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The topology of electronic states in band insulators with mirror symmetry can be classified in two
different ways. One is in terms of the mirror Chern number, an integer that counts the number of
protected Dirac cones in the Brillouin zone of high-symmetry surfaces. The other is via a Z2 index
that distinguishes between systems that have a nonzero quantized orbital magnetoelectric coupling
(“axion-odd”), and those that do not (“axion-even”); this classification can also be induced by
other symmetries in the magnetic point group, including time reversal and inversion. A systematic
characterization of the axion Z2 topology has previously been obtained by representing the valence
states in terms of hybrid Wannier functions localized along one chosen crystallographic direction, and
inspecting the associated Wannier band structure. Here we focus on mirror symmetry, and extend
that characterization to the mirror Chern number. We choose the direction orthogonal to the mirror
plane as the Wannierization direction, and show that the mirror Chern number can be determined
from the winding numbers of the touching points between Wannier bands on mirror-invariant planes,
and from the Chern numbers of flat bands pinned to those planes. In this representation, the
relation between the mirror Chern number and the axion Z2 index is readily established. The
formalism is illustrated by means of ab initio calculations for SnTe in the monolayer and bulk forms,
complemented by tight-binding calculations for a toy model.

I. INTRODUCTION

The band theory of solids has been enriched in recent
years by a vigorous study of its topological aspects. That
effort resulted in a systematic topological classification of
insulators on the basis of symmetry, and in the identifi-
cation of a large number of topological materials. After
an initial focus on the role of time-reversal symmetry, it
was realized that crystallographic symmetries could also
protect topological behaviors, leading to the notion of
“topological crystalline insulators.”

The assignment of an insulator to a particular topolog-
ical class can be made by evaluating the corresponding
topological invariant. Depending on the protecting sym-
metry, that invariant may assume one of two values (Z2

classification), or it may assume any integer value (Z clas-
sification). Other types of classifications such as Z4 also
occur, but they do not concern us here. When the invari-
ant vanishes the system is classified as trivial, and other-
wise it is classified as nontrivial or topological. Topolog-
ical insulators typically display robust gapless states at
the boundary, which provide an experimental signature
of topological behavior.

In some cases, the same symmetry may induce two
different topological classifications. This happens for ex-
ample with mirror symmetry, where a Z classification in
terms of the mirror Chern number (MCN) [1, 2] coex-
ists with a Z2 classification based on the quantized axion
angle. The two classifications are not independent, and
elucidating the relation between them is one goal of the
present work.

The axion Z2 classification of three-dimensional (3D)

insulators is based on the orbital magnetoelectric effect.
In brief, the isotropic part of the linear orbital magneto-
electric tensor is conveniently expressed in terms of the
axion angle θ, which is only defined modulo 2π as a bulk
property. In the presence of “axion-odd” symmetries that
flip its sign, the axion angle can only assume two values:
θ = 0 (trivial), and θ = π (topological) [3–8].

The axion Z2 index was originally introduced for time-
reversal invariant insulators, where it was shown to be
equivalent to the “strong” Z2 index ν0 = 0 or 1, that
is, θ = πν0. More generally, axion-odd symmetries can
be classified as proper rotations combined with time re-
versal (including time reversal itself), and improper ro-
tations (including inversion and reflection) not combined
with time reversal; in both cases, the associated symme-
try operation in the magnetic space group may include
a fractional translation. This results in a large number
of magnetic space groups that can host axion-odd topo-
logical insulators. A recent realization is the MnBi2Te4

family of antiferromagnetic materials [7–9], whose ax-
ion topology is protected by the time reversal operation
combined with a half-lattice translation as envisioned in
Ref. [10].

To aid the computational search for axionic topolog-
ical insulators, it is useful to devise simple procedures
for determining the (quantized) axion angle θ. Unfor-
tunately, subtle gauge issues make its direct evaluation
from the valence Bloch states rather challenging in gen-
eral [5]. Notable exceptions are centrosymmetric insula-
tors, both nonmagnetic and magnetic. For such systems,
the axion Z2 index can be obtained by counting the num-
ber of odd-parity states at high-symmetry points in the
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Brillouin zone (BZ) [11, 12].
Recently, an alternative procedure was introduced

based on representing the valence states in terms of hy-
brid Wannier (HW) functions that are maximally local-
ized along a chosen crystallographic direction z. The HW
centers along z, also known as “Wilson-loop eigenvalues,”
form a band structure when plotted as a function of kx
and ky; in the presence of one or more axion-odd sym-
metries, the quantized θ value can be determined from
this “Wannier band structure,” often by mere visual in-
spection [13].

In the HW representation, axion-odd symmetries are
naturally classified as “z-preserving” or “z-reversing,”
and the rules for deducing the axion Z2 index are dif-
ferent in each case (they also depend on whether or
not the symmetry operation involves a fractional trans-
lation along z) [13]. Time reversal is an example of a z-
preserving operation, while inversion is z reversing. Mir-
ror operations may be placed in one group or the other,
depending on whether the Wannierization direction z lies
in the reflection plane (vertical mirror) or is orthogonal
to it (horizontal mirror). In this work we make the latter
choice, so that the mirror operation of interest becomes

Mz : z → −z , (1)

which is manifestly z reversing.
A simple mirror symmetry without a glide component

protects not only the axion Z2 classification, but also a
Z or Z×Z classification based on one or two MCNs, de-
pending on the type of mirror. This raises the question
of whether the HW representation might also be con-
venient for determining the MCNs, and for illuminating
their relationship to the quantized axion angle.

In this work, we address the above questions by investi-
gating in detail the Wannier bands in the presence of Mz

symmetry. We clarify the generic behaviors that are ex-
pected, and discuss the rules for deducing the MCNs. By
comparing those rules with the ones obtained in Ref. [13]
for the axion Z2 index, we establish the relation between
the two classifications.

The paper is organized as follows. In Sec. II we
first distinguish between “type-1” and “type-2” crystal-
lographic mirror operations; we then review the defini-
tions of Chern invariants and MCNs in terms of the
Bloch states in the filled bands; finally, we introduce
maximally localized HW functions spanning the valence
states, and assign Chern numbers to isolated groups of
Wannier bands. This background material sets the stage
for the developments in the remainder of the paper. In
Sec. III we discuss the generic features of the Wannier
band structure in the presence of Mz symmetry, and ob-
tain a relation between Chern numbers and winding num-
bers in groups of bands touching on a mirror plane. The
rules for deducing the MCNs from the Chern numbers
and winding numbers on the mirror planes are given in
Sec. IV, where their relation to the quantized axion angle
is also established. In Sec. V we describe the numerical
methods that are used in Sec. VI to apply the formalism

to several prototypical systems. We summarize and con-
clude in Sec. VII, and present in three Appendices some
derivations that were left out of the main text.

II. PRELIMINARIES

A. Two types of crystallographic mirrors

We begin by observing that if a crystal is left invariant
under an Mz reflection operation, then its Bravais lattice
must contain vectors pointing along z. To construct the
shortest such vector a3 = cẑ, we pick the shortest vector
ã3 connecting lattice points on adjacent horizontal lattice
planes. If ã3 points along z then we take it as a3, and
we say that the mirror is of type 1. Otherwise we choose
the vector a3 = ã3 −Mzã3 connecting second-neighbor
lattice planes, and the mirror is of type 2.

The two types of crystallographic mirrors are exempli-
fied in 2D in Fig. 1, where the mirror lines z = 0 and
c/2 are labeled A and B, and the reciprocal-space lines
kz = 0 and kz = π/c are labeled G and X. The same
notation will be used in 3D, where A and B (G and X)
become planes in real (reciprocal) space.

The distinction between mirror operations that leave
pointwise invariant two inequivalent planes in the BZ,
and those that leave invariant only one BZ plane, was
made in Refs. [14, 15]. Since MCNs are defined on such
planes [1, 2], a 3D insulator with a type-1 mirror is char-
acterized by two separate MCNs µG and µX, while for
a type-2 mirror there is a single MCN µG. If the crys-
tallographic space group contains additional mirror op-
erations, there will be additional MCNs associated with
them.

B. Chern invariants in band insulators

1. Generic insulators

Before introducing MCNs for insulators with reflection
symmetry, let us define Chern invariants for generic 2D
and 3D band insulators in terms of the k-space Berry
curvature of the valence states [5].

In 2D, the Berry curvature of a Bloch state |ψnk〉 with
cell-periodic part |unk〉 is a scalar defined as

Ωnk = −2Im 〈∂kxunk|∂kyunk〉 (2)

where k = (kx, ky), and the Chern number is given by

C =
1

2π

∫
2DBZ

J∑
n=1

Ωnk d
2k (3)

where the summation is over the J filled energy bands.
Since the Berry curvature has units of length squared, C
is a dimensionless number, and for topological reasons it
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FIG. 1. The upper panel shows schematically a pair of 2D crystals lying on the (x, z) plane; each has one atom per primitive
cell (black dots), and lattice constant c along z. The crystal on the left has a rectangular lattice and a type-1 horizontal
mirror, with inequivalent mirror lines z = 0 mod c (A) and z = c/2 mod c (B), shown as dashed lines; the one on the right
has a centered rectangular lattice and a type-2 mirror, with equivalent mirror lines A and B. The lattice vectors a3 and ã3 are
defined in the main text. The lower panel shows the reciprocal lattices, with a separation of 2π/c between horizontal lattice
lines G. On the left the periodicity along kz is 2π/c, and hence both kz = 0 mod 2π/c (G) and kz = π/c mod 2π/c (X) are
pointwise-invariant mirror lines, as indicated by the dashed lines. On the right, where the periodicity along kz is 4π/c, G is a
mirror-invariant line but X is not. The associated Brillouin zones are indicated by the shaded green areas.

must be an integer. The Chern number is a global prop-
erty of the manifold of occupied states, remaining invari-
ant under multiband gauge transformations described by
J × J unitary matrices at each k, and it vanishes when
the crystal has time-reversal symmetry. If a 2D magnetic
crystal has a nonzero Chern number C, when that crys-
tal is terminated at an edge there will be |C| edge modes
crossing the bulk gap, whose chirality will depend on the
sign of C.

