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The group-1V diamond-structure elements are known to host a variety of planar defects, including
{001} planar defects in C and {001}, {111} and {113} planar defects in Si and Ge. Among the
{001} planar defects, the Humble defect, known for some time to occur in Ge, has recently also been
observed in Si/Ge alloys, but the details of its electronic structure remain poorly understood. Here
we perform first-principles density functional calculations to study Humble defects in both Ge and
Gep.gSip.2. We also measure the Si Ly 3-edge electron energy loss spectra both at the defect and in
a bulk-like region far from the defect, and compare with theoretical calculations on corresponding
Si sites in our first-principles calculations. We find that inclusion of core-hole effects in the theory
is essential for reproducing the observed Ls 3 edge spectra, and that once they are included, the
results provide a set of fingerprints for different types of local atomic bonding environments in
Gep.gSip.2. Our first-principles calculations reveal that the Humble defects have a tendency to
enlarge the electronic band gap, which may have potential uses in band engineering. The use of
hybrid functionals for an improved description of the band gap in these systems is also discussed.

I. INTRODUCTION

Humble model into five distinct sub-models correspond-

Group IV elements, especially Si and Ge, are now
widely used in semiconductor devices [1], optoelectron-
ics [2], and recently developed quantum information and
computing technologies [3]. Generally, defects in these
materials affect the device properties, with some even
exhibiting useful properties that could be utilized for
practical applications [4]. Consequently, the properties
of these defects are of considerable interest for both the-
oretical and experimental studies.

One important type of defect is the extended planar de-
fect. A well-known example is the {001} planar defect in
natural diamond [5-7], where recent experimental work
has shown that defect pairs have a zigzag order [7]. In Si,
the {111} [8-10] and {113} [11, 12] planar defects are the
most common ones. {001} planar defects have also been
reported in Si and Ge after hydrogen implantation [10].
In Ge, {001} [13, 14], {111} [14], and {113} [10, 14, 15]
defects have been reported. However, only a few of them
have been examined using atomic-resolution high-angle
annular dark-field (HAADF) imaging [7, 12], making it
difficult to distinguish between proposed atomic struc-
tures. Alternatively, one can use electron energy-loss
spectroscopy (EELS) to extract quantitative information
regarding the local atomic bonding and chemical envi-
ronments in the vicinity of the defect, but this has been
done only for a few planar defects, e.g., for the {001}
planar defect in diamond [7].

Several structural models have been proposed to de-
scribe the atomic structure of {001} planar defects. In
1964, Lang proposed the first model which assumes that
these defects in diamond consist of nitrogen platelets [5].
However, the role of three-fold coordinated nitrogen in
the {001} planar defects of diamond is still controversial.
Later, in 1982, Humble proposed another model in which
the planar defects in diamond consist entirely of four-
coordinated carbon atoms [6]. Goss et al. elaborated the

ing to different arrangements of the atoms residing in the
defect layer, denoted as Humble models (a) to (e) [16-18].
Even though the Humble model was initially proposed for
{001} planar defects in diamond, later work has not con-
firmed its existence in diamond, or for that matter, in Si.
Instead, the Humble defect was observed first in Ge [13]
and much more recently in a Geg gSig o alloy [19].

Planar defects in semiconductors have been the subject
of a variety of computational approaches. Studies on
planar defects in Si have been carried out using molecular
dynamics simulations [12, 20], empirical potentials and
tight-binding models [21], and density-functional theory
(DFT) calculations [17]. Also, Goss et al. employed DFT
to study planar defects in diamond [16, 18]. Although
the Humble defects have been experimentally observed in
Ge [13] and a Geg gSip 2 alloy [19], we are not aware of any
theoretical studies focusing on the electronic properties
of Humble defects in these materials.

In this work, we use first-principles DFT calculations
to investigate the electronic properties of Humble defects
in Ge and Geq gSig.2, which we denote as GeSi henceforth.
We also carry out experimental measurements of the Si
Ly 3-edge EEL spectra in the defects and in nearby bulk
regions of GeSi at room temperature, and compare our
theoretical spectra with experiments. Our calculations
reveal that core-hole effects play an important role in
describing the Si Lg 3-edge EEL spectra of the Humble
defects in GeSi. We also find that the electronic band
gap is locally enhanced in the vicinity of the Humble
defects, potentially offering a unique platform for band
engineering. The use of hybrid functionals to obtain an
improved description of the band gaps in these systems
is also discussed.

