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Abstract

A parameterized effective Hamiltonian approach is used to investigate KTaO3. We find that

the experimentally observed anomalous dielectric response of this incipient ferroelectric is well

reproduced by this approach, once quantum effects are accounted for. Quantum fluctuations

suppress the paraelectric–to–ferroelectric phase transition; it is unnecessary to introduce defects to

explain the dielectric behavior. The resulting quantum-induced local structure exhibits off-center

atomic displacements that display longitudinal, needle-like correlations extending a few lattice

constants

PACS numbers: 77.84.-s,78.20.Bh,81.30.Dz
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Numerous experimental and theoretical studies have been carried out on the perovskite

KTaO3 over the last forty years (see, e.g, Refs [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and references

therein), making this material one of the most-studied “incipient ferrolectrics.” The main

reason for this interest is that the dielectric constant of KTaO3 increases continuously with

decreasing temperature down to ∼10K, but then saturates to a plateau at a large value (≃

4000) at lower temperatures while remaining paraelectric and cubic all the way down to zero

Kelvin [2, 3]. These anomalous low-temperature features are usually thought to be caused

by the suppression of a paraelectric–to–ferroelectric phase transition by zero-point quantum

fluctuations [2, 3] (hence the name “incipient ferroelectric” or “quantum paraelectric” used

to describe KTaO3 and other materials, such as SrTiO3, exhibiting similar unusual dielectric

and structural properties). Surprisingly, this generally-accepted picture is apparently not

supported by various first-principles calculations, using density-functional theory (DFT)

either in its local-density approximation (LDA)[13] or generalized-gradient approximation

(GGA)[14, 15] form, since these simulations all predict that KTaO3 should be paraelectric

at T=0 even when neglecting zero-point motion [4, 5, 6]. This raises the possibility that

LDA and GGA are not accurate enough to adequately reproduce the qualitative properties of

incipient ferroelectrics. An alternate explanation for this discrepancy between first-principles

calculations and experiments is that the simulations assume a perfect material while real

samples may contain defects such as oxygen vacancies and Fe+3 ions [2, 3, 7, 8] that might

lead to the observed anomalous properties of KTaO3. In fact, the interpretations of various

experiments [9, 10] still remain controversial as to whether they are attributable to extrinsic

effects (i.e., defects-induced) or intrinsic off-center atomic displacements. Furthermore, while

previous studies invoke the existence of ferroelectric microregions inside the macroscopically-

paraelectric KTaO3 system to explain some of its properties [9, 11], there has never been

any direct determination of the size and shape of these proposed polar regions, to the best

of our knowledge. For instance, the pioneering work of Ref. [9] made several assumptions in

their analysis of low-temperature Raman spectra – such as isotropy of these microregions –

to extract a characteristic size ≃ 16 Å for these polar regions.

In this Letter, we use large-scale atomistic simulations to shed light on the aforemen-

tioned long-standing problems. We report calculations on KTaO3 using a parameterized

effective Hamiltonian approach. Our main findings are that (i) LDA and GGA are indeed

not accurate enough to reproduce the observed anomalous properties of KTaO3, even qual-
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itatively; (ii) these properties can be understood without the need of introducing defects,

if quantum fluctuations are present to suppress the paraelectric–to–ferroelectric transition;

(iii) the low-temperature local structure of KTaO3 is characterized by off-center atomic dis-

placements that are longitudinally correlated, in a needle-like (and thus anisotropic) way,

with a correlation length spanning a few 5-atom unit cells.

We use the effective Hamiltonian (Heff) approach developed in Ref. [16] to investigate

finite-temperature properties of KTaO3. Within this approach, the total energy Etot is a

function of three types of local degrees of freedom: (1) the ui (B-site centered) local soft-

mode amplitude in each i 5-atom cell, describing the local polarization in each cell; (2)

the vi (A-site centered) inhomogeneous strain variables; and (3) the homogeneous strain

tensor. Etot contains 18 parameters and 5 different contributions: a local-mode self energy,

a long-range dipole-dipole interaction, a short-range interaction between local modes, an

elastic energy, and an interaction between the local modes and strains [16]. This effective

Hamiltonian approach has been successfully used to model, understand, and design ferro-

electric perovskites (see Refs. [16, 17, 18, 19, 20] and references therein). Etot is used in two

different kinds of Monte-Carlo (MC) simulations: classical Monte Carlo (CMC) [21], which

does not take into account zero-point phonon vibrations, and path-integral quantum Monte

Carlo (PI-QMC) [19, 22, 23] which includes purely quantum-mechanical zero-point motion.