3D insulators are characterized by a Chern vector

K =
1

2π

∫
3DBZ

J∑
n=1

Ωnk d
3k , (4)

where now k = (kx, ky, kz) and the Berry curvature has
become a vector field, Ωnk = −Im 〈∂kunk|×|∂kunk〉. The
Chern vector has units of inverse length, and is quantized
to be a reciprocal-lattice vector. Like the Chern number
in 2D, the Chern vector always vanishes in nonmagnetic
crystals.

Given a set of lattice vectors aj and dual reciprocal-
lattice vectors bj , the expansion K =

∑
j Cjbj defines

a triad of integer Chern indices Cj . Let us orient the
Cartesian axes such that a3 = cẑ. The vectors b1 and b2

then lie on the (x, y) plane, and the third Chern index
can be expressed as

C3 =
c

2π

∫ 2π/c

0

C(kz) dkz , (5)

where

C(kz) =
1

2π

∫
2DBZ

J∑
n=1

Ωzn(kx, ky, kz) dkxdky . (6)

The integral in Eq. (6) is over a slice of the 3D BZ
spanned by b1 and b2 at fixed kz. By viewing it as
an effective 2D BZ and comparing with Eq. (3), it be-
comes clear that C(kz) is a Chern number; and since in
a gapped system its integer value cannot change with the
continuous parameter kz, Eq. (5) reduces to C3 = C(kz)
evaluated at any kz. The Chern indices of 3D insulators
can therefore be evaluated as Chern numbers defined over
individual BZ slices.

2. Mirror-symmetric insulators

We now consider a 3D crystalline insulator with mirror
symmetry Mz, and assume that its Chern vector K van-
ishes. A new integer-valued topological index, the MCN,
can be defined for such a system as follows [1, 2].

On the mirror-invariant BZ planes, G and possibly X,
the energy eigenstates are also eigenstates of Mz. The
eigenvalues are iF p, where p = ±1 is the “mirror par-
ity” and F = 0 or 1 when the electrons are treated as
spinless or spinful particles, respectively. The occupied
Bloch states on those planes can therefore be grouped
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into “even” (p = +1) and “odd” (p = −1) sectors under
reflection about the A plane z = 0, each carrying its own
Chern number. The Chern numbers of the two sectors
on the G plane kz = 0 are given by

C±G =
1

2π

∫
2DBZ

J∑
n=1

f±nkΩzn(kx, ky, kz = 0) dkxdky , (7)

where f+
nk = 1 − f−nk equals one or zero for a state with

p = ±1, respectively. The MCN is defined as

µG =
1

2

(
C+

G − C−G
)
, (8)

and it is guaranteed to be an integer since C+
G +C−G = C3

vanishes by assumption. If the mirror is of type 1, the
plane X carries a second MCN

µX =
1

2

(
C+

X − C−X
)
, (9)

where C±X is obtained by replacing kz = 0 with kz = π/c
in Eq. (7). The MCNs remain invariant under multiband
gauge transformations that do not mix the two mirror-
parity sectors. When they are nonzero, protected gapless
modes appear on surfaces that retain the mirror symme-
try Mz, with |µG| and |µX| counting the number of Dirac
cones on the twoMz-invariant lines in the surface BZ [16].

In the case of a 2D or quasi-2D insulator with reflection
symmetry Mz about its own plane, the entire 2D BZ is
left invariant under Mz. Such a system has a unique
MCN

µ2D =
1

2
(C+ − C−) , (10)

where C+ and C− are obtained by inserting the 2D Berry
curvature of Eq. (2) in Eq. (7). When the net Chern
number C = C+ +C− vanishes, |µ2D| becomes an integer
that counts the number of pairs of counterpropagating
chiral edge modes [17].

We note in passing that spin-orbit coupling is required
to obtain non-vanishing MCNs in systems that are either
non-magnetic or whose magnetic order is collinear.

C. The hybrid Wannier representation

1. Hybrid Wannier functions and Wannier bands

HW functions are obtained from the valence Bloch
states of a 2D or 3D crystalline insulator by carrying
out the Wannier construction along a chosen reciprocal-
lattice direction. They are therefore localized along one
direction only, in contrast to ordinary Wannier functions
which are localized in all spatial directions.

Let us momentarily return to a generic 3D insulating
crystal, not necessarily mirror-symmetric. We denote by
z the chosen localization direction and let κ = (kx, ky),

so that the wavevector in the 3D BZ becomes k = (κ, kz).
Given a gauge for the Bloch states that is periodic in kz,
|ψnκ,kz+2π/c〉 = |ψnκkz 〉, the corresponding HW func-
tions are defined as

|hlnκ〉 =
1

2π

∫ π/c

−π/c
e−ikzlce−iκ·r|ψnκkz 〉 dkz, (11)

where the index l runs over unit cells along z, and n runs
over the J HW functions in one unit cell. By factoring
out e−iκ·r, we have made the HW functions cell periodic
in the in-plane directions, hlnκ(r + R) = hlnκ(r) for any
in-plane lattice vector R. This will be convenient later
on when we define Berry curvatures and Chern numbers
in the HW representation.

For each κ in the projected 2D BZ, we choose the
multiband gauge for the Bloch states in such a way that
the HW functions have the smallest possible quadratic
spread along z. Such maximally-localized HW functions
satisfy the eigenvalue equation [18]

PκzPκ|hlnκ〉 = zlnκ|hlnκ〉, (12)

where Pκ is the projection operator onto the space of va-
lence states with in-plane wave vector κ. The eigenvalues
in Eq. (12) are the HW centers

zlnκ = 〈hlnκ|z|hlnκ〉 , (13)

which form Wannier bands. These are periodic in real
space along z, as well as in the in-plane reciprocal space,

zlnκ = z0nκ + lc , zln,κ+G = zlnκ , (14)

where G is an in-plane reciprocal lattice vector.
A Wannier band structure is said to be gapped if it

contains at least one Wannier band per vertical cell that
is separated from the band below by a finite gap at all
κ. When that is the case, we choose the cell contents in
such a way that the first band, n = 1, has a gap below it.

2. Chern numbers of Wannier bands

The Berry curvature of a HW state is defined as

Ωln = −2 Im 〈∂kxhln|∂kyhln〉 , (15)

and periodicity along z implies that Ωln = Ω0n. (Here
and in the following, we will frequently drop the index κ.)
When the Wannier spectrum is gapped, it becomes possi-
ble to associate a Chern number with each isolated group
a of bands within a vertical cell,

Cla =
1

2π

∫
2DBZ

∑
n∈a

Ωln d
2k = C0a . (16)

From the HW states in a given group, one can construct
Bloch-like states at any k = (kx, ky, kz) by inverting
Eq. (11). In general these are not energy eigenstates, and
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their band indices label Wannier bands rather than en-
ergy bands. Their Berry curvatures along z are given by

Ωzn(kx, ky, kz) =
∑
l

eikzlcΩ0n,ln(kx, ky) , (17)

where

Ω0n,ln = i〈∂kxh0n|∂kyhln〉 − i〈∂kyh0n|∂kxhln〉 (18)

is a matrix generalization of Eq. (15) [19]. To evaluate
the net Chern number Ca(kz) of that group of Bloch-
like states on a slice of the 3D BZ, we insert Eq. (17) in
Eq. (6) and restrict the summation over n to n ∈ a. The
contributions from the l 6= 0 terms drop out,1 yielding

Ca(kz) = C0a . (19)

Hence the Chern numbers are the same in the Bloch-like
and HW representations, as expected since the two repre-
sentations are related by a unitary transformation. When
the group a comprises all J Wannier bands in one ver-
tical cell, its Chern number becomes equal to the Chern
index C3 of Eq. (5), which vanishes by assumption.

III. MIRROR-SYMMETRIC WANNIER BANDS

With the above background material in hand, we now
return to our system of interest – a 3D insulator with Mz

symmetry – and construct HW functions localized along
the direction z orthogonal to the mirror plane. We begin
this section by discussing the generic features of Wannier
band structures with Mz symmetry.