This paper is organized as follows: In Sec. IT we briefly
introduce the Lang and Humble models. In Sec. III we
provide details of our DFT calculations (Sec. IITA) and
EELS measurements (Sec. IIIB). We present the elec-



FIG. 1.

Atomic structures of the (a) Lang and (b) Hum-
ble models. Atoms in the top and bottom defect-core layers
are colored blue and red. (c¢) Brillouin zone for the supercell
structures employed in the DFT calculations for both models;
high-symmetry points are labeled.

tronic properties of bulk Ge and GeSe in Sec. IV, and
show how the DFT band-gap problem, which is partic-
ularly severe for bulk Ge, can be fixed by performing
hybrid-functional DFT calculations. Section V provides
futher discussion of the electronic properties of the Hum-
ble defects in Ge and GeSi, focusing on the effect on the
local band gap. The EELS measurements and their com-
parison with simulations are presented in Sec. VI, both in
the bulk-like region (Sec. VI A) and the in the defect core
(Sec. VIB). We summarize our findings and conclude in
Sec. VII.

II. THE LANG AND HUMBLE MODELS

Before presenting the Humble model [6], it is instruc-
tive to revisit the Lang model [5], which can be regarded
as the predecessor of the Humble model. Lang initially
proposed this model to describe the {001} planar defect
in diamond. As shown in Fig. 1(a), there are two layers
of nitrogen atoms in the Lang model, shown as red and
blue. The perfect diamond structure can be recovered by
removing one of these two defect layers and rebonding the
atoms with dangling bonds. We will use the terminology
of “defect core” to denote the two layers of defect atoms
in the Lang model, and in the Humble model as well.
The atoms in the bulk are all four-coordinated, whereas
the atoms in the defect core are three-coordinated. If the
defect core consists of column-IV atoms as in the bulk,
these atoms would have costly dangling bonds, an obser-
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FIG. 2. Atomic arrangements of Humble defects (a) to (e),

shown in top view using the same color coding as in Fig. 1.
Coordinates are those of Ge defects relaxed using DFT.
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vation that motivated Lang to suggest trivalent N atoms
for the core sites instead.

Unlike the Lang model, atoms in the Humble defect
core are four-coordinated, just as they are in the bulk.
The Humble model can be derived from the Lang model
by pairing neighboring core atoms and moving them
closer to one another to form a dimer bond, thereby re-
moving two dangling bonds and converting all atoms to
fourfold coordination. As shown in Fig. 1(b), the red
atoms in the Humble model are displaced in the [110]
direction to form dimers, while the blue atoms are dis-
placed in the [110] direction, relative to the Lang model.

Humble’s initial proposal assumed one particular pair-
ing arrangement in the defect core, but other atomic ar-
rangements are possible. In Refs. [16-18], the original
Humble model was extended by proposing five different
possible types of atomic arrangements in the core, de-
notes as types (a) to (e), as shown in Fig. 2, with the
original model corresponding to model (a). These five
Humble models have been studied theoretically in dia-
mond [16, 18] and Si [17].

III. METHODS
A. DFT calculations

All the reported DFT calculations are performed us-
ing the Vienna Ab-initio Simulation Package (VASP) [22]
and the projector-augmented wave [23, 24] method
with Ge 4s24p? and Si 3s23p? pseudopotential va-
lence configurations. Standard DFT calculations employ
the generalized-gradient-approximation (GGA) exchang-
correlation functional of Perdew, Burke, and Ernzerhof
(PBE) [25], henceforth denoted as GGA-PBE. The con-
vergence criteria for forces and energies during structural
relaxation are 1072 eV/A and 10~7 eV respectively. In
some cases, band structures and gaps are also computed
using the HSE03 hybrid functional [26-28]. In those
cases, the experimental lattice constants are used in the



TABLE I. Lattice constants calculated using GGA-PBE, and
band gaps computed from HSE03, for Ge and Geg.gSip.2. Ex-
perimental lattice constants and band gaps at room temper-
ature are from Refs. [32] and [33], respectively.

