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The switching polarization of a ferroelectric is a characterization of the current that flows due to
changes in polarization when the system is switched between two states. Computation of this change
in polarization in crystal systems has been enabled by the modern theory of polarization, where it
is expressed in terms of a change in Berry phase as the material switches. It is straightforward to
compute this change of phase, but only modulo 2π, requiring a branch choice from among a lattice
of values separated by 2π. The measured switching polarization depends on the actual path along
which the material switches, which in general involves nucleation and growth of domains and is
therefore quite complex. In this work, we present a physically motivated approach for predicting
the experimentally measured switching polarization that involves separating the change in phase
between two states into as many gauge-invariant smaller phase changes as possible. As long as the
magnitudes of these smaller phase changes remain smaller than π, their sum forms a phase change
which corresponds to the change one would find along any path involving minimal evolution of the
atomic and electronic structure. We show that for typical ferroelectrics, including those that would
have otherwise required a densely sampled path, this technique allows the switching polarization to
be computed without any need for intermediate sampling between oppositely polarized states.

I. INTRODUCTION

Bistable systems with a change in electric polarization
on switching between the two states are of central impor-
tance in functional material and device design. The most
familiar of such systems are ferroelectrics, with two or
more symmetry-related polar insulating states.1 Switch-
ing in systems in which the two states are not symmetry
related, for example in antiferroelectrics or heterostruc-
tures, is also of great interest for novel devices.2,3

First principles prediction of the switching polariza-
tion in periodic systems is based on the modern theory
of polarization, which expresses the polarization change
between two states in terms of the change in Berry phase
as the system evolves along a specified adiabatic path.4,5

Given only the initial and final states, the polarization
change is determined modulo the “quantum of polariza-
tion” (eR/Ω), where e is the charge of an electron, R
is a lattice vector, and Ω is the volume of the unit cell.
The choice from this set that gives the specific value of
the polarization change depends on the actual switching
path.

Since the path for a process such as electric field switch-
ing of a ferroelectric generally involves nucleation and
growth of domains, beyond the scope of current first-
principles computation, it might at first seem that first-
principles prediction of the switching polarization should
not be possible. However, it is an empirical fact that
good agreement with experimental observation has been
obtained for many ferroelectrics by computing the polar-
ization change along a fictitious minimal path, usually
constructed by simple linear interpolation of the atomic
positions of the up- and down-polarized states, maintain-
ing their lattice translational symmetries.6 The polariza-
tion change along this fictitious path is then computed
by sampling densely enough along the path so that the
polarization change for every step along the path can be

chosen (and is chosen) to be small compared to the quan-
tum of polarization. However, this method can be com-
putationally intensive, depending on the sampling den-
sity required. Moreover, for some systems, it might be
that not all the states on the simple linear interpolation
path are insulating, and additional effort is required to
find an insulating adiabatic path connecting the up and
down states. As a result, this approach has proven to
be problematic for automated high-throughput applica-
tions.

In this paper, we present a new method for predict-
ing switching polarization given only the initial and final
states. Our approach uses information, computed from
the two sets of ground state wavefunctions, that goes
beyond that used in a conventional Berry phase calcu-
lation. The key idea is to incorporate certain assump-
tions about the physical path, eliminating the need to
construct a fictitious path and perform calculations for
intermediate states. We begin by discussing the method
for the simplest case of the electronic contribution to the
switching polarization for a one-dimensional polar insu-
lator. We then generalize to three-dimensional materials
and discuss the ionic contribution to the polarization.
Finally, first-principles results are presented for a real-
istic benchmark system to illustrate the various aspects
of the method and to compare with the fictitious path
method. The approach presented here is not limited to
computation of switching polarization in ferroelectrics,
but can be applied to the change in polarization between
two symmetry-inequivalent states, for example in anti-
ferroelectrics, heterostructures and pyroelectrics, and in
the computation of the nonlinear response of insulators
to electric fields.
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II. FORMALISM