A. Flat vs dispersive bands, and the uniform
parity assumption

If Mz is a symmetry of the system, the operator PzP
anticommutes with Mz. It follows that if a HW func-
tion |hln〉 satisfies Eq. (12) with eigenvalue zln, Mz|hln〉
satisfies it with eigenvalue −zln. Since zln is only de-
fined modulo c, two situations may occur. (i) |hln〉 and
Mz|hln〉 are orthogonal, in which case a pair of disper-
sive bands appear at ±zln. (ii) |hln〉 and Mz|hln〉 are the
same up to a phase, in which case |hln〉 is an eigenstate
of Mz, and a single flat band appears at either z = 0
(A plane) or z = c/2 (B plane). The Wannier bands of
the system can therefore be classified into flat bands of

1 The expression for Ca(kz) involves
∫ 2π/a
0 ∂kxY0n,ln(kx) dkx

where Y0n,ln(kx) =
∫ 2π/b
0 Ay0n,ln(kx, ky) dky , and another simi-

lar integral
∫ 2π/b
0 ∂kyX0n,ln(ky) dky . When l 6= 0 the quantity

Y0n,ln(kx) becomes fully invariant under band-diagonal gauge
transformations of the HW states. Hence its value at kx = 2π/a
must be the same as at kx = 0, and the integral vanishes.

even or odd mirror parity at A; flat bands of even or odd
mirror parity at B; and dispersive pairs appearing at ±z.

If there are several flat bands on a given mirror plane
and not all of them have the same parity, those of oppo-
site parity will generally have a nonzero PzP matrix ele-
ment between them, and will tend to hybridize and split
to form dispersive pairs. Thus, all flat bands pinned at
A are expected to have the same parity pA, and all flat
bands pinned at B are expected to have the same parity
pB. Following Ref. [13], we call this the “uniform parity”
assumption. As discussed in Ref. [13], this assumption is
closely related to a well-known theorem on the minimum
number of zero-energy modes in bipartite lattices [20–22].

Under the uniform parity assumption, the numbersNA

and NB of flat bands at A and B can be expressed in
terms of the imbalance between even- and odd-parity va-
lence Bloch states at the mirror-invariant plane(s) in the
BZ. For a type-1 mirror we have

NA =
1

2
|∆NG + ∆NX| (20)

and

NB =
1

2
|∆NG −∆NX| , (21)

where ∆NG and ∆NX denote the excess of even over
odd valence states at G and X, respectively. Hence if the
mirror-parity content is balanced at both G and X, flat
Wannier bands are absent from both A and B; if is it is
balanced only at G but not at X or vice-versa, the same
number of flat bands is present at A and at B; and if it
is unbalanced at both G and X, the number of flat bands
at B can differ from the number at A. The corresponding
relation for a type-2 mirror is

NA = NB =
1

2
|∆NG| . (22)

Equations (20-22) are derived in Appendix A.

B. Types of generic degeneracies

In this section, we consider the types of degeneracies
that are typical of the Wannier spectra of insulators with
Mz symmetry. We call a degeneracy generic when it
occurs without the assistance of any symmetries other
than Mz. If in addition the degeneracy is codimension
protected, we call it accidental.

Accidental degeneracies away from the A and B planes
have codimension three, and hence they require fine tun-
ing. On the mirror planes, there are two types of generic
degeneracies: multiple flat bands pinned to the same
plane, and accidental touchings, at isolated points in the
2D BZ, between one or more pairs of dispersive bands.
Other possibilities such as nodal lines are non-generic
and will not be considered further. In the following we
focus on the A plane z = 0, but the discussion would be
identical for the B plane z = c/2.
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1. Point nodes between pairs of dispersive bands

If there are no flat bands pinned at z = 0, any bands
near z = 0 must come in dispersive pairs at ±z. If there is
a single pair, we construct from the two HW functions at
each κ a pair of orthogonal states with opposite parities
about z = 0. In this basis, the z operator is represented
by a matrix of the form(

0 fκ
f∗κ 0

)
, (23)

with eigenvalues zκ = ±|fκ|. The two bands touch at
z = 0 when |fκ| = 0, and for that to happen both the real
and imaginary parts of fκ must vanish; this means that
such degeneracies have codimension two, and hence they
occur at isolated points in the 2D BZ. (When the bands
disperse linearly close to the nodal point, the degeneracy
is called a “Dirac node.”) If more than one dispersive
band pair is involved, fκ becomes a matrix. The degen-
eracy condition det(fκ) = 0 again leads to point nodes
on the z = 0 plane. Generically, these are simple nodes
where only two bands meet. However, with additional
symmetries or fine tuning, more than one pair of bands
may become degenerate at a given node.

In summary, pairs of dispersive Wannier bands can
touch accidentally at isolated points on a mirror plane
free of flat bands. We note that the same happens,
and for the same mathematical reasons, with the energy
bands of models with sublattice symmetry [22].

2. Flat bands repel point nodes

When one or more flat bands are present at z = 0, they
gap out the point nodes. Let us show this for the simplest
case of one flat band surrounded by a dispersive pair.
Choosing a basis of Mz eigenstates within this three-band
space, the matrix representation of the z operator takes
the form  0 fκ gκ

f∗κ 0 0
g∗κ 0 0

 , (24)

where we have chosen the first basis state to have the op-
posite mirror parity from the other two. The eigenvalues
are zκ = 0 (flat band) and zκ = ±

√
|fκ|2 + |gκ|2 (dis-

persive pair). An accidental degeneracy between the pair
requires the real and imaginary parts of both fκ and gκ
to vanish (codimension four). In general this cannot be
achieved by adjusting κ alone; it also requires fine tuning
the parameters fκ and gκ.

In conclusion, flat bands and point nodes do not gen-
erally coexist on a mirror plane. Although we have only
shown this for the case of one flat band plus one dispersive
pair, the same result is expected to hold when several flat
bands and/or dispersive pairs are present. That scenario
has in fact been considered for the analogous problem of
energy bands in models with sublattice symmetry [22].

3. Spinful time-reversal symmetry excludes flat bands

The presence of flat bands on the mirror planes can
sometimes be ruled out on the basis of symmetry. This
is the case for a crystal that has both Mz symmetry and
spinful time-reversal symmetry T . Since [PκzPκ, T ] = 0,
the standard Kramers-degeneracy argument applies to
the Wannier bands: if |hκ〉 is an eigenstate of PκzPκ

with eigenvalue zκ, then |h′−κ〉 = T |hκ〉 is an orthogonal
eigenstate with the same eigenvalue. Now suppose that
|hκ〉 is a flat-band state at A, with Mz eigenvalue λ = ±i.
Then |h′−κ〉 is also a flat-band state, and using [Mz, T ] =
0 we find that its mirror eigenvalue is λ∗ = −λ. Since
the two flat bands have opposite mirror eigenvalues, they
will generally hybridize to form a dispersive pair.

Another example is a crystal that has both Mz symme-
try, and spinful T combined with inversion I. The com-
bined symmetry I∗T renders the energy bands Kramers-
degenerate at every k, and since [Mz, I ∗ T ] = 0 and
Mz has purely imaginary eigenvalues, Kramers pairs of
Hamiltonian eigenstates on the invariant BZ planes have
opposite Mz eigenvalues. The mirror-parity content is
therefore balanced on those planes, and from Eqs. (20-
22) we conclude that both NA and NB vanish. (Note
that while the energy bands are Kramers degenerate in
the presence of I ∗ T symmetry, the Wannier bands are
not. The difference is that I ∗ T commutes with the
Hamiltonian, but it anticommutes with PzP .)

In summary, spinful time-reversal symmetry, either by
itself or in combination with inversion, rules out the pres-
ence of flat Wannier bands on the mirror planes (under
the uniform parity assumption).

C. Chern numbers in gapped band structures

When an Mz-symmetric Wannier band structure is
gapped, the J bands per cell can be grouped into three in-
ternally connected collections [13]: one containing bands
that are pinned at A (over the entire 2D BZ or at isolated
κ points), another containing bands that are pinned at
B, and a third containing “unpinned” bands, in the sense
that they do not touch the mirror planes anywhere in the
2D BZ. In Ref. [13] these three collections were called
origin-centered, boundary-centered, and uncentered, re-
spectively.

Letting α = A or B, in each vertical cell l there are in
general

• Nα+ flat bands at α of even parity,

• Nα− flat bands at α of odd parity,

• Ñα dispersive bands touching at α

in the α-pinned collection, and ÑUC dispersive bands in
the unpinned collection. (At this stage we do not yet as-
sume uniform parity for the flat bands, nor do we invoke
the fact that flat bands repel point nodes.) In the home
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cell l = 0, the dispersive bands in the A-pinned collection
come in pairs at ±z, and those in the B-pinned collection
come in pairs at z and c− z. In the case of the unpinned
collection we have a choice, since the mirror-symmetric
partners never become degenerate; for definiteness, we
choose the contents of the home cell so that the bands in
the unpinned collection come in pairs at ±z.

For each of the seven groups listed above, we can add

up the Chern numbers in that group to get Cα± , C̃α,

and C̃UC, keeping in mind that their sum C3 vanishes by
assumption,

CA + CB + C̃UC = 0 , (25)

where Cα = Cα+ + Cα− + C̃α is the net Chern number
of the α-pinned collection. We further decompose each
of the three dispersive band subspaces into even and odd
sectors about their centers, and assign separate Chern
numbers to them,

C̃α = C̃α+ + C̃α− , (26a)

C̃UC = C̃UC+ + C̃UC− , (26b)

as described in Appendix B. There we show that

C̃α+ − C̃α− = Wα , (27)

where Wα is the sum of the winding numbers (defined
in Sec. V C 1) of all the nodal points in the projected 2D
BZ on the α mirror plane. Hence

Wα = C̃α − 2C̃α− , (28)

so that C̃α has the same even or odd parity as Wα. Since
band pairs in the unpinned collection do not touch on
the special planes, by applying the same argument in
Appendix B that leads to Eq. (27) we obtain

C̃UC+ = C̃UC− , (29)

which implies that their sum C̃UC is always an even num-
ber.2

IV. MIRROR CHERN NUMBERS IN THE
HYBRID WANNIER REPRESENTATION

We are finally ready to evaluate the MCNs in the HW
representation, and then relate them to the axion Z2 in-
dex. In Sec. IV A we consider the case of a gapped Wan-
nier spectrum, and in Sec. IV B we treat the gapless case.