Lattice constant (A) Band gap (eV)

GGA-PBE Exper. HSEO03 Exper.
Ge 5.78 5.66 0.65 0.66
Geo.8Si0.2 5.77 5.61 0.81 0.85

calculation. The cutoff energies for the plane-wave basis
set are 500 and 400eV for GGA-PBE and HSEO03, re-
spectively. Other numerical details such as the size of
the k-points mesh or the inclusion of spin-orbit coupling
or whether the hybrid functional is used will be specified
below.

The virtual crystal approximation (VCA) as imple-
mented in Ref. [29] is used when simulating the Geg gSip 2
alloy. In this approach, every atom is identical, with
an identity that is a mix of 80% Ge and 20% Si in the
Geg.gSig.o material. The VCA takes care of averaging
over the ensemble of all possible distributions in a mean-
field sense. The AFLOW [30] online tools are used to
analyze the structure, and the PYPROCAR [31] package
is used for the post-processing of the electronic structure
data.

B. Electron energy loss spectroscopy

The Si L3 edge EEL spectra are acquired using a
scanning transmission electron microscope equipped with
a electron monochromator. In our experiments, the size
of our electron beam is about 2 A, small enough to al-
low separate imaging of the bulk and defect regions of
Geg.gSip.2. To avoid radiation damage, a rectangular
scan window is placed at the defect or bulk region during
EEL spectra acquisition. We use the monochromator to
improve the energy resolution to about 100 meV and use
an EELS detector dispersion of 25.7meV /pixel. After
focusing the zero-loss peak, the spectrometer is further
tuned to obtain optimal focus in the vicinity of 100eV,
close to the Si Ly 3 edges of interest. With a detector
dwell time of 2sec, 30 to 50 EEL spectra are taken in
serial and summed to obtain good statistics. We then fit
and subtract an exponential background from the spec-
tra and perform a deconvolution to obtain the Si L3 edge
spectra presented in Sec. VI.

IV. BULK PROPERTIES OF Ge AND Ge.gSio.g

We start from bulk Ge and GeggSigo. Due to the
quasi-random distribution of atoms in the Geg gSig.o al-
loy, it is computationally challenging to simulate the
Geg gSig.2 alloy within DFT. Here we employ the virtual
crystal approximation (VCA) as implemented in Ref. [29]

to construct a virtual atom which is a mixture of 80%
Ge and 20% Si, and then build the Geg gSig.o structures
consisting of the virtual atoms. Due to the similarities
between the Ge and Si atoms, we expect the results ob-
tained using the VCA to provide a reasonable description
of the studied system.

First, we use GGA-PBE to relax the bulk Ge and
Geg.8Sig.o diamond structures. The relaxation is per-
formed on a two-atom primitive unit cell with a 16 x 16 x
16 Monkhorst-Pack (MP) [34] k-mesh. The GGA-PBE
optimized lattice constants of bulk Ge and Geg gSig.o are
summarized and compared with experiment in Table I.
The GGA-PBE calculation slightly overestimates the lat-
tice constants, but it severely underestimates the elec-
tronic band gap. The GGA-PBE predicts both the bulk
Ge and Geg gSip.o systems to be semimetals, as shown
in Fig. 3, although both these systems are experimen-
tally known to be semiconductors. We therefore tested
all of the local-density approximation (LDA) and GGA
exchange-correlation functionals implemented in VASP,
but confirmed that all of them incorrectly predict bulk Ge
to be a semimetal, in agreement with previous DFT stud-
ies [35]. However, hybrid functionals [26-28] are known
to correctly predict a non-zero band gap in bulk Ge [36].
We therefore adopt the HSE03 hybrid functional [26-28]
for an improved description of band-structure properties
in this work.

The HSEO3 results for the band gaps are also pre-
sented in Table I. These are computed at the experi-
mental lattice constants given in the Table. Due to the
computational expense of the HSE(Q3 calculations, we
use an 8 X 8 x 8 MP k-mesh for the self-consistent part
of the HSE03 calculation with a plane-wave energy cut-
off of 400eV. The HSE03 band structures are shown in
Fig. 3. An indirect band gap is observed for both Ge and
Geg.gSig.2 and the gap values are in good agreement with
experiment.

We also calculate the density of states (DOS) using
both the GGA-PBE and HSEO3 functionals, as shown
in the right panels of Fig. 3. It is evident that the
GGA-PBE DOS in the conduction-band region almost
matches that of the HSE03 one except for a rigid shift
of states along the energy axis. This is reasonable be-
cause the momentum-space dispersion of the conduction
bands does not change substantially between the GGA-
PBE and HSEO03 calculations, as can be seen in Fig. 3.
The HSEO3 correction to the bulk Ge and Geg gSig.o band
structures can thus be said to be of the “scissors” type.

