been the topic of in-
tense experimental and theoretical investigations in re-
cent years [14, 15]. In general the first-order magneto-
electric coupling α is a tensor giving a contribution of
the form αijEiBj , as indeed expected for magnetoelec-
tric couplings arising from lattice displacements and Zee-
man interactions. Here we discuss only the frozen-lattice
coupling via the orbital magnetization, which we denote
as the orbital magnetoelectic polarizability (OMP). Re-
markably the OMP is indeed only a scalar as in Eq. (1)
and generates “axion electrodynamics.”

In the present letter, we provide a simple derivation of
this result via an expression for the OMP as an integral of
the Chern-Simons 3-form over the Brillouin zone. In par-
ticular, defining the Berry connection Aµν

j = i〈uµ|∂j |uν〉
where |uν〉 is the cell-periodic Bloch function of occupied
band ν and ∂j = ∂/∂kj , we obtain

θ =
1

2π

∫

BZ

d3k ǫijk Tr[Ai∂jAk − i
2

3
AiAjAk] (2)

where the trace is over occupied bands. This is essentially
Eq. (78) of recent work by Qi, Hughes, and Zhang [13]
that, among other results, importantly made the con-
nection between 3D Z2 topological insulators and axion
electrodynamics with θ = π. Our derivation shows that
this integral describes the orbital magnetoelectric polar-
izability (rather than a polarization [13]) and follows di-
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rectly from an extension [16] of the Berry-phase theory
of polarization [17] to the case of slow spatial variations
of the Hamiltonian. The OMP angle θ is a bulk property
in exactly the same sense as electric polarization [17, 18].
We show that Eq. (2) is amenable to direct calculation
using established band-structure methods and discuss its
symmetry properties. Explicit numerical calculations on
model crystals are presented in order to validate the the-
ory and to illustrate how a non-zero θ corresponds to a
“fractionalization” of the quantum Hall effect (QHE) at
the surfaces of magnetoelectric insulators [1, 12, 13].

From Eq. (1) it follows that

θ
e2

2πh
=

∂M

∂E
=

∂

∂E

∂

∂B
〈H〉 =

∂P

∂B
(3)

evaluated at E = B = 0, where 〈H〉 is the ground-state
energy and we have used the commutativity of partial
derivatives. Thus the OMP can be approached from sev-
eral points of view. (i) It can be regarded as describing
the electric polarization arising from the application of
a small magnetic field. (ii) It can be regarded as de-
scribing the orbital magnetization arising from the ap-
plication of a small electric field. (iii) It also gives the
(dissipationless) surface Hall conductivity at the surface
of the crystal, provided that the surface is insulating.
Note that (iii) follows from (ii): for a surface with unit
normal n̂ and electric field along E, the resulting surface
current K = M × n̂ is proportional to E × n̂. Since θ
is only well-defined modulo 2π, one sees that the surface
conductivity of an insulating surface is determined, mod-
ulo the quantum e2/h, by the bulk bandstructure alone.
There is an elegant analogy here to the case of electric
polarization, where the surface charge of an insulating
surface is determined, modulo the quantum e/S, by the
bulk bandstructure alone (S is the surface cell area).

The above discussion suggests several possible ap-
proaches to the derivation of a bulk formula for the OMP
θ. One would be to follow (ii) and compute the orbital
magnetization [19, 20] in an applied electrical field. We
choose to focus here on (i) instead, working via dP/dB.
Our derivation starts from the semiclassical wavepacket
analysis of Xiao et al. [16], who analyzed how a slow
spatial variation of the local Hamiltonian in an insulator
may generate an additional polarization P(in) associated
with the inhomogeneity, beyond the spatially integrated
periodic-crystal Berry-phase polarization. For the case
of an orthorhombic 3D crystal with M occupied bands
in which the slow spatial variation occurs along the y
direction in a supercell of length ly, they obtain

〈∆P (in)
x 〉 =

e

4

∫ 1

0

dλ

∫

BZ

d3k

(2π)3

∫ ly

0

dy

ly
ǫijkl Tr [FijFkl]

(4)
for the change in the supercell-averaged inhomogeneously
induced polarization that occurs as a global parameter λ
evolves adiabatically from 0 to 1. Here indices ijkl run

over (kx, ky, y, λ), Fij = ∂iAj − ∂jAi − i[Ai,Aj ] is the
Berry field-strength tensor (Aλ = i〈u|∂λ|u〉), and the
trace and commutator refer to band indices.