2 The fact that C̃UC is even can also be seen as follows [13]. The
unpinned collection is formed by two disconnected groups of
bands related by Mz symmetry, which imposes the same Berry
curvature at every κ in the two groups, and hence the same
Chern number.

TABLE I. Parities under a type-1 mirror Mz of Bloch-like
states constructed from HW functions that are maximally lo-
calized along z. For spinful electrons, the parity is said to be
“even” or “odd” when the Mz eigenvalue is +i or −i.

Bloch representation

G+ = even about A (and even about B)

G− = odd about A (and odd about B)

X+ = even about A (and odd about B)

X− = odd about A (and even about B)

Hybrid Wannier representation

A+ = even about A, generates G+ and X+

A− = odd about A, generates G− and X−

B+ = even about B, generates G+ and X−

B− = odd about B, generates G− and X+

pairs C and C′, generates G+G− and X+X−

A. Gapped Wannier band structure

To recap, a generic gapped Wannier band structure
with Mz symmetry consists of seven band collections per
cell. The four that are flat have well-defined mirror pari-
ties, and the three that are dispersive can be decomposed
into even and odd sectors. This yields a total of ten HW
groups with well-defined parities, each carrying its own
Chern number.

1. Type-1 mirrors

To evaluate the MCNs µG and µX, we construct from
each of the ten HW groups a group of Bloch-like states by
performing Bloch sums along z, and recall from Eq. (19)
that their Chern numbers on any constant-kz BZ slice
(and, in particular, at G and X) are the same as the
Chern numbers of the parent HW groups. The final
needed ingredient is Table I, which tells the mirror par-
ities at G and X of the Bloch groups coming from each
of the HW groups. That table is valid for both spinless
and spinful mirror symmetry Mz, and it agrees with the
parity rules for inversion symmetry I in 1D [13]; this is
consistent with the fact that Mz = I ∗ Cz2 acts along z
in the same way as I.

To evaluate µG, we need to split the occupied Bloch
space at G into even- and odd-parity sectors about A.
According to Table I, their Chern numbers are

C±G =
(
CA± + C̃A± + C̃±UC

)
+
(
CB± + C̃B±

)
, (30)

where the first and second groups of terms correspond
to Wannier groups that are even or odd about A and B,
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respectively. Inserting this expression into Eq. (8) for µG

and then using Eqs. (27) and (29), we find

2µG =
(
CA+ − CA−

)
+
(
CB+ − CB−

)
+WA +WB . (31)

Under the uniform parity assumption the first group of
terms becomes pACA, where CA is the total Chern num-
ber of the flat bands at A, all of the same parity pA = ±1;
similarly, the second group becomes pBCB. Thus we ar-
rive at

µG =
1

2

(
pACA +WA

)
+

1

2

(
pBCB +WB

)
, (32)

and via similar steps Eq. (9) for µX turns into

µX =
1

2

(
pACA +WA

)
− 1

2

(
pBCB +WB

)
. (33)

Out of the three collections in a type-1 disconnected band
structure, the uncentered collection does not contribute
to the MCNs; and the A-centered and B-centered ones
contribute as in Eqs. (32) and (33).

Equations (32) and (33) are a central result of this
work, and in the following sections we will extract sev-
eral conclusions from them. In practical applications,
those equations can often be simplified: since flat bands
and point nodes do not generically coexist on the mirror
planes, at least one of the two terms inside each paren-
thesis will typically vanish.

Before proceeding, let us verify that Eq. (32) correctly
yields an integer value for µG when C3 = 0. First we
eliminate the winding numbers from Eq. (32) with the
help of Eq. (28), and then we take mod 2 on both sides
of the resulting equation to find

2µG mod 2 =
(
CA + C̃A + CB + C̃B

)
mod 2

= −C̃UC mod 2 , (34)

where Eq. (25) was used to go from the first to the second

line. Given that C̃UC is an even number, we conclude
that µG is an integer. The proof is identical for Eq. (33).

We emphasize that the separate contributions from the
A- and B-centered collection to Eqs. (32) and (33) are not
always integer-valued. As can be seen from Eq. (36) be-
low, those contributions assume half-integer values when
the axion angle is quantized to θ = π by mirror symme-
try; a concrete example where this happens will be given
in Sec. VI C.

2. Relation to the quantized axion coupling

As mentioned in the Introduction, mirror symmetry
belongs to the group of “axion-odd” symmetries that re-
verse the sign of the axion angle θ. When one or more
such symmetries are present in a 3D insulator with a van-
ishing Chern vector, θ is restricted to be zero or π mod
2π, becoming a Z2 topological index.

In the case of mirror symmetry, where the band topol-
ogy is already characterized by the MCNs, there should
be a relation between them and the quantized θ value.
Below we derive that relation for an insulator with a type-
1 mirror and a gapped Wannier spectrum. To that end,
we make use of the formalism of Ref. [13] for expressing
θ in the HW representation.

First we write µG + µX by combining Eqs. (32) and
(33), and eliminate the winding numbers using Eq. (28).
Then we take mod 2 on both sides to find

(µG + µX) mod 2 = CA mod 2 . (35)

Comparing with the relation θ/π = CA mod 2 [13], valid
for a gapped spectrum in the presence of a z-reversing
axion-odd symmetry such as Mz, we conclude that

θ

π
= (µG + µX) mod 2 . (36)

Thus, the system is axion-even (θ = 0) or axion-odd
(θ = π) depending on whether the sum of the two MCNs
associated with Mz is even or odd. Previously, this result
had been inferred from an argument based on counting
Dirac cones in the surface BZ [14, 15]. Here, we have
obtained it directly as a formal relation between bulk
quantities expressed in the HW representation. As we
will see shortly, the same relation holds when the Wan-
nier spectrum is gapless.

3. Type-2 mirrors

In a crystal with a type-2 mirror, where the planes A
and B are equivalent and G is the only mirror-invariant
plane in reciprocal space, the unique MCN µG is obtained
by setting pB = pA, CB = CA, andWB = WA in Eq. (32),

µG = pACA +WA . (37)

If flat bands are present at A, they repel the point
nodes. Hence WA = 0, and therefore |µG| = |CA|. Inter-
estingly, in this case the magnitude of the MCN does not
depend on the parity of the flat-band states; this simpli-
fies considerably its numerical evaluation, since one does
not need to know how the basis orbitals transform un-
der Mz. Given that only the magnitude (not the sign)
of the MCN is needed to establish the bulk-boundary
correspondence, this is a potentially useful result.

Inserting Eq. (28) for WA in Eq. (37), taking mod 2 on
both sides, and again comparing with θ/π = CA mod 2,
we conclude that in this case the relation between the
axion Z2 index and the MCN reads

θ

π
= µG mod 2 , (38)

as stated in Ref. [15].
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4. Weakly coupled layered crystals

Consider a crystal composed of weakly coupled iden-
tical layers that remain invariant under reflection about
their own planes. Following Ref. [23], we assume that
the layers are stacked exactly vertically. In this case the
reflection symmetry about the individual layers becomes
a type-1 mirror of the 3D structure, with two separate
MCNs µG and µX. In the fully decoupled limit where
there is no kz dependence the G and X reciprocal planes
become equivalent, so that µX = µG ≡ µ2D where µ2D is
the MCN of an isolated layer [Eq. (10)]. But since the
MCNs are integers, they cannot change if a weak inter-
layer coupling is introduced, and from Eqs. (32) and (33)
we obtain

µ2D =
1

2

(
pACA +WA

)
(39)

for the unique MCN of a weakly-coupled layered crystal.
If flat bands are present at A (the plane of a layer),

then WA = 0 and the net Chern number of the valence
bands becomes CA + C̃UC; since the net Chern number

vanishes by assumption and C̃UC is even, µ2D = pACA/2
is clearly an integer. In this case |µ2D| can be determined
without knowing the parity of the flat-band states, as in
the case of a type-2 mirror with flat bands.

Let us now evaluate the axion Z2 index. Since µG +
µX = 2µ2D is an even number, Eq. (36) yields

θ = 0 mod 2π . (40)

This is consistent with the assertion made in Ref. [23]
that weakly-coupled layered topological crystalline in-
sulators are analogous to “weak topological insulators”
with a vanishing strong Z2 invariant ν0.

B. Gapless Wannier band structure

Let us now apply our formalism to a Mz-symmetric
system with a gapless Wannier spectrum. We start out
by noting that such a spectrum must have degeneracies at
both A and B. On those special planes the codimension
is two, so point nodes are allowed. Flat bands can be
ruled out since they would repel any nodes and generate
a gap, and we assume that nodal lines are absent as well.

We are left with a scenario where there are point nodes
at both A and B, and these are connected by Wannier
bands. The only way this can happen without the assis-
tance of other symmetries is if there are only two Wannier
bands, one in each half unit cell, since otherwise there is
generically a gap somewhere in each half cell (accidental
degeneracies away from A and B are not protected, since
the codimension is three). With the assistance of other
symmetries, the gapless spectrum may contain more than
two bands per cell.