We now discuss the role of Si alloying on the electronic
band structure of bulk Ge. As shown in Fig. 3 and Ta-
ble. I, the HSE03 band gap is enlarged in the Geg gSig.2
alloy compared to pristine Ge. Both Ge and Geg gSig.2
exhibit an indirect band gap. For Ge the indirect band
gap is from I' to L, whereas for Geg gSig.o it is from I’
to the valley near X along I'-X. This agrees well with
experimental data obtained using EELS [37, 38] and an-
other theoretical work performed using nonlocal empir-
ical pseudopotentials [39]. Besides the above-mentioned
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FIG. 3. The band structure and density of states (DOS) of
(a) Ge bulk and (b) Geg.sSip.2 bulk. In each figure, the left
panel is the band structure and the right panel is the DOS.
The red dashed and blue solid lines are calculated using the
GGA-PBE and HSEO03 functionals, respectively. The Fermi
energy coincides with the top of the valence band.

minor differences, the overall electronic properties of bulk
Ge and Geg gSig.o are very similar.

V. HUMBLE DEFECTS IN Ge AND Geg sSio.2

The Humble defects are experimentally observed in
both Ge [13] and Geg gSig.2. The DFT calculations show
that the Humble (a) defect is energetically the most fa-
vorable one among the five distinct Humble defects mod-
els shown in Fig. 2 [19]; for both Ge and GeSi, Humble
defects (b-e) are at least 45meV (per interstitial atom)
higher in energy, as reported in Ref. [19]. Therefore,
here we focus only on the Humble defect (a) in Ge and
Geg.gSig.o and calculate its electronic properties. If not
specified, the word “Humble defect” henceforth denotes
the Humble (a) defect.

The Humble structure is built by the procedure men-
tioned in Sec. II. The supercell consists of 52 atoms in
13 layers, and we assume periodic boundary conditions
in all three dimensions. The space group of the Humble
structure is P4m2 (no. 115). The relaxation is performed
using GGA-PBE with a 6 x 6 x 3 MP grid of k-points.
The in-plane lattice constants (a and b) are fixed to the
bulk value obtained from the GGA-PBE relaxation of
the defect-free bulk structure, whereas the supercell lat-

TABLE II. The lattice constants and band gaps of Ge and
Gep.gSip.2 Humble structures as computed within the GGA-
PBE approximation.

Lattice constants (A)
a=> c

Band gap (eV)

Ge 8.18 19.43 0.13
Geo.8Sig.2 8.16 19.39 0.24

tice constant c is allowed to relax. The relaxed c lattice
constants are reported for the Ge and Geg gSig.o Humble
structures in the middle column of Table. II.

The calculated electronic band structures of the GGA-
PBE optimized 13-layer Humble structures are presented
in Fig. 4. The band structures of the two Humble struc-
tures are very similar, suggesting that the Ge Humble
structure can be used as a good approximation for the
Geg.gSig.2 one. Surprisingly, our GGA-PBE calculations
predict both the Ge and Geg gSig.o Humble structures to
be small-gap insulators, even though the same GGA-PBE
calculations predict defect-free bulk Ge and Geg gSig.o to
be semimetallic. That is, we find that the introduction of
Humble defects in bulk Ge or Geg.gSig.2 tends to open the
band gap. The computed gaps of the two Humble struc-
tures are listed in Table. II. Notably, the band gap for
each structure is indirect; the valence-band maximum is
between the A to Z point, whereas the conduction-band
minimum is at the I' point of the Brillouin zone.

In Appendix A, we report the HSE03-calculated band
structures of the Ge and Geg gSigo Humble structures.
However, due to the computational expense, these cal-
culations were performed on a 9-layer Humble structures
instead of the 13-layer ones used here. We again find that
the HSE03 correction to the GGA-PBE band structure
is of the scissors type, so that the DOS of the conduc-
tion bands calculated within the HSE03 approximation
is very close to those given by GGA-PBE after a rigid
shift in energy. This suggests that the DOS calculated
using the GGA-PBE can be used to simulate the experi-
mental EEL spectra, an expectation that is borne out by
the good agreement between theory and experiment that
is presented below.