A. Background and notation

We start by considering a one-dimensional crystal
switching between initial state A and final state B along a
specified path parameterized by λ, along which the sys-
tem remains insulating. According to the modern the-
ory of polarization,4–7 the electronic contribution to the
change in polarization can be expressed as

∆PA→B =
−e
2π

Φ (1)

where Φ is the Berry flux

Φ =

∫ ∫
S

Ω(k, λ)dλdk (2)

obtained by integrating the Berry curvature Ω(k, λ) over
the region S with λA ≤ λ ≤ λB and −π/a < k ≤ π/a
(the first Brillouin zone). Here the Berry curvature

Ω(k, λ) =
∑
n

−2Im 〈∂λun(k, λ)|∂kun(k, λ)〉 (3)

is written in terms of the cell-periodic parts of the occu-
pied Bloch wavefunctions |un(k, λ)〉 and has been traced
over the occupied bands n. The |un(k, λ)〉 are chosen
to be differentiable over the surface S and periodic in k.
Application of Stoke’s theorem gives

Φ =

∮
C

A(q) · dq (4)

where C is the boundary of the surface S, q = (k, λ),
and A(q) = (Ak, Aλ) is the Berry potential given by

Ak =
∑
n

i 〈un(k, λ)|∂kun(k, λ)〉 , (5)

Aλ =
∑
n

i 〈un(k, λ)|∂λun(k, λ)〉 . (6)

Since we have chosen a periodic gauge in the k direction,
the two portions of the path C running in the λ direction
cancel. The two remaining segments take the form

φλ =

∫ π/a

−π/a
Ak(k, λ)dk (7)

and it follows that

Φ = φλB
− φλA

. (8)

The electronic contribution to the change in polarization
is then given by Eq. (1).

The equivalence of Eq. (8) to Eq. (2) is critically de-
pendent on the gauge choice for the (|un(k, λ)〉. A (k, λ)-
dependent unitary rotation among the occupied states
|un(k, λ)〉 can change φλA

and φλB
, and their difference,

by multiples of 2π,4–6 so that the change in polarization
is determined only modulo the quantum of polarization
eR/Ω. As we describe more fully below, previous meth-
ods for making the correct branch choice for a given path
rely on implicit construction of a smooth gauge by dense
sampling in λ as well as k. Here, we present an alter-
native approach that makes full use of the information
contained in the initial and final states, while eliminat-
ing the need for sampling at intermediate values of λ.
Moreover, this approach requires a k-space sampling no
denser than that required for the computation of the for-
mal polarization.

B. Gauge class

We first consider the case of a single occupied band in
1D with Bloch states |u(k)〉. Following Eq. (8), the Berry
phase around the Brillouin zone at a given λ is given by

φ =

∫ π/a

−π/a
〈u(k)|i∂ku(k)〉 dk (9)

The requirement that the gauge be smooth and periodic
in k allows transformations of the form e−iβ(k) |u(k)〉,
where β(k) is differentiable and β(k+2π/a) = β(k)+2πn
for some integer n, which changes φ by 2πn. For a given
physical system, we can test whether two choices of gauge
a and b will produce the same value of φ by computing

γab(k) = 〈ua(k)|ub(k)〉 . (10)

Note that γab(k) has exactly unit norm and is just
e−iβ(k), where β(k) describes the gauge change relating
a to b. If γab(k) is smooth and its phase does not wind
by a nonzero integer multiple of 2π as k traverses the 1D
Brillouin zone, the two gauges will produce the same φ,
and can be said to belong to the same “gauge class.”

Next, we consider two crystals A and B with single oc-
cupied bands, each with a smooth gauge, and ask whether
their respective gauges belong to the same gauge class in
a similar sense. With this motivation, we define, in anal-
ogy with Eq. (10),

γAB(k) = 〈uA(k)|uB(k)〉 (11)

where γAB(k) will generally not have unit norm. In
fact, for this procedure to be meaningful, systems A
and B must be sufficiently closely related that the norm
of γAB(k) remains nonzero everywhere in the Brillouin
zone. If the phase of this γAB(k) does not wind by a
nonzero integer multiple of 2π, we consider their gauges
to belong to the same gauge class.