To treat the above scenario, we temporarily add a
symmetric pair of occupied orbitals at degeneracy-free

planes ±z0, and initially do not let them hop at all (com-
pletely isolated). This will introduce flat bands on those
planes. Now let the added orbitals hybridize with other
orbitals. Since accidental degeneracies away from the
mirror planes are not protected, gaps will generally open
up between the new and the old Wannier bands (the
only exceptions to this rule are treated in the next para-
graph). And since the added orbitals are topologically
trivial, they have no effect on the MCNs, which can now
be evaluated using the formalism of Sec. IV A for gapped
spectra. Setting CA = CB = 0 in Eqs. (32) and (33)
therein, we obtain

µG =
1

2
(WA +WB) (41)

and

µX =
1

2
(WA −WB) . (42)

But since WA and WB cannot be affected by orbitals
inserted far from the A and B planes, we conclude that
Eqs. (41) and (42) can be directly applied to the original
system with a gapless Wannier spectrum.

The above argument needs to be refined if the system
is an axion-odd insulator that has, in addition to Mz

symmetry, one or more axion-odd symmetries that are
z preserving and symmorphic (e.g., spinful time rever-
sal or vertical mirrors). The Wannier spectrum is then
guaranteed to be gapless, with adjacent bands touching
at an odd number of Dirac nodes [13]. The solution is to
weakly break all such symmetries via some low-symmetry
perturbation; the band connectivity then becomes “frag-
ile,” allowing gaps to open up once the added orbitals
hybridize with the original ones [13, 24]. The rest of the
argument proceeds as before, again with the conclusion
that Eqs. (41) and (42) can be directly applied to the
original system with a gapless spectrum. This scenario
is illustrated in Sec. VI C 2, where the orbital insertion
itself acts as the symmetry-lowering perturbation.

To conclude, let us show that the relation (36) between
the MCNs and the axion angle remains valid for gapless
spectra. Equations (41) and (42) give µG + µX = WA,
while θ is equal to the sum of Berry phases of vanishingly
small loops around the nodes at A [13]. Since those Berry
phases divided by π are equal to the node winding num-
bers modulo 2 [25], Eq. (36) is immediately recovered.

V. METHODS

A. Tight-binding, ab initio, and Wannier methods

In this work, the formalism for evaluating MCNs in
the HW representation is implemented in the tight-
binding (TB) framework, using a modified version of the
PythTB code [26]. Illustrative calculations are carried
out for 2D and 3D models with mirror symmetry; some
are simple toy models, while others are obtained from



10

ab initio calculations as described below. Each model is
specified by providing the on-site energies, the hopping
amplitudes, and the matrix elements of the position and
mirror operators.

In the TB literature, it is common to assume that the
position operator is represented by a diagonal matrix in
the TB basis,

〈ϕRi|r|ϕR′j〉 = (R + τi)δR,R′δij (43)

where τi is the location of the ith basis orbital in the
home cell R = 0. This approximation is problematic for
calculating the Wannier bands of unbuckled monolayers,
since it forces all bands to lie flat on the z = 0 plane:
when all basis orbitals lie on the z = 0 plane and all off-
diagonal matrix elements 〈ϕRi|z|ϕR′j〉 vanish, the matrix
Zκ that is diagonalized to obtain the HW centers [see
Eqs. (44) and (45)] is the null matrix.

To apply our formalism to flat monolayers, any flat
Wannier bands that may be present must be robust and
satisfy the uniform parity assumption, while all other
bands must be dispersive. To ensure that this is so, one
should retain some off-diagonal z matrix elements. For
models based on ab initio Wannier functions this occurs
naturally, since the position matrix elements between the
Wannier functions are explicitly calculated, and they are
generally nonzero for nearby Wannier functions. In the
case of toy models, one needs to assign nonzero values to
some of the off-diagonal z matrix elements under reason-
able assumptions.

The material chosen for the ab initio calculations is
SnTe, which we study as a flat monolayer in Sec. VI A and
as a bulk phase in Sec. VI B. We first calculate the elec-
tronic structure from density-functional theory (DFT)
using the GPAW code [27], and then use the Wannier90
code [28] to construct well-localized Wannier functions.
Lastly, TB models are generated by tabulating the ma-
trix elements of the Kohn-Sham Hamiltonian and of the
position operator between those Wannier functions.

The self-consistent DFT calculations are performed
without including spin-orbit coupling, which is added af-
terwards non-selfconsistently [29]. We use the Perdew-
Burke-Ernzerhof exchange-correlation functional [30, 31],
and describe the valence-core interaction via the projec-
tor augmented wave method [32]. The valence states are
expanded in a plane-wave basis with an energy cutoff of
600 eV, and the BZ is sampled on Γ-centered uniform
grids containing 6× 6× 1 and 6× 6× 6 points for mono-
layer and bulk SnTe, respectively. The projector aug-
mented wave setup includes the 4d semicore states of Sn
in addition to the 5s and 5p states of Sn and Te, yielding
a total of 20 valence electrons for each SnTe formula unit
(one per cell for the monolayer, and two for the bulk).

For each formula unit, we construct 16 spinor Wannier
functions of s and p character spanning the upper-valence
and low-lying conduction band states. The Sn 4d states,
which give rise to flat bands lying 22 eV below the Fermi
level, are excluded from the Wannier construction.

As a first step towards obtaining well-localized Wan-
nier functions, we extract from the space of ab initio
Bloch eigenstates at each grid point k an N -dimensional
subspace with the desired orbital character (N = 16
for the monolayer, and N = 32 for the bulk). This is
achieved via the “band disentanglement” procedure of
Ref. [33], which involves specifying two energy windows,
known as the inner and the outer window, and a set of
trial orbitals. The outer window encloses all the valence
bands except for the 4d semicore states, as well as all
the low-lying conduction states of 5s and 5p character.
To ensure that the valence states are exactly preserved
in the disentangled subspace, we “freeze” them inside an
inner window. An initial guess for the target subspace
is obtained by projecting atom-centered s and p trial or-
bitals onto the outer-window states. This is followed by
an iterative procedure that yields an optimally-smooth
disentangled subspace across the BZ [33].

Having extracted a suitable Bloch subspace, we pro-
ceed to construct well-localized s- and p-like Wannier
functions spanning that subspace. This is done by pro-
jecting onto it the same s and p trial orbitals that were
used in the disentanglement step, and then orthogonal-
izing the resulting orbitals via the Löwdin scheme [18].
This one-shot procedure, without additional maximal-
localization steps [18], ensures that the Wannier func-
tions retain the orbital character of the trial orbitals.

To assess the quality of the Wannier basis we calculate
the energy bands from the Hamiltonian matrix elements
in that basis [33], and find that they are in excellent
agreement with the ab initio bands obtained using the
GPAW code [34].

In addition to the Hamiltonian and position matrix
elements, we also require the matrix elements of the mir-
ror operator Mz in the Wannier basis. These are needed
to determine the winding numbers of the nodal touch-
ings between Wannier bands on the mirror planes (see
Sec. V C), as well as the mirror parities pA and pB of
the flat-band states. To set up the matrix representation
of Mz, we assume that the Wannier functions transform
under Mz in the same way as pure s and p orbitals. We
find that the eigenstates of the Wannier Hamiltonian on
the mirror-invariant BZ planes are, to a good approxima-
tion, eigenstates of this approximate Mz operator, which
validates that assumption.

B. Construction of hybrid Wannier functions and
Wannier bands

Formally, maximally-localized HW functions satisfy
the eigenvalue equation (12). For a 2D or quasi-2D sys-
tem extended along x and y, the matrix elements of the
z operator appearing in that equation are well defined.
It is therefore straightforward to set up the matrix

Zmnk = 〈ψmk|z|ψnk〉 , (44)
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where k = (kx, ky) and m and n run over the J occupied
energy bands, and to diagonalize it,[

U†kZkUk

]
mn

= zmkδmn . (45)

The eigenvalues are the HW centers, and from the eigen-
vectors (the columns of the Uk matrix) we can construct
the maximally-localized HW functions according to

|hnk〉 =
∑
m

e−ik·r|ψmk〉Umnk , (46)

where the phase factor has been included to render them
in-plane periodic.

For bulk systems, which are extended in all directions
including the wannierization direction z, the above proce-
dure fails because the matrix elements in Eq. (44) become
ill defined. In such cases, it is still possible to construct
maximally-localized HW functions by working in recip-
rocal space. We now write k = (κ, kz), and choose a
uniform grid; for each point κ in the projected 2D BZ,
the problem reduces to the construction of 1D maximally-
localized Wannier functions along z. The procedure is de-
tailed in Refs. [5, 18]. Briefly, the first step is to establish
a “twisted parallel transport gauge” for the valence Bloch
states along the string of kz points at each κ, obtaining
as a byproduct the HW centers zlnκ. The maximally-
localized HW functions |hlnκ〉 are then constructed in
this gauge using Eq. (11), with the integral over kz re-
placed by a summation over the string of kz points.