VI. EEL SPECTRA OF THE HUMBLE DEFECT:
EXPERIMENTS AND SIMULATIONS

In the past, core-loss EELS has mainly been used to
differentiate between different chemical bonding environ-
ments of a given element [40]. Here, we use Si Lo 3-edge
spectroscopy to distinguish between defected and bulk-
like regions of a Geg gSig.2 sample, even though all the
atoms are four-fold coordinated. We work with an instru-
mental energy resolution of 100 meV, noting that under
these conditions the EELS spectra are still limited mainly
by the 2p core-hole lifetime [41, 42]. After deconvoluting
to obtain the L3 edge spectra, the resolution is sufficient
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FIG. 4. The GGA-PBE calculated band structure of (a) the
13-layer Ge Humble structure, and (b) the 13-layer Geo.sSio.2
Humble structure. The dashed horizontal line marks the
Fermi energy, which is set at the valence bands maximum.

for a direct comparison with theory. The EEL spectra
are measured in the bulk region and at the defect core.
As discussed in Sec. III B, the defect core spectra are
measured separately for electron beam subscan windows
with heights of 3A and 6 A as indicated in Fig. 5(a).

In the EELS measurement, the differential cross sec-
tion d%0 /dQUdE for electron scattering is given by [43]

o 4y?
dQdE  a3q?

[Imei1?pr1(BE) + [mra?pr-1(E)],
(1)

where 7 is the Lorentz factor, ag is the Bohr radius, ¢
is the momentum transfer, mr11 = (fri1|rliz) is the
electric-dipole transition matrix element slowly varying
with energy, |iz) is the initial core-level state, |fr+1) is
the final conduction state, and pr+1(F) is the angular-
momentum-resolved DOS. Here we have assumed the
dipole selection rule (AL = +1) for the transitions from
the core-level to the conduction states. For the Si Lg
edges, since the |ip) is the Si 2p core-level state, the EELS
is only sensitive to final states |fr1+1) of predominant s
or d character.

As mentioned in Sec. V, the Humble structure in Ge

FIG. 5. (a) Side view of the unit cell of the 13-layer Humble
structure. The 3 A window around the defect core is shown as
the red interval; the 6 A window is shown as the blue interval;
the (most) bulk-like layer is the layer boxed by the orange
rectangle. (b) Different equivalent sites in the bulk-like layer.
The corner, edge, and center sites are in orange, magenta,
and green, respectively.

and Geg.gSip.o have very similar electronic structures.
Considering the similarity between Si and Ge atoms and
the fact that an average of 80% of the neighbors of any
given Si site are Ge atoms, we now abandon the use of the
VCA and work instead in the limit of low Si concentra-
tion. That is, we carry out calculations using supercells
in which only a single Si atom has been substituted into
the Ge Humble structure, and vary the location of this
impurity atom to take statistical averages.

A further complication is that a core hole is formed
when a core electron is ejected, giving rise to an interac-
tion with the conduction bands. In most cases, such a
“core-hole effect” cannot be neglected, especially in insu-
lators [40, 44]. Accordingly, we adopt the “Z+1 approxi-
mation,” in which the excitation is simulated with an ex-
tra proton in the nucleus of the excited Si atom [40, 44—
47]. Using the structure as obtained from a relaxation
without the core hole, we replace the Si atom with a P
atom and then calculate the s- and d-projected local DOS
on the P atom. Typically, a large supercell is needed to
avoid interactions between periodic images of the Z+1
atoms. We have tested supercells having 52, 104, and
208 atoms, and find that good convergence is achieved
for the 104-atom cell. Conversely, if the core-hole effect
is negligible or fully screened, one can use the local s- and
d-projected DOS for an ordinary Si impurity; we refer to
this as the “Z approximation” [40, 43, 48].

The spin-orbit coupling is included while implementing
the Z and Z+1 approximations. To save computational
expense, these supercell calculations are carried out using



GGA-PBE rather than HSE03. In Appendix A, we show
that the correction coming from HSEO03 is again mainly
of the scissors type. That is, the DOS of the conduction
bands calculated using GGA-PBE and HSEQ3 are very
similar after a rigid upward shift of the GGA-PBE cal-
culated conduction bands. As will be shown below, we
find that the GGA-PBE simulations give good agreement
with our experimental EELS data.