We are now in a position to introduce our key idea
for the prediction of the switching polarization from sys-
tem A to B. This is that the wavefunction phases evolve
along the physical switching path in a minimal way that
preserves the gauge class, so that the switching polariza-
tion corresponds to the polarization difference of Eq. (1)
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and Eq. (8) with Berry phases φA and φB computed with
the requirement that the two gauges belong to the same
gauge class. Crucially, the branch-choice ambiguity in
the individual φA and φB is no longer present after the
difference is taken.

The generalization to the multiband case is straight-
forward. We define

γAB(k) = detMAB(k) (12)

where MAB(k) is the overlap matrix given by

MAB
mn (k) = 〈uAm(k)|uBn (k)〉 (13)

for occupied band indices m and n. The gauges are said
to belong to the same class if the phase winding of γAB(k)
is zero.

One way to insure that gauges A and B belong to the
same gauge class is to align one to the other. In the
single-band case, the gauge of B is aligned to that of A
by taking χ(k) = Im ln γAB(k), and then letting

|ũB(k)〉 = e−iχ(k) |uB(k)〉 . (14)

As a result, the new γ̃AB(k) is real and positive, so that
there is clearly no winding. Similarly, the multiband
gauge alignment can be accomplished by carrying out
the singular value decomposition of MAB in Eq. (12) as
MAB = V †ΣW , where V and W are unitary and Σ is
positive real diagonal. Then the multiband analog of eiχ

is U = V †W , and the gauge of B is aligned to that of A
by the transformation

|ũBn 〉 =
∑
m

(U†)mn|uBm〉 . (15)

The new overlap matrix is then M̃AB = V †ΣV , whose
determinant γ̃AB in Eq. (12) is clearly real and positive,
thus eliminating the relative winding of gauge B with
respect to A.

C. Discrete k space

In any numerical calculation, functions of k must be
sampled on a discrete mesh in k. In this case, we can
again align the gauge of B to that of A using Eq. (14)
or Eq. (15), and compute the polarization difference via
Eq. (8). However, in the discrete case there is a new
potential source of ambiguity coming from the need to
enforce smoothness with respect to k. After discretiza-
tion Eq. (7) becomes

φλ = Im ln det
∏
i

Mλ(ki, ki+1) (16)

where M is the overlap matrix

Mλ
mn(ki, ki+1) = 〈uλm(ki)|uλn(ki+1)〉 . (17)

This φλ is gauge invariant, but only up to an integer
multiple of 2π. This is reflected by the Imln operation in
Eq. (16), which will only result in a phase in the interval
−π < φλ < π. If one is interested in this phase on its
own (i.e., for computing formal polarization) this makes
perfect sense, since it is truly a lattice valued quantity.
However, our present goal is to compute the difference
in phase between two systems with the requirement that
both systems are in the same gauge class. For this pur-
pose it is useful to rewrite Eq. (16) in a form where val-
ues outside this interval are possible (with the branch
being determined by the gauge). To this end we rewrite
Eq. (16) as

φλ =
∑
i

Ai(λ) (18)

where

Ai(λ) = Im ln detMλ(ki, ki+1) (19)

is a discrete analog of the Berry connection Ak. We
choose a sufficiently fine k mesh and a sufficiently smooth
gauge so that each Ai is much less than π in magnitude;
then φA can be unambiguously computed (for the cho-
sen gauge). We then choose the gauge in B to be aligned
to that of A. Assuming this also results in a smooth
gauge in B, we could then confidently compute ∆P from
Eqs. (1) and Eq. (8).

D. Gauge invariant formulation

The procedure described in the last section involved
constructing a smooth gauge in A, aligning the gauge in
B, and then computing each φλ via Eq. (18). This rep-
resents a straightforward, but also inconvenient, means
of applying the same gauge class assumption to a real-
istic calculation. In this section and the next we will
develop an equivalent procedure that is more computa-
tionally efficient and does not require explicit construc-
tion of smooth or aligned gauges.