C. Winding number of a point node on a mirror
plane

1. Definition

Consider a point node κj where N pairs of dispersive
Wannier bands meet on a mirror plane, and let Mz

κ be
the matrix representation of the Mz operator in the basis
of the associated HW functions at a nearby point κ,

Mz
mnκ = 〈hmκ|Mz|hnκ〉 . (47)

Here, m and n run over the 2N Wannier bands that
meet at κj . By diagonalizingMz

κ and then transforming
the |hnκ〉 states accordingly [see Eqs. (45) and (46)], we

obtain a new set of 2N states |h̃nκ〉. Like the original
ones they are cell-periodic in plane and localized along
z, but they have definite mirror parities. We choose the
first N to be even under Mz, and denote them as |h̃+

lκ〉;
the remaining N are odd under Mz, and we denote them
as |h̃−lκ〉. In both cases, l goes from 1 to N .

The matrix representation of the z operator in the new
basis takes the form of Eq. (23), where fκ is the N ×N
matrix with elements

fll′κ = 〈h̃+
lκ|z|h̃−l′κ〉 . (48)

Letting

γκ = arg(det fκ) , (49)

the winding number of node κj is defined as [35]

Wj =
1

2π

∮
cj

∂κγκ · dκ , (50)

where the integral is over a small circle around the node.

2. Numerical evaluation

Suppose a single pair of Wannier bands meet at a point
node κj . To evaluate the winding number (50), the phase
γκ must be smooth on cj . In practice, we establish a

smooth gauge for the states |h̃±κ 〉 as follows. We pick a
representation of the two states at a reference point κ′j in
the vicinity of the node. Then at any point κ′j + ∆κ on
the circle cj we choose the gauge by enforcing maximal
phase alignment with the states at κ′j , i.e., by requir-

ing that the overlaps 〈h̃+
κ′j
|h̃+

κ′j+∆κ〉 and 〈h̃−κ′j |h̃
−
κ′j+∆κ〉 are

real and positive. In other words, we carry out a one-step
parallel transport from κ′j to each circumference point.

If several pairs of bands meet at a node, the strategy is
basically the same. The only difference is that one must
now use the multiband version of the parallel-transport
procedure [5, 18].

VI. NUMERICAL RESULTS

In this section, we use our formalism to calculate the
MCNs of three different systems. The first is an unbuck-
led monolayer of SnTe, a topological crystalline insulator
protected by reflection symmetry about its plane. The
second is rocksalt SnTe, a 3D topological crystalline in-
sulator protected by a type-2 mirror. Our last example
is a 3D toy model based on a modified Dirac equation. It
is both a strong topological insulator protected by time-
reversal symmetry, and a topological crystalline insulator
with a type-1 mirror. In the first example the Wannier
spectrum is trivially gapped, while in the other two it is
gapless.

A. Unbuckled monolayer of SnTe

The structure we consider is shown in Fig. 2(a). It
consist of a single unbuckled layer of Sn and Te atoms
arranged in a checkerboard pattern, which can be viewed
as a single (001) layer of the bulk rocksalt structure.

DFT calculations reveal that the system with an opti-
mized lattice constant of a = 6.16 Å is situated 0.4 eV
above the convex hull and is dynamically unstable [36],
and that a buckled structure that breaks mirror symme-
try is energetically favored [37]. These results imply that
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FIG. 2. (a) Atomic structure of monolayer SnTe. The black
square is the conventional unit cell with lattice constant a,
and the red square is the primitive cell with lattice constant
a′ = a/

√
2. (b) Brillouin zone and high-symmetry points.

a flat SnTe monolayer is not likely to be experimentally
relevant. This system is nevertheless ideally suited for
illustrating our methodology, since it has reflection sym-
metry about its own plane and the associated MCN is
nonzero [38].

We carry out calculations using the primitive cell con-
taining one formula unit. The Wannier-interpolated en-
ergy bands are shown in Fig. 3(a), where all bands are
doubly degenerate due to time-reversal and inversion
symmetry. There is a robust inverted gap (0.3 eV) at
the X point, and a tiny indirect gap (0.17 meV) around
the X point; when the lattice expands the indirect gap
increases, and when it shrinks the system turns into a
band overlap semimetal [37, 38]. The lowest four valence
bands are predominantly s-type, and the remaining six
(plotted in red) are predominantly p-type.

Figure 3(b) shows the Wannier bands calculated from
the Bloch states in the p-type upper valence bands. The
spectrum consists of three mirror-symmetric band pairs
that touch on the A plane z = 0 at isolated points in
the 2D BZ. There are no flat bands on that plane, as
expected from the presence of time-reversal symmetry
(Sec. III B 3). Equation (39) therefore reduces to

µ2D =
1

2
WA , (51)

and the MCN can be determined by evaluating the wind-
ing numbers of the nodal points on the A plane.

To locate those nodal points, we plot in Fig. 3(c) the
“gap function”

gk = − log(∆zk/c) , (52)

where ∆z(k) is the separation between the central pair of
bands. Regions with a small gap appear in dark gray, and
nodal points as dark spots. The positions and winding
numbers of all the nodal points are indicated in the figure,
where we have included only one of the periodic images
when a node falls on the BZ boundary. At Γ and M there
are nodes where three pairs of Wannier bands touch, with
winding numbers Wj = −3 and Wj = +1, respectively.

All other nodes on the z = 0 plane are simple Dirac
nodes where only the two central bands meet, and they
have Wj = ±1. Adding up the winding numbers of the
36 nodal points in the BZ we obtain WA = −4, and from
Eq. (51) we conclude that the group of six p-type valence
bands has a MCN of −2.

We repeat the calculation for the four s-type lower va-
lence bands, and find that their net winding number van-
ishes. The net MCN of the occupied states is therefore
µ2D = −2, with the nontrivial topology coming from the
p states. This result agrees with the value |µ2D| = 2
inferred from a k · p analysis of the simultaneous band
inversions at the two X points in the BZ [17, 38].

B. Bulk SnTe

Bulk SnTe, which crystallizes in the rocksalt struc-
ture, is known both from theory [16] and experiment [39]
to be a topological crystalline insulator. The symme-
try protecting its nontrivial band topology is reflection
about the {110} family of planes. (Instead, the (001)
mirror symmetry responsible for the topological state of
the monolayer is topologically trivial in the bulk crystal.)

The lattice is face-centered cubic lattice, so that the
shortest lattice vector perpendicular to the (110) planes is
a3 = ax̂/2+aŷ/2. Since its length is twice the separation
between adjacent planes, the (110) mirror operation is of
type 2, as is typical of centered lattices (see Fig. 1).

For our simulations we pick a tetragonal cell subtended
by a1 = −ax̂/2+aŷ/2, a2 = aẑ, and a3, and reorient the
axes such that those vectors point along x̂, ŷ, and ẑ, re-
spectively. In this new frame, the (110) mirror operation
of interest becomes Mz. The simulation cell with two
formula units is shown in Fig. 4(a), and the associated
BZ in Fig. 4(b).

In Fig. 5(a) we present the energy bands calculated
along the high-symmetry lines of the folded BZ. The non-
trivial topology arises from simultaneous band inversions
at the two L points in the unfolded BZ [16], which map
onto the two R points in Fig. 4(b). The inverted band
gap at R and the global indirect band gap amount to 0.3
and 0.1 eV, respectively.

From the full set of valence band states, we construct
HW functions localized along z. The Wannier spectrum
is shown in Fig. 5(b). Its periodicity is c/2 because the
cell is doubled along z, and only one period is shown. The
spectrum is gapless, with two pairs of bands crossing in
opposite directions, between X and Γ, the gap centered
at z = c/4 (only one of the two crossings is shown). This
spectral flow arises from the nonzero MCN associated
with My symmetry (equivalent to Mz), which leaves in-
variant the BZ plane containing the Γ, X, R2, and Y2

points. For a discussion of such “in-plane” Wannier flow
associated with a nonzero MCN, see Ref. [40].

Since Mz is a type-2 mirror, we evaluate its unique
MCN using Eq. (37). And since the Wannier spectrum
is gapless, and hence devoid of flat bands, we set CA = 0
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FIG. 3. (a) Energy bands of monolayer SnTe, with the s-type lower valence bands that are exluded from the Wannierization
shown in grey. All bands are doubly degenerate, and the Fermi level is indicated by the dashed line. (b) Wannier bands
obtained from the Bloch states in the six p-type upper valence bands. (c) Heatmap plot of the gap function of Eq. (52) for
the central pair of Wannier bands, where zero-gap points (nodal points) appear as dark spots. Those with winding numbers
Wj = ±1 are indicated by red or blue circles, while the one with Wj = −3 at the Γ point is indicated by a blue triangle. Dashed
circles denote pairs of nearby nodes with equal and opposite winding numbers. When a node falls on the BZ boundary, only
one of the periodic images is shown.

x y

z

FIG. 4. (a) Rocksalt structure of bulk SnTe in a tetragonal
conventional cell. a is the lattice constant of the conventional
cubic cell, and b = c = a/

√
2. Green planes are equivalent

mirror planes. (b) Brillouin zone associated with the tetrag-
onal cell, with its high-symmetry points indicated in red and
the unique Mz-invariant plane in green. The projected 2D
Brillouin zone with its high-symmetry points is shown on top.

in that equation to obtain

µG = WA , (53)

which says that the MCN equals the sum of the winding
numbers of all the point nodes on the z = 0 plane.