All the reported EELS simulations are performed in 13-
layer Humble structures. We include enough conduction
bands so that all states up to 8 eV above the valence-band
maximum are included. For the calculation of the partial
DOS, the considered Wigner-Seitz radii for Si and P are
1.312 and 1.233 A, respectively. The DOS is broadened
by a Gaussian function with a width of 0.05eV.

A. Bulk-like region

In this section, we present our results for the EELS
measurements and simulations in the bulk-like region of
the Humble structure, i.e., far from the Humble defect
layer. The EEL spectrum in the bulk-region is measured
1 nm away from the defect core, and is essentially identi-
cal if measured 3 nm away. For the simulations, the most
bulk-like atoms in the 13-layer Humble structure are the
four atoms in the sixth atomic layer above or below the
defect core, as shown in Fig. 5. We carry out two sets
of calculations, one with the Si atom located at the most
energetically favorable of the four sites, and the other
assuming a uniformly distributed over all four sites.

For the first case, we determine the lowest-energy site
for the substitution of Si atom by computing the energy
cost of the substitution at each site. By symmetry there
are three inequivalent sites, denoted as the corner, edge,
and center sites in Fig. 5(b), We find the corner site to be
most favorable, with the edge and center sites are higher
by 57 and 96 meV respectively. Then we apply both the
Z and Z+1 approximation to the Si atom at this site to
simulate the EEL spectrum measured in the bulk region.
The experimental data are compared with the theoretical
results in Fig. 6(a).

For the second case, we obtain the simulated EEL spec-
trum n;(E) at each of the three unique sites separately,
and average them as

nave(E) = sznz(E) (2)

with weights w; = 0.25 for corner and center sites and
0.5 for the edge sites. The resulting Z and Z+1 spectra
are shown in Fig. 6(b).

From Fig. 6, it is evident that the Z+1 approxima-
tion is in very good agreement with the EEL spectrum
no matter which of these two approaches we adopt. On
the other hand, the Z approximation fails to predict the
peaks below 2eV, but it still provides some information
about peaks above 2eV. This indicates that the core-hole
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FIG. 6. Comparison of measured and computed Si L3 edge
EEL spectra in the bulk region. (a) Simulated with the Si
atom located at the lowest energy site. (b) Same, but with
the Si atom distributed uniformly over all four sites. In each
panel, the solid black line is the experimental measurement;
the blue dashed and dotted lines show the simulated EEL
spectra using the Z+1 and Z approximations, respectively.

effects cannot be neglected while simulating the EELS
measured in the bulk region.

In the simulations described above, we only substitute
one Ge atom at a time by Si (or P) in the Humble super-
cell. In other words, no nearest-neighbor Si-Si bonds are
considered. In Appendix B, we investigate the effect of
such Si-Si bonds by substituting two Ge atoms simulta-
neously. The results show that Si-Si bonds do not change
the excitation spectra substantially, suggesting that the
single-impurity approximation is sufficient to model the
behavior of Si atoms in the Geg gSig o Humble structure.
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FIG. 7. Comparison of measured and computed Si L3 edge
EEL spectra in the defect core (3 A window). The solid black
line is the experimental measurement; the blue dashed and
dotted lines show the simulated EEL spectra using the Z+1
and Z approximations, respectively.

B. Defect region

In the previous subsection, we used the Z and Z+1
approximations to simulate the EEL spectrum and com-
pared it with measurements in the bulk-like region of the
sample. Here we present similar comparisons, but for the
defect region.

In the defect core, EEL spectra are separately mea-
sured within 3A and a 6 A integration windows. Both
windows are centered around the defect core, as shown
in Fig. 5(a). The 3 A window spans only the defect core,
as shown by the red and blue atoms in Fig. 1(b), while
the 6 A window includes two more layers adjacent to the
core. The experimental EEL spectra and the theoretical
simulations, are shown in Figs. 7 and 8.

By comparing Fig. 6 with Figs. 7 and 8, it is clear
that the EEL spectra measured in the bulk and defect
regions are significantly different, although all Si atoms
are four-fold coordinated in both regions. This suggests
that some more subtle difference in local bonding con-
figuration must be responsible. Similar differences are
expected in the comparison of the spectra for the differ-
ent spatial windows defined in Fig. 7 and Fig. 8, since
the 6 A window in Fig. 8 also covers some atoms outside
the defect core.