First, we note that the value obtained above is equiv-
alent to evaluating Φ as

Φ =
∑
i

∆Ai (20)

where

∆Ai = Ai(λB)−Ai(λA) (21)

is the difference between Eq. (19) evaluated at the initial
and final configurations (with the previously discussed
gauge choices). At present, it is required that k has been
sampled densely enough such that each ∆Ai is smaller
in magnitude than π.

We next note that the quantity ∆Ai is equal to the
discrete Berry phase computed around the perimeter
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of the rectangular plaquette marked by the green ar-
rows in Fig. (1). To see this, we denote the four cor-
ners of this plaquette as q1 = (ki, λA), q2 = (ki, λB),
q3 = (ki+1, λB), and q4 = (ki+1, λA), and refer to it
henceforth as plaquette p located at ki = kp. Defining
the overlap matrices

M 〈ij〉mn = 〈um(qi)|un(qj)〉 , (22)

the four-point Berry phase about the loop, traced over
occupied bands, is

φp = Im ln det [M 〈12〉M 〈23〉M 〈34〉M 〈41〉] . (23)

This four-point Berry phase is equal to the Berry flux
through the plaquette, by the same Stoke’s theorem ar-
gument used to relate Eq. (2) and Eq. (4). This plaquette
Berry flux, φi, can be seen to be equal to ∆Ai computed
with the gauges specified above since the alignment of
gauges insures that M 〈12〉 and M 〈34〉 have real positive
determinants, and thus don’t contribute to the phase be-
ing extracted by the Imln operation. The advantage of
computing φp as in Eq.( 23) is that it is completely insen-
sitive to the gauges used to represent the states at any of
the four qi.

8 Using Eq. (20) we can write Φ as the sum
over plaquette Berry fluxes,

Φ =
∑
p

φp . (24)

As the Imln operation suggests, φp is only gauge invari-
ant up to an integer multiple of 2π, so the above formula
still requires that the k-mesh spacing be fine enough that
each |φp| < π for all kp, just as was required for ∆Ai.

E. Berry flux diagonalization

With Eqs. (1), (23) and (24), one can compute the po-
larization difference using arbitrarily chosen gauges for
systems A and B. However, there is still a requirement
that the k-mesh be fine enough that all φp in Eq. (24) are
smaller in magnitude than π. For a single-band system,
this typically does not require a mesh any finer than that
needed to compute φλ from Eq. (16). However, the pla-
quette Berry fluxes φp from Eq. (23) are traced over all
occupied bands, so their values can quickly grow much
larger in magnitude than π when many bands are con-
tributing.

We can instead decompose each plaquette flux into a
sum φp =

∑
n φ

p
n of smaller gauge-invariant phases φpn,

where n runs over the number of occupied bands. These
are the multi-band Berry phases or Wilson loop eigen-
values of plaquet p, obtained from the unitary evolution
matrix Up acquired by traversing the boundary of the
plaquette. Explicitly,

Up =M〈12〉M〈23〉M〈34〉M〈41〉 (25)

q q2

q3q
k

λA λB

0

π

a

−

π

a

FIG. 1. Sketch of the joint (k, λ) space for computing a change
in polarization between λA and λB . Blue circles represent
points where Bloch wavefunctions have been computed. The
light grey box represents the surface S that is integrated over
in Eq. (2). Dotted green lines represent the plaquets i and
the solid green lines represent the path on which the parallel
transport procedure is performed around the green plaquet it
encloses to obtain its contribution to PB − PA.

where M〈ij〉 is the unitary approximant of M 〈ij〉, that
is, M = V †W where

M = V †ΣW (26)

is the singular value decomposition of M . The eigenval-
ues of the unitary matrix Up are of the form eiφ

p
n , pro-

viding the needed φpn, which are gauge-invariant. Since
Imln detUp is taken as the Berry flux through plaquet p,
we have in a sense diagonalized this Berry flux by obtain-
ing the eigenvalues of Up. Finally, the φpn can be summed
over all plaquettes to obtain the total polarization differ-
ence via

Φ =
∑
p

∑
n

φpn . (27)