Consequently, comparing the results of these two different Monte-Carlo techniques allows

a precise determination of quantum effects on macroscopic and microscopic properties of

perovskites. 12×12×12 KTaO3 supercells (corresponding to 8,640 atoms) are used in all

Monte-Carlo simulations. We typically perform 30,000 MC sweeps to thermalize the system

and 70,000 more to compute averages, except at low temperatures in PI-QMC where more

statistics is needed. For example, we use 180,000 MC sweeps for thermalization and 240,000

sweeps at 3K to accurately predict the dielectric response. (Note that we are not aware of

any previous work reporting the dielectric response computed using PI-QMC)

In PI-QMC, each 5-atom cell interacts with its images at neighboring imaginary times

through a spring-like potential (mimicking the zero-point phonon vibrations), while all the

5-atom cells interact with each other at the same imaginary time through the internal

potential associated with Etot. The product TP , where T is the simulated temperature

and P is the number of imaginary time slices (Trotter number), controls the accuracy of

the PI-QMC calculation. In all our simulations we use TP=600, which we find leads to
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sufficiently converged results. Outputs of the PI-QMC simulations thus contain local-modes

ui(t), where i indexes the 5-atom unit cells of the studied supercell while the imaginary time

t ranges between 1 and P . Note that CMC simulations can be thought of as corresponding

to P = 1, so that they do not yield imaginary-time-dependent outputs.

Figure 1(a) shows the χ33 dielectric susceptibility – where the index 3 refers to the [001]

pseudo-cubic direction – as predicted by the Heff approach, with all its parameters being

derived from LDA calculations on small supercells of KTaO3 at its experimental lattice con-

stant. (Technical details of these LDA calculations are similar to those of Ref. [5]). It can

be clearly seen that CMC calculations yield a χ33 that is continuously increasing as the

temperature is decreasing down to nearly zero Kelvin. Turning on quantum effects leads

to the appearance of a plateau below ∼100K with a value of ∼100 for the dielectric con-

stant. These CMC and PI-QMC simulations both predict a cubic paraelectric ground state.

A plateau for the dielectric response has indeed been experimentally observed in KTaO3

[2, 3], but reaching a much higher dielectric constant (≃ 4,000) and over a much narrower

temperature range (i.e., below 10K) than in Fig. 1(a).

In view of these two discrepancies, we have experimented with making minor adjustments

in the LDA-fitted parameters in the hope of obtaining better agreement with experimental

data. We have found that this can be done by adjusting just one of the 18 parameters,

namely, the parameter denoted κ2 in Ref.[16], which describes the harmonic part of the

local-mode self-energy. (In our model, reducing κ2 favors ferroelectricity with respect to

paraelectricity since it leads to a decrease of the zone-center transverse optical frequency by

weakening short-range repulsions). Figure 1b shows that decreasing this single κ2 parameter

by ∼18 % from its LDA value of 0.0866 a.u. (atomic units) leads to reasonable agreement

between our PI-QMC simulations and measurements, not only for the value of the dielectric

constant plateau, but also at temperatures above 10K.

Furthermore, this modified κ2 also results in a dramatic difference between the two kinds

of Monte-Carlo calculations. CMC simulations yield a ferroelectric rhombohedral ground-

state. The corresponding Curie temperature is around 30K, as evidenced by the peak in

dielectric response displayed in Fig. 1(b). On the other hand, PI-QMC predicts a paraelectric

ground state. In other words, quantum effects suppress the paraelectric–to–ferroelectric phase

transition, which is consistent with the accepted picture [2, 3]. Figures 1(a-b) thus (i) reveal

that extrinsic defects (such as impurities or vacancies), which have been proposed to be
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responsible for the anomalous properties of KTaO3 [2, 3, 7, 8], are not needed to reproduce

the experimental behavior of this material; and (ii) strongly suggest that, unlike in strongly

ferroelectric perovskites[17, 18], the LDA is not accurate enough for simulating KTaO3.

As for GGA, Tinte et al. [6] report zone-center optical frequencies in cubic KTaO3 that

are all positive and very close to the LDA values. Consequently, according to Fig 1(a-b), we

can conclude that a GGA effective Hamiltonian would not provide a significant improvement

over our LDA one, and will also fail in reproducing experimental results. This may make

KTaO3 a useful test-case for the development of new functionals within DFT or other ab-

initio methods.

We now analyze the microscopic local structure of KTaO3 at low temperature. Figure 2

depicts the magnitude of the local modes ui inside each i 5-atom cell versus the angle

that these local modes make with the pseudo-cubic [100] direction, as obtained from a

T=3K snapshot among the thermally equilibrated Monte-Carlo configurations using Etot

with the modified κ2. (The magnitude of the local mode is directly proportional to the

magnitude of the local polarization, e.g., |u| = 0.006 and 0.026 a.u. correspond to a local

polarization ≃ 0.0583 and 0.253 C/m2, respectively). Figure 2(a) displays the CMC results,

while Fig. 2(b) corresponds to PI-QMC [25]. Comparing Figs. 2(a) and 2(b) reveals how

quantum effects affect the microscopic structure of KTaO3: the local polarizations go from all

lying close to the [111] direction (corresponding to an angle ≃ 54◦) and having a relatively

large magnitude, to being heavily-scattered in direction and having a much smaller but

non-zero magnitude. The fact that KTaO3 is predicted to exhibit non-zero local dipoles,

even when quantum fluctuations are accounted for, is consistent with the first-order lines

observed to appear in Raman spectra which are forbidden in the ideal cubic perovskite

structure [9, 10]. Furthermore, an inspection of Fig. 2(b) does not reveal any obvious polar

microregions. For instance, our quantum-statistical results do not show the local-mode

distributions breaking up into clusters centered along 〈111〉 directions (i.e., angles of ≃ 54

and/or 125◦) as would be expected for such polar microregions.