As indicated in Fig. 5(d), there are 16 independent
point nodes in total on that plane, all of them simple
nodes where only two bands meet. Seven have winding
numbers +1 and the other nine have winding numbers
−1, yielding µG = −2 for the MCN. This value is in
agreement with that originally obtained in Ref. [16] from
a k ·p analysis of the band inversions. Using Eq. (38), we
confirm that the system is axion-trivial.

C. Modified Dirac model on a cubic lattice

In this section we study a 3D toy model constructed by
first modifying the free Dirac equation to enable topologi-
cal phases for certain parameter values, and then placing
it on a cubic lattice. The 4×4 Hamiltonian matrix in
reciprocal space reads [41, 42]

H(k) =


m− 2MK(k) 0 c sin kz c(sin kx − i sin ky)

0 m− 2MK(k) c(sin kx + i sin ky) −c sin kz
c sin kz c(sin kx − i sin ky) −m+ 2MK(k) 0

c(sin kx + i sin ky) −c sin kz 0 −m+ 2MK(k)

 , (54)

where K(k) = 3−cos kx−cos ky−cos kz, and c, m, and M
are dimensionless parameters inherited from the original
isotropic modified Dirac equation [41] by setting the rest
mass m0c

2 to be the energy scale of the model [42].

The topological phase diagram of the half-filled model
is shown in Fig. 6 for c = 1.0. The system is gapped

except on the m = 0, 4M, 8M, 12M lines, where the gap
closes at Γ = (0, 0, 0), X = (π, 0, 0), M = (π, π, 0), and
A = (π, π, π), respectively. As shown in Appendix C,
those metallic lines separate axion-trivial from axion-odd
insulating phases.

The axion angle is quantized by several axion-odd sym-
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FIG. 5. (a) Energy bands of bulk SnTe along high-symmetry lines of the folded tetragonal BZ. The Fermi level is indicated
by the dashed line. (b) Wannier band structure obtained from the full set of valence states. (c) Detail of the Wannier bands
around the z = 0 mirror plane. (d) Heatmap plot of the gap function of Eq. (52) for the central pair of Wannier bands around
z = 0, with the nodal points color-coded as in Fig. 3(c).
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FIG. 6. Topological phase diagram of the model of Eq. (54) for
c = 1.0. Orange and blue regions denote axion-even (θ = 0)
and axion-odd (θ = π) phases, respectively.

metries. Some are z-reversing (inversion and horizontal
mirror Mz), and others are z-preserving (spinful time re-
versal and vertical mirrrors). As Mz is a type-1 mirror,
it protects two MCNs that are related to the axion angle
by Eq. (36).

1. Axion-odd phase with protected Wannier flow

For our numerical tests we set c = m = 1.0 and M =
0.5 to put the model in the axion-odd phase. The energy
band structure is shown in Fig. 7(a). The bands are
pairwise degenerate due to the presence of time-reversal
and inversion symmetry, with a finite gap between the
two pairs over the entire BZ. The Fermi level is placed
at midgap.

Since the system is axion-odd and has z-preserving
axion-odd symmetries, the connectivity (or “flow”) of the
Wannier bands is topologically protected [13]. In partic-
ular, spinful time reversal symmetry requires that the
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FIG. 7. (a) Energy bands of the model described by Eq. (54)
with c = m = 1.0 and M = 0.5. The bands are doubly
degenerate, and the Fermi level (dashed line) has been placed
at midgap. (b) Wannier band structure obtained from the
valence states. (c) and (d) Heatmap plots of the gap function
of Eq. (52) about the z = 0 and z = c/2 planes, respectively,
with the nodal points color-coded as in Fig. 3(c).

two bands per vertical cell are glued together as follows:
one band touches the band above at one of the four time-
reversal invariant momenta (TRIM), and it touches the
periodic image below at the other three. As for the z-
reversing axion-odd symmetries, the effect of Mz is to
pin the up-touching to one of the mirror planes and the
three down-touchings to the other, while inversion fur-
ther constrains the four touchings to occur at TRIM on
those planes, as already mandated by time reversal.

The pattern of band touchings described above is con-
firmed by Fig. 7(b), where we plot the Wannier bands.
They were obtained by placing at the origin the four ba-
sis orbitals that belong to the home unit cell, and making
the diagonal approximation of Eq. (43) for the position
matrix. There is one band touching at Γ on the B plane,
and three more on the A plane: one at M, and the others
at the two X points.
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FIG. 8. (a) Energy bands of the same model as in Fig. 7, after
adding an extra pair of occupied orbitals with E = −4.0 at
z = ±0.2c and coupling them to the other orbitals. The bands
are doubly degenerate, and the Fermi level (dashed line) has
been placed at midgap. (b) Wannier band structure obtained
from the valence states, with small gaps around z = ±0.2c
due to the added orbitals.

Since the Wannier spectrum is gapless, the MCNs µG

and µX are given respectively by the half-sum and the
half-difference of the net winding numbers on the A and
B planes [Eqs. (41) and (42)]. As indicated in the gap-
function plots of Figs. 7(c,d), the three nodes at A give
WA = −1 and the single node at B gives WB = −1, so
that µG = −1 and µX = 0. Note that µG + µX is an odd
number, as required by Eq. (36) for an axion-odd system.

2. Axion-odd phase with fragile Wannier flow

If the z-preserving axion-odd symmetries of the model
(time reversal and vertical mirrors) are weakly broken,
the system will remain in an axion-odd phase protected
by Mz and inversion. But since these are z-reversing op-
erations, the Wannier spectrum is no longer topologically
required to be gapless. The Wannier flow is only pro-
tected in a “fragile” sense, and it can be destroyed, while
preserving Mz, by adding some weakly-coupled trivial
bands to the valence manifold [13, 24]. Below we carry
out this procedure in two different ways, and confirm that
the MCNs remain the same as in the original model.

a. Insertion of a symmetric pair of occupied orbitals
Here we implement the strategy outlined in Sec. IV B.
We insert in the unit cell two more orbitals, denoted as
|5〉 and |6〉, that have opposite spins and the same on-site
energy E = −4.0. To break time reversal and the verti-
cal mirrors while preserving Mz and inversion, we place
the spin-up orbital |5〉 at (x, y, z) = (0.0, 0.0, 0.2c), and
the spin-down orbital |6〉 at (x, y, z) = (0.0, 0.0,−0.2c),
keeping the original orbitals |1〉 to |4〉 at the origin. Fi-
nally, we couple the new orbitals to the old via the matrix
elements 〈5|H|1〉 = 〈6|H|2〉 = 0.5. The resulting model
retains the Mz and inversion symmetries of the original
model, and it breaks the time-reversal and vertical mir-
ror symmetries in the Z matrix of Eq. (44) (but not in
the Hamiltonian).

The energy and Wannier band structures are plotted
in Figs. 8(a,b). Because the Hamiltonian has both inver-
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FIG. 9. (a) Energy bands of the same model as in Fig. 7, after
adding an extra occupied orbital at z = 0 and coupling it to
the other orbitals. The Fermi level (dashed line) has been
placed in the gap. (b) Wannier band structure obtained from
the valence states. The added orbital generates a flat band
at z = 0, which repels the nodal points on that plane (lower
panel).

sion and time-reveral symmetry, the energy bands remain
doubly degenerate as in Fig. 7(a). The breaking of the
z-preserving symmetries in the Z matrix is reflected in
the Wannier spectrum which is no longer connected as
in Fig. 7(b), with small gaps opening up near z = ±0.2c.
The node at Γ on the B plane and those at X1, X2, and
M on the A plane remain intact, protected by Mz and
inversion. Their winding numbers are also unchanged,
leading to the same MCNs as in the original model.
b. Insertion of a single occupied orbital at z = 0.

An alternative way of opening up a gap in the Wan-
nier spectrum is to insert a flat band on a mirror plane.
To illustrate this procedure, we add at the origin a single
spin-up orbital |5〉 with on-site energy E = −4.0 and odd
parity about that plane, and couple it to the model via
〈5|H|1〉 = 〈5|H|4〉 = 2.0. Because the orbital is spin-
polarized, it breaks time reversal; and because the spin
points in the vertical direction, it also breaks all vertical
mirrors while preserving Mz. In addition, the coupling
terms break inversion symmetry, leaving Mz as the only
axion-odd symmetry. The energy bands of the modified
model are shown in Fig. 9(a). A new band has appeared
below the other four, so that there are now three valence
bands in total, leading to three Wannier bands.

The added orbital, which belongs to the A+ class in
Table I, generates an extra even-parity state at both G
and X. This creates an imbalance ∆NG = ∆NX = 1
between even- and odd-parity states on the two mirror-
invariant BZ planes, which according to Eq. (20) results
in a flat band at A. We emphasize that this extra band
remains flat even after the added orbital is coupled to the
model, as long as the coupling terms respect Mz symme-
try. As already mentioned, those terms are chosen to
break inversion symmetry. This is needed to ensure that
the three point nodes on the A plane are repelled by the
flat band in the manner described in Sec. III B 2, since
inversion symmetry would otherwise protect them.

The resulting Wannier bands are displayed in the up-
per panel of Fig. 9(b); because of the lowered symme-
try, the node at z = c/2 is no longer pinned to Γ as in
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Fig. 7(b). The lower panel reveals a perfectly flat band
at z = 0, well separated from a pair of dispersive bands
whose three touchings on the z = 0 plane in Fig. 7(c) have
been gapped out. Under these circumstances, Eqs. (32)
and (33) for the MCNs reduce to

µG = 1
2 (pACA +WB) (55)

and

µX = 1
2 (pACA −WB) . (56)

The single node at B has the same winding number
WB = −1 as in the original model, while the net winding
number WA = −1 of the gapped-out nodes at A has been
transferred to the index pACA of the flat band (pA = −1,
and CA = +1). Overall, the MCNs remain unchanged.