In the spectrum measured within the 3 A window, the
intensity of the peak below 1eV is relatively higher, when
compared to the intensity of the adjacent peak lying in
the 1-2eV range of the same spectrum, than that of in
the 6 A-window spectrum. This suggests that the high-
est peak below 1eV might serve as a fingerprint of the
Humble defect.

Next, we compare our experimental measurements
with the theoretical simulations. From Figs. 7 and 8§,
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FIG. 8. Comparison of measured and computed Si L3 edge
EEL spectra in the defect core (6 A window). The black line
is the experimental measurement. The solid black line is the
experimental measurement; the blue dashed and dotted lines
show the simulated EEL spectra using the Z+1 and Z approx-
imations, respectively.

we find that the Z+41 approximation works well in both
cases, although the peak intensities between 1eV to 2eV
are slightly underestimated. On the other hand, the Z
approximation does not work very well near the edge on-
set, which indicates that the core-hole effect cannot be
neglected in this system.

VII. DISCUSSION AND CONCLUSION

In summary, we first calculated the band structures of
bulk Ge and Geg gSig.2 at the GGA-PBE level. Although
both materials are insulating experimentally, LDA and
GGA calculations predict them to be semimetallic due
to the well-known band gap problem of DFT. This issue
was resolved by performing HSE0O3 hybrid-functional cal-
culations, which correctly predict band gaps that are in
good agreement with experiment.

Next, we used the GGA-PBE to calculate the elec-
tronic properties of the Ge and Geg gSip.o Humble struc-
tures. These are both insulating in our calculations, al-
though their defect-free bulk structures are predicted to
be semimetallic when calculated in the same way. This
indicates that the Humble defect can locally enlarge the
band gap of Ge and Geg gSip2, a fact that may poten-
tially be useful in band engineering. We also found that
the DOS calculated using HSEO03 is very nearly a rigid
shift of that calculated using GGA-PBE, justifying the
use of the GGA-PBE calculations for the simulation of
the EEL spectra.

We have separately measured the Si Lz edge EEL spec-
tra in Geg.gSig.2 in a bulk-like region and at the Humble
defect. To simulate the EEL spectra, we used a single Si



atom in the Ge Humble structure to mimic the Si atom in
the Geq.gSip.o alloy, and we placed the Si atom at various
sites to simulate the EEL spectra measured from differ-
ent regions. We think this is a good approximation for
three reasons. (i) The band-structure calculations show
that the Ge and Geg gSig.o Humble structures have sim-
ilar electronic properties. (ii) The chemical properties of
Si are similar to those of Ge, and the concentration of
Si is relatively low. (iii) The Si-Si bond was not found
to have a strong effect on the simulated EEL spectra.
We implemented both the Z and Z+1 approximations
to simulate the EEL spectra, corresponding to the ab-
sence and presence of the core hole, respectively. The
spectra simulated using the Z+1 approximation were in
much better agreement with experiment, especially near
the edge onset, indicating that the core-hole effect is not
negligible, as might be expected given that the studied
system is semiconducting so that no metallic screening of
the core-hole occurs.

However, the intensities of a few peaks were still not
well predicted by theory. There are several possible
reasons. Firstly, the EEL spectra are measured in the
Geg.gSig.2 alloy. Due to the randomness of the alloy, the
electron momentum k is no longer a good quantum num-
ber. As a result, the dipole selection rules in Eq. (1) may
be changed due to the disorder. Secondly, the presence
of some Si-Si bonds can affect the intensities of peaks.
This effect is discussed in Appendix. B, where we find
that a Si neighbor of the Si core hole has little effect on
the position of the peaks but does change their intensi-
ties. Thirdly, we have assumed that |mp1| and |mp_1]
in Eq. (1) are the same. However, in Refs. [43, 48], it
is reported that the ratio of the intensities of the p — s
and p — d transitions is about 2:1. We tried using this
ratio in the Z+1 calculation, but the ratio of 1:1 actu-
ally fits better with the experimental measurements. A
proper determination of this ratio would require use of
an all-electron method [44]. Finally, both the Z and Z+1
approximations are based on a single-particle picture. A
more accurate treatment of the electron-hole interaction
could be carried out by solving the Bethe-Salpeter equa-
tion [49-51]; this could be a possible direction for further
studies, but is beyond the scope of the present work.
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FIG. 9. Band structures of (a) Ge and (b) Geo.sSip.2 Humble
structures. The dotted red and solid blue lines indicate the
GGA-PBE and HSEO3 calculations respectively. The Fermi
energy is at the top of the valence bands.