This is our central result.
For the method to be applicable the two states λA

and λB must be similar enough that the singular val-
ues in Σ do not become too small (this corresponds to
the continuum-case requirement that the norm of γAB

in Eq. (11) should remain nonzero). For agreement with
the continuum case the individual φpn must each be much
smaller in magnitude than π. This condition is typically
satisfied with a k-mesh density appropriate for a stan-
dard Berry-phase polarization calculation, but the den-
sity of the k mesh could be increased if necessary. These
conditions are further discussed in Section V C.
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The above expressions were all written for the one-
dimensional case for the sake of simplicity; the general-
ization to two and three dimensions is quite straightfor-
ward. Just as is typically done for the computation of the
Berry-phase polarization, the computation is carried out
separately for each string of k-points in the direction of
the desired polarization component, and the results are
then averaged over the complementary directions.

Note that while the computation of overlap matrices
between neighboring k-points is quite routine, this pro-
cedure also requires overlaps between wavefunctions of
corresponding k-points at different λ values (typically
different structures). The implementation details for this
procedure are discussed in Sec. III.

F. Ionic contribution and alignment

Up to this point, we have focused only on computing
the electronic contribution to the change in polarization
for already fixed choices of unit cells at each λ. Dif-
ferences in origin choice and cell orientation between λA
and λB can alter the Bloch function overlaps in Eq. (17).9

The berry flux diagonalized method is most robust when
structures are aligned to maximize overlaps, and thus
keep elements of the Σ matrix in Eq. (26) (the singular
values) from becoming too small. We make this choice
of unit cell by first aligning the structures to minimize
the root mean squared displacements of the ionic coordi-
nates. After this initial alignment, we further refine the
choice of origin by translating along the polarization di-
rection to maximize the smallest of all the singular values
encountered while scanning over all k-points in the above-
described procedure. This additional refinement can be
performed without additional first-principles calculations
using the existing wavefunctions; in the plane-wave rep-
resentation this is accomplished by computing

M (AB)
mn (k) = 〈ψAmk|Tτ ψBnk〉 =

∑
G

C
(A)∗
m,G+kC

(B)
n,G+ke

−iG·τ

where Tτ is the extra translation by τ and the Cn,G+k

are the plane wave coefficients.
The ionic contribution to the polarization change is

given by

∆Pion =
e

Vcell

∑
i

Zi∆ri (28)

where ∆ri is the displacement of ion i between states λA
and λB .

III. METHODS

The Berry flux diagonalization method is a post-
processing step for wavefunctions generated by first-
principles density-functional-theory codes. Our cur-
rent implementation of the method, available at

github.com/jrbp/berry-flux-diag, is for wavefunctions in
a plane-wave basis. Here we perform calculations in
ABINIT using the norm conserving scalar relativistic
ONCVPSP v0.3 pseudopotentials with the LDA ex-
change correlation functional.10 The necessary overlap
matrices are computed from the NetCDF wavefunc-
tion files produced by ABINIT, read using the abipy
library11 (https://github.com/abinit/abipy). Th pymat-
gen library12 is used in the process of computing the ionic
contribution.

We validate and demonstrate the Berry flux diagonal-
ization method as follows. First, we use the method
to compute the switching polarization of the proto-
typical ferroelectric perovskite oxides BaTiO3, KNbO3,
and PbTiO3, for which the computation of the switch-
ing polarization by existing methods is straightfor-
ward. We then use a 2 × 2 × 1 supercell to com-
pute the switching polarization of pure PbTiO3 and of
PbTi0.75Zr0.25O3 to demonstrate how difficulties in re-
solving the branch choice faced by other approaches due
to the small polarization quantum do not arise in the
Berry flux diagonalization method. The atomic positions
in PbTi0.75Zr0.25O3 were taken to be the same as in the
pure system.

IV. RESULTS

The computed switching polarizations for the proto-
typical ferroelectric perovskite oxides PbTiO3, BaTiO3,
and KNbO3 are 0.26 C/m2, 0.29 C/m2 and 0.77 C/m2

respectively, in agreement with the established first-
principles literature and experimental observations.13 In
this section, we give a detailed analysis of the results for
pure PbTiO3, which has the largest polarization and thus
presents the most difficult test case. We do this for three
cases, namely in the primitive 5-atom cell, in a 2× 2× 1
supercell, and in the same supercell but with one Ti re-
placed by Zr.