VII. SUMMARY

In summary, we have investigated the topological prop-
erties of mirror-symmetric insulating crystals from the
viewpoint of HW functions localized along the direction
orthogonal to the mirror plane. We first clarified the
generic behaviors of the associated Wannier bands, and
then derived a set of rules for deducing the MCNs. To val-
idate and illustrate the formalism, we applied it to SnTe
in the monolayer and bulk forms, and to a toy model of
an axion-odd insulator.

In the HW representation, the MCNs are expressed in
terms of a set of integer-valued properties of the Wannier
bands on the mirror planes: the Chern numbers and mir-
ror parities of flat bands lying on those planes, and the
winding numbers of the touching points on those planes
between symmetric pairs of dispersive bands. One advan-
tage of this representation is that it reveals the relation
between the MCNs and the axion Z2 index from purely
bulk considerations. That relation is far from obvious in
the standard Bloch representation, and previously it had
only been obtained via an indirect argument involving
surface states.

In some cases the axion Z2 index can be determined
by visual inspection of the Wannier band structure, e.g.,
by counting the number of nodal points between certain
bands [13]. We have found that mere visual inspection
does not suffice for obtaining the MCNs since it does
not reveal, for example, the relative signs of the winding
numbers of different nodes.

Interestingly, in certain cases where flat Wannier bands
are present the magnitudes of the MCN can be deter-
mined without having to divide the occupied manifold
into two mirror sectors. This follows from the uniform-
parity assumption for the flat bands, which has no coun-
terpart in the Bloch representation. Since the determina-
tion of the mirror parities is the most cumbersome step
in the calculation of MCNs, this feature of the HW for-
malism could lead to a more automated algorithm for

computing MCNs. Even without such further develop-
ments, the formalism has already proven useful for dis-
cussing the topological classification of mirror-symmetric
insulators.
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Appendix A: Derivation of Eqs. (20-22)

According to Table I, the numbers of occupied states
with each mirror parity at G and X are

NG± = NA± +NB± +
1

2
Ñ , (A1a)

NX± = NA± +NB∓ +
1

2
Ñ , (A1b)

where Ñ = ÑA +ÑB +ÑUC is the total number of disper-
sive Wannier bands per cell. Letting ∆NG = NG+−NG−

and ∆NA = NA+ − NA− , and defining ∆NX and ∆NB

in the same way, we find

∆NA =
1

2
(∆NG + ∆NX) , (A2a)

∆NB =
1

2
(∆NG −∆NX) . (A2b)

Under the uniform parity assumption |∆NA| = NA and
|∆NB| = NB, resulting in Eqs. (20) and (21). In the
case of a type-2 mirror A and B are equivalent, and from
Eq. (A1a) ∆NA +∆NB = ∆NG. Hence ∆NA = ∆NB =
∆NG/2, yielding Eq. (22) under the same assumption.

Appendix B: Derivation of Eq. (27)

Let us prove Eq. (27) for the case of a single pair of
dispersive Wannier bands connected by point nodes on
the A plane. In this case the matrix fκ of Eq. (48) reduces
to the scalar

fκ ≡ 〈h̃+
κ |z|h̃−κ 〉 = |fκ|eiγκ , (B1)

where |h̃±κ 〉 are states of even or odd mirror parity con-
structed from the pair of HW functions as described
in Sec. V C 1. These states are cell-periodic in plane
and localized along z, and we also define new states

|ψ±κ 〉 = eiκ·r|h̃±κ 〉 that are Wannier-like along z and
Bloch-like in plane.
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When the Chern numbers C̃A± are nonzero, it becomes
impossible to choose a gauge for the states |ψ±κ 〉 that is
both smooth and periodic in the projected 2D BZ [5].
We assume a square BZ with kx, ky ∈ [0, 2π], and choose
a smooth but nonperiodic gauge for the |ψ−κ 〉 states. To
characterize the lack of periodicity, let the phase relations
between the edges of the BZ be

|ψ−R 〉 = e−iµ|ψ−L 〉 , |ψ−T 〉 = e−iν |ψ−B 〉 , (B2)

where {L,R,T,B} = {left,right,top,bottom}, µ = µ(ky),
and ν = ν(kx). Also let

∆µ = µ(2π)− µ(0) , ∆ν = ν(2π)− ν(0) . (B3)

When computing the Berry phase around the BZ bound-

ary as an integral of the connection A−κ = i〈h̃−κ |∂κh̃−κ 〉,

φ− =

∮
∂BZ

A−κ · dκ , (B4)

the contribution from the L and R segments cancel except
for terms coming from µ, and similarly for the top and
bottom segments. It follows that

φ− = ∆µ−∆ν . (B5)

We assume a smooth but nonperiodic gauge for the
|ψ+

κ 〉 states as well, so that the phase γκ in Eq. (B1)
becomes a smooth function of κ (except at the nodes,
where fκ vanishes and γκ becomes ill defined). Now we
phase-align |ψ+

κ 〉 with |ψ−κ 〉 by re-gauging as follows,

|ψ+
κ 〉′ = eiγκ |ψ+

κ 〉 . (B6)

(In this new gauge f ′κ is real, and γ′κ is zero everywhere.)
This will make a gauge for |ψ+

κ 〉′ that is also nonperi-
odic. For the moment we only assume that this gauge is
smooth in a neighborhood extending some small distance
inside the boundary; we ignore what is going on deeper
inside. It is not hard to see that the same relations as in
Eq. (B2), with the same functions µ and ν, apply to the
|ψ+

κ 〉′ states, and it follows that

φ′+ = φ− (call it φ) . (B7)

Now, in the case of the |ψ−κ 〉 states the interior was
smooth, so by applying Stokes’ theorem to

2πC̃A− =

∫
BZ

Ω−κ d
2k (B8)

where Ω−κ = ∂kxA
−
κ,y − ∂kyA−κ,x is the Berry curvature of

state |u−κ 〉, we get

2πC̃A− = φ . (B9)

If the interior of |ψ+
κ 〉′ were also smooth, we would con-

clude that C̃A+ = C̃A− . Conversely, when the MCN is
nonzero there must exist nonanalytic points where the
phase of |u+

κ 〉′ changes discontinuously. Those points are
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FIG. 10. Wannier bands of the modified Dirac model on a
cubic lattice [Eq. (54)], for m = 1.0 and varying M .

precisely the nodes of fκ, which we label by j; they act
as vortex singularities of the Berry connection(

A+
κ

)′
= A+

κ − ∂κγκ , (B10)

and we extract their winding numbers Wj [Eq. (50)], typ-
ically taking values ±1, according to how the phase γκ
changes going around each node. Let S be the interior of
the projected BZ with a small circle cj cut around each
node, and apply Stokes’ theorem over the region S to
find∫

S

Ω+
κ d

2k =

∫
∂BZ

(
A+

κ

)′ ·dκ−∑
j

∮
cj

(
A+

κ

)′ ·dκ . (B11)

The first term on the right-hand side is equal to φ′+ =

φ = 2πC̃A− . In the limit of small circles the left-hand side

becomes 2πC̃A+ , and the second term on the right-hand
side reduces to 2π

∑
j Wj (this follows from Eq. (B10) by

noting that A+
κ is smooth everywhere). Thus C̃A+−C̃A−

equals WA =
∑
j∈A Wj , which is what we set out to

prove.
The same result holds if more than one pair of bands

meet at some of the point nodes. Their winding number
are still given by Eq. (50), but γκ is now given by the
more general expression in Eq. (49) instead of Eq. (B1).

Appendix C: Phase diagram of the modified Dirac
model on a cubic lattice

In this Appendix, we map out the topological phase
diagram of the model of Eq. (54) as a function of the
parameters m and M , for c = 1.0. The band gap closes
for m = 0, 4M, 8M, 12M at the points Γ, X, M, and A,
respectively [43]. Those lines in the phase diagram mark
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the topological phase transitions between axion-even and
axion-odd phases.

To decide which phases are trivial and which are topo-
logical, it is sufficient to inspect the Wannier band struc-
tures in Fig. 10, obtained for representative states in each
of the four phases along them = 1.0 line. Since the model
has several axion-odd symmetries (time reversal, inver-
sion, and multiple mirrors), we can base our analysis on
either of them, applying in each case the rules given in
Ref. [13] to determine the axion Z2 index. In the follow-
ing, we choose to focus on time-reversal symmetry.

The Wannier spectrum of an axion-odd phase with
spinful time-reversal symmetry must be gapless, with
each band touching the band above at one of the four
TRIM and the band below at the other three (or vice-
versa). From this criterion we conclude that Figs. 10(a,c)
correspond to axion-trivial phases, and Figs. 10(b,d) to
axion-odd topological phases. Hence the system is topo-
logical for 0 < m/M < 4 and 8 < m/M < 12, producing
the phase diagram in Fig. 6. This is in agreement with
Ref. 43, where the strong topological index ν0 = θ/π of
each phase was determined from the parity eigenvalues
of the Bloch states at the eight TRIM in the 3D BZ [11].
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