Because F is gauge-covariant, the integrand in Eq. (4)
is explicitly gauge-invariant. In fact it is just the non-
Abelian second Chern class [21], so that Eq. (4) is path-
invariant modulo a quantum e/azly, where az is the lat-
tice constant in the z direction. Moreover, the λ integral
can be performed to obtain an expression in terms of the
non-Abelian Chern-Simons 3-form [21]. Thus,

〈P (in)
x 〉 = e

∫

BZ

d3k

(2π)3

∫ ly

0

dy

ly
ǫijkTr[Ai∂jAk−

2i

3
AiAjAk]

(5)
where ijk now run only over (kx, ky, y). The integrand
is not gauge-invariant, and while it is not obvious that
the integral is gauge-invariant, the Chern-Simons theory
implies that it is, modulo the quantum e/azly.

We now apply this result to study the polarization in-
duced by a magnetic field, which may be regarded as
arising from a spatial inhomogeneity in the electromag-
netic vector potential A(r). In particular, we compute

〈P
(in)
x 〉 for the case of A = Byẑ with B = h/eazly, i.e.,

a B-field along x̂ with one flux quantum threading the
supercell. This has the effect of taking kz → kz +eBy/~,
and this is the only way y will enter into the Hamiltonian,
so that |∂yu〉 = (Be/~)|∂kz

u〉 and

〈P (in)
x 〉 =

Be2

~

∫

BZ

d3k

(2π)3
ǫijk Tr[Ai∂jAk − i

2

3
AiAjAk]

(6)
where ijk now run over (kx, ky, kz). Using Eq. (3) we
easily arrive at Eq. (2) as one of our main results.

Before proceeding, we briefly discuss the symmetry
properties of the OMP. Clearly the combination E · B
in Eq. (1) is odd under T and also odd under inversion P
(although it is even under the combination PT [27]). It
is also odd under any improper rotation, such as a simple
mirror reflection. This implies that θ = −θ if the crystal
has any of the above symmetries. This would force an or-
dinary coupling to vanish, but since θ is only well-defined
modulo 2π, it actually only forces θ = 0 or π. Thus, one
can obtain an insulator with quantized θ = π not only
for T -invariant systems (regardless of whether they obey
inversion symmetry), but also for inversion- and mirror-
symmetric crystals regardless of T symmetry [12]. When
none of these symmetries is present, one generically has
a non-zero (and non-π) value of θ, but restricted to the
surprisingly simple scalar form of Eq. (1).

In the remainder of this Letter, we validate and illus-
trate the above theory via numerical calculations on a
tight-binding Hamiltonian that generates non-zero val-
ues of θ. We start with the model of Fu, Kane, and
Mele [8] for a 3D topological insulator on the diamond
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lattice, and add a staggered Zeeman term to break T :

H =
∑

〈ij〉

tijc
†
icj + i

4λSO

a2

∑

〈〈ij〉〉

c†iσ · (d1
ij × d

2
ij)cj

+ h ·

(

∑

i∈A

c†iσci −
∑

i∈B

c†iσci

)

. (7)

In the first term, the nearest-neighbor hopping ampli-
tude depends on the bond direction; we take t[111] =
3t + m cosβ, t[1̄11] = t[11̄1] = t[111̄] = t. The second term
describes spin-dependent hopping between pairs of sec-
ond neighbors 〈〈ij〉〉, where d

1
ij and d

2
ij are the connect-

ing first-neighbor legs and σ are the Pauli spin matrices.
The linear size of the face-centered cubic (fcc) conven-
tional cell is a. The last term is the new ingredient and
describes a staggered Zeeman field with opposite signs
on the two fcc sublattices A and B.

At half filling, with 0 < m < 2t and λSO sufficiently
large, the original model has a direct band gap of 2m at
β = π. We take |h| = m sinβ and choose h in the [111]
direction; varying the single parameter β keeps the gap
constant and interpolates between the ordinary (β = 0)
and the topological (β = π) insulator.

We have calculated θ using four different methods and
found that they agree (Figure 1). Using established
methods [22], we can obtain θ from Eq. (2), as shown
for β = π/4 and β = π/2 (filled squares). This compu-
tation requires finding a smooth gauge for A, which is
equivalent to finding localized Wannier functions.
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FIG. 1: The magnetoelectric polarizability θ (in units of
e2/2πh). The curve is obtained from the second Chern inte-
gral, Eq. (9). The filled squares are computed by the Chern-
Simons form, Eq. (2). The open squares are the slopes of P
vs. B, Eq. (8). The remaining points are obtained by layer-
resolved σxy calculations using Eq. (11).

Since a tight-binding model is not computationally de-
manding, we have also calculated the polarization result-
ing from one flux quantum in a large supercell, using [17]

Pi = e

∫

BZ

d3k

(2π)3
TrAi . (8)

Plotting the values for a number of supercell sizes against
the corresponding B allows us to approximate dP/dB,
shown as open squares in Figure 1. Further, we have
calculated the orbital magnetization response in a slab
geometry, as we describe shortly. We have also exploited
the simple nature of the tight-binding model to compute
θ(β) from the formula [13, 16] (see also Eq. (4))

θ(β) =
1

16π

∫ β

0

dβ′

∫

d3k ǫijklTr[Fij(k, β′)Fkl(k, β′)],

(9)
plotted as the curve in Figure 1. The sign of θ is fixed
here by the choice of a particular path in Hamiltonian
space from the initial θ = 0 value at β = 0.