To gain further insight into the local structure of KTaO3, we decided to compute an

additional set of coefficients defined as

θµ(r) =
3

N

N∑

i=1

ui,µ ui+r,µ

|ui| |ui+r|
. (1)

Here µ denotes the x, y, or z Cartesian axis chosen along the [100], [010] or [001] cubic
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directions, respectively. The index i runs over all the N B-sites; ui,µ and ui+r,µ are the µ

components of the local modes in cell i, and in the cell centered at a distance r from cell

i, respectively. The case in which the local dipoles all have the same (non-zero) magnitude

and are all aligned along a given 〈111〉 direction yields a value of 1 for θµ(r), for any r and

for any µ. This case corresponds to a ferroelectric rhombohedral state having identical local

and average structures. On the other hand, the other limiting case — for which neighbors at

a distance r do not exhibit any correlation between the µ-components of their local modes

— is associated with a zero value for θµ(r).

Figure 3 depicts θx(r) (i.e., µ = x) for r lying in the x-y plane. The results correspond

to one snapshot of a thermally equilibrated Monte Carlo configuration at T=3K, using the

Heff with the modified κ2. Panels (a) and (b) correspond to CMC and PI-QMC simulations

respectively. One can see that CMC technique leads to a θx(r) close to unity for any r, and

thus generates a macroscopically- and microscopically-ferroelectric rhombohedral structure,

as consistent with Fig. 2(a).

On the other hand, PI-QMC simulations give a more complex behavior for θx(r) at low

temperature. One can see that the x components of the local modes are longitudinally cor-

related in a needle-like fashion: θx(r) adopts large values only when r is along the [100]

direction. These values decreasing as the magnitude of r increases. (The same result is

obtained for all symmetry related cases, e.g., for θx(r) in the x-z plane, etc.) Figure 2(b)

further reveals that θx(r) ≃ 0.5 for neighbors at a distance of ±2a (where a ≃ 4 Å is the cubic

lattice constant) along the x axis. This is in good agreement with the characteristic size of

16 Å extracted from low-temperature Raman spectra of KTaO3 [9]. On the other hand, our

simulations go against the hypothesis of isotropic correlation made in ref. [9]. The longitudi-

nal needle-like correlations depicted in Fig. 3(b) have also been predicted to occur in classical

ferroelectrics just above the paraelectric–to–ferroelectric transition temperature [26]. In fact,

they are pretransitional effects that are probably common to most ferroelectric perovskites,

the peculiarity of quantum paraelectric KTaO3 being that the phase transition does not ac-

tually occur. Finally, note that these needle-like correlations are consistent with the peculiar

diffuse X-ray scattering observed in Ref. [12].

In summary, we have performed large-scale atomistic simulations to investigate

the (defect-free) incipient ferroelectric KTaO3 system using a parameterized effective-

Hamiltonian approach. The effect of quantum-mechanical zero-point motion is investigated
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by comparing the results of classical and path-integral Monte Carlo simulations. We find

that the fitting of all the Heff parameters within LDA yields a theoretical dielectric constant

that is in poor quantitative agreement with experiment, strongly suggesting that LDA is in-

adequate for this material. Results in the literature also indicate that GGA will not improve

the LDA result. On the other hand, a small modification of a single parameter in Heff from

its LDA value is enough to obtain reasonable agreement between theory and experiment for

the dielectric constant over a wide temperature range. This modified Heff leads to the pre-

dictions that (i) KTaO3 is ferroelectric classically, but becomes paraelectric once zero-point

phonon vibrations are included, and (2) the quantum-induced local structure of KTaO3 is

characterized by non-zero local dipoles that have longitudinal, needle-like correlations with

a correlation length spanning a few unit cells.
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FIG. 1: χ33 dielectric susceptibility of KTaO3 as a function of temperature T . (a) Results for LDA-

fitted Heff parameters. (b) Results for modified set of parameters. Solid circles and stars correspond

to PI-QMC and CMC results respectively. Dashed and dotted lines represent experimental data

from Refs. [2] and [3], respectively. Solid line shows the fit of the PI-QMC results by a Barrett

relation A/[(T1/2) coth(T1/2T ) − T0] [24], with A = 27000, T1 = 72K and T0 = 29K. Note that

our CMC simulations yield a paraelectric–to–ferroelectric transition around 30K, which provides a

numerical proof for the concept of classical Curie temperature given to T0 in the Barrett relation.

FIG. 2: Magnitude of local modes of KTaO3 at T=3K versus the angle that these modes make

with respect to the [100] pseudo-cubic direction. The modified set of Heff parameters is used.

FIG. 3: Correlation function θx(r) of Eq. (1) for KTaO3 plotted in the x-y plane for a 12×12×12

simulation at T=3K. (a) CMC results; (b) PI-QMC results. Each small square represents one

lattice B site; the origin lies at the center. The modified set of Heff parameters is used. Note that

the color scales are different in the two panels.
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