TABLE III. Band gaps of 9-layer Ge and Geg.gSip.2 Hum-
ble structures computed using GGA-PBE and HSE03 at the
specified lattice constants.

Lattice Constants (A) Band Gap

a,b c (eV)
Ge (GGA-PBE) 8.18 13.61 0.36
Ge (HSE03) 8.00 13.27 1.00
GeosSin2 (GGA-PBE) 8.16 13.58 0.49
Geo.sSio2 (HSE03) 7.93 13.43 1.09

der award number DE-EE0008083.

Appendix A: Band structures of Humble defects in
Ge and Geg sSip.2: A hybrid functional study

In this work, we have made use of two approximations.
Firstly, we use the DOS calculated from GGA-PBE in-
stead of the more accurate HSE03. Secondly, we use
the Ge Humble structure to approximate the Geg gSig.o
Humble structure. In this Appendix, we justify these two
approximations by comparing the band structures of 9-
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FIG. 10. Simulations of the Si Lz edge EEL spectra in the
bulk region, with or without the Si nearest neighbor. The
red solid line and blue dashed line are simulated by the Z+1
approximation without or with the Si nearest neighbor, re-
spectively. The magenta dash-dotted line and green dotted
line are simulated by the Z approximation without or with
the Si nearest neighbor, respectively.

layer Ge and Geq gSig.o Humble structures. We use both
GGA-PBE and HSEO03 to calculate the bands for each
structure.

Figure 9 shows the band structures of the 9-layer Ge
and Geg.gSig.2 supercells in panels (a) and (b) respec-
tively. For each panel, the GGA-PBE bands, shown
as dotted red lines, are calculated for the DFT-relaxed
structure as reported in Table. III. Although bulk Ge
and Geg gSig.o are semi-metallic if calculated using the
GGA-PBE, each Humble structure is insulating with an
indirect band gap.

The solid blue lines in Fig. 9 show the HSE03 bands
for the Ge and Geg gSig.o Humble structures respectively.
To save computational cost, we use a 4 x 4 x 2 MP grid
of k-points for the self-consistent field calculations. As in
Sec. IV, we use the experimental lattice constants when
calculating HSE03 bands. However, because we do not

have the experimental ¢ lattice constant for the Ge Hum-
ble structure, we determine it by fitting the stress o, to
the value calculated for the bulk at the experimental lat-
tice constant. The c¢ lattice constant for the Geg gSig.2
Humble structure is measured experimentally.

By comparing panels (a) and (b) in Fig. 9, we again
find that the Ge and Geg gSig.o Humble structures have
similar band structures, and the momentum-space dis-
persion of GGA-PBE and HSE03 bands are very similar.

Appendix B: The effect of Si-Si bonds in simulations
of the EEL Spectra

In Appendix A, we have argued that we can use the
Ge Humble structure to approximate the Geg gSig.o one.
We implement this approximation when simulating EEL
spectra, and we only replace one atom by Si in the Ge
Humble structure. As a result, no Si-Si bond is consid-
ered in the simulation. Due to the low concentration,
the Si atom tends to form bonds with Ge atoms. There-
fore, the effect of Si-Si bonds should be minor. However,
it is instructive to check how the Si-Si bond affects the
simulation of the EEL spectra.

Similar to what we have done in Sec. VI, we use a
13-layer Ge Humble structure, but with two Ge atoms
replaced by Si. One of these is located at the corner site in
the bulk-like layer, as in Fig. 6(a), and another Si atom is
its nearest neighbor. Then we implement the Z and Z+1
approximations to the Si atom in the bulk-like layer. The
results are shown in Fig. 10. The cases without the Si-Si
bond are also included to show the difference.

As can be seen in Fig. 10, the Si-Si bond does not
change the results substantially for either approxima-
tion. Specifically, the positions of peaks are unchanged,
although the intensities of some peaks do change. Con-
sidering the minor effect of the Si-Si bond, we think the
approximation of using a single Si atom in the Ge Hum-
ble structure is justified when studying the Si core-level
spectra in Geg gSig.2.
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