We now discuss the surface Hall conductivity, possi-
bly the most accessible experimental realization of θ. Its
fractional part in units of e2/h is determined purely by
bulk properties. Consider a material with coupling θ in
a slab geometry that is finite in the ẑ direction and sur-
rounded by θ = 0 vacuum. This leads [1] to surface
Hall conductivity (θ + 2πr)e2/(2πh) at the top surface
and (−θ − 2πs)e2/(2πh) at the bottom surface, for some
surface-dependent integers r and s, consistent with the
total Hall conductivity of the slab being an integer multi-
ple of e2/h. In a finite geometry, if the total Hall conduc-
tance (r − s)e2/h is nonzero, there must be conducting
1D edge channels at the boundaries between surfaces.

The 3D topological insulator has θ = π so that each
surface should have half-integer Hall conductance. The
spatial contributions to the Hall conductance in the slab
geometry can be resolved as follows. The unit cell is a su-
percell containing some number N of original unit cells in
the ẑ direction, with translational invariance remaining
in the x̂ and ŷ directions. The TKNN integer is [2, 23]

C =
1

2π

∫

d2k
∑

ν

Fνν
xy =

i

2π

∫

d2k
∑

ν

ǫij〈∂iuν|∂juν〉

=
i

2π

∫

d2k Tr [Pǫij∂iP∂jP ] . (10)

Here ν runs over occupied bands, |uν〉 are the Bloch
wavefunctions, i and j take the values kx and ky, and
P =

∑

ν |uν〉〈uν | is the projection operator onto the
occupied subspace, which is manifestly gauge-invariant.
To know how different ẑ layers contribute to the TKNN
number, we define a real-space projection P̃n onto layer
n within the slab supercell, and compute

C(n) =
i

2π

∫

d2k Tr
[

Pǫij(∂iP)P̃n(∂jP)
]

. (11)

The results, presented in Fig. 2, confirm that the
surface layers have half-integer Hall conductance when
β = π in (7) and that the sign on each surface is switched
by local T -breaking perturbations. This suggests a possi-
ble experiment on the 3D topological insulator: applying
a weak uniform magnetic field in almost any direction to a
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FIG. 2: (Color online) The layer-resolved Hall conductivity
(in units of e2/h) at β = π in a slab of twenty layers, with
m = t/2 and λSO = t/4, terminated in (1̄11) planes. Since
there are gapless surface states at β = π, a surface term was
added to Eq. (7) that breaks T locally and gaps the surface
states. Switching the sign of this perturbation at one surface
(the two curves) switches the current direction at that surface,
causing a transition between integer quantum Hall states.

crystal or film leads to an integer quantum Hall state with
the sign depending on the field direction, σxy = ±e2/h.
The state with r − s = 0 does not occur because the
magnetic field acts oppositely at the two surfaces.

The ambiguity in the surface conductance (the integer
r above) indicates that there may be one or more integer
quantum-Hall layers at each surface. It is the same as the
ambiguity of specifying the bulk property θ, discussed in
connection with Eq. (5). This ambiguity also appears in
the supercell polarization in small field: Eq. (8) only gives
the polarization (and hence differences in polarization)
modulo the “quantum of polarization” [17] which, for the
case of the flux-threaded supercell of Eq. (6), is ∆Px =
e/azly. Since the magnetic field is Bx = h/eazly,

∆
Px

Bx

=
e2

h
= 2π

e2

2πh
. (12)

Therefore, θ has an associated ambiguity of 2π, in agree-
ment with the predictions of axion electrodynamics.

Finally, using Eq. (2) we have calculated θ for a Hamil-
tonian that breaks PT (as well as P and T ) by adding
a weak, uniform (i.e., not staggered) Zeeman coupling.
For some values of β this lifts all degeneracies, allowing
separation of the intraband and interband contributions
to θ. A single band can have nonzero θ as long as there
are more than two bands in total [24]. Because interband
contributions are nonzero in general, θ is a property of
the whole occupied spectrum and not a sum of individual
band contributions, unlike the polarization.

The weak-field-driven integer quantum Hall transition
in a film of 3D topological insulator is one experimental
signature that θ = π. For general θ, optical conductivity
measurement of a single surface’s Hall conductivity may
be feasible. A more exotic signature is that a magnetic

monopole acquires electrical charge in a θ-vacuum [25].
Recently “spin ice” materials such as the pyrochlore mag-
net Dy2Ti2O7 have been argued to support monopole ex-
citations [26]; if the background material has nonzero θ,
such monopoles carry fractional electrical charge θe/2π.
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