The key quantities here are the Wilson loop eigenval-
ues, which are summed in Eq. (27) to obtain the change in
polarization. For PbTiO3, the distribution of the Wilson
loop eigenvalues is shown in Fig. 2 for plaquets along the
string of k-points corresponding to kx = π/4a, ky = π/4a
for the primitive cells, and to the corresponding point
kx = π/2a, ky = π/2a for the supercell systems. All
Wilson loop eigenvalues are found to be much smaller in
magnitude than π, mostly clustered around zero, with a
bias in the direction of the electronic polarization change.
Here this is negative given the choice of initial and final
states.

Each individual contribution to the change in polariza-
tion for the supercell is identical to that of the primitive
cell, except that they appear with multiplicity four due to
the translational symmetries that were lost in the super-
cell system. So, while the change in dipole moment for
the supercell is four times as large as that for the primi-
tive unit cell, and is thus significantly larger than the 2π



6

6

12

0

n
Occurrences in pure supercell

string kx=
1
2 a , ky=

1
2 a

6

12

0

n

6

12

0

n

20 15 10 5 0 5

6

12

0

n

Occurrences in primitve cell
string kx=

1
4 a , ky=

1
4 a

Occurrences in PZT
string kx=

1
2 a , ky=

1
2 a

0 5 10 15 20

FIG. 2. Histogram of Wilson loop eigenvalues (φp
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the two axis scales at the top and bottom of the figure. Values
for PbZr0.25Ti0.75O3 are shown at left.
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FIG. 3. Singular values throughout the Brillouin zone for
PbTiO3, sampled on a 12x12x12 Γ centered k mesh.

phase ambiguity, this does not present any difficulties in
the Berry flux method.

The Wilson loop eigenvalues for the system with one
Ti replaced by Zr is shown in the left portion of Fig. 2.
All eigenvalues fall in the same range as the pure PbTiO3

system, but with some splitting of values. The switching
polarization for the system with Zr was found to be 0.762
C/m2 compared to the slightly larger 0.771 C/m2 of the
pure system.

In Fig. 3, we show the singular values of overlap matri-
ces M between initial and final states at corresponding
k-points for PbTiO3 in its primitive cell. These singular
values are the diagonal elements of Σ from Eq. (26). If
the singular values do not approach zero at any point
in the Brillouin zone, the computed information for ini-
tial and final states determines the polarization change
within the same gauge class assumption. Fig. 3 shows
that the singular values for PbTiO3 are well behaved.

V. DISCUSSION

A. Comparison to fictitious path approach

In this section we compare the Berry flux diagonal-
ization method to the commonly used fictitious path ap-
proach, using PbTiO3 in its primitive cell and in a 2×2×1
supercell as illustration.

For the fictitious path approach, we choose a simple
linearly interpolated path between oppositely polarized
states. Fig. 4 shows the formal polarization which is de-
termined modulo the polarization quantum, computed at
points along the path for two different sampling densities.
Starting with an arbitrary choice for the initial state, the
branch is chosen by connecting to the closest value for
the next sampled state along the path. The difference
between the final and initial states is then divided by
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FIG. 4. Evolution of formal polarization of PbTiO3 along a
linearly interpolated switching path for the primitive cell (left)
and a 2 × 2 × 1 supercell (right). Ticks and horizontal lines
mark the polarization quantum. The blue arrow indicates the
change in polarization, which with the Berry flux diagonal-
ization method only requires calculations in the initial state
and symmetry-related final state.

two to get the spontaneous polarization.

For the case of the primitive cell, calculations for three
intermediate states on the path are needed correctly to
resolve the branch ambiguity. In the case of the supercell,
because of the four-fold decrease in the polarization quan-
tum, the number is significantly larger: 15 intermediate
calculations must be done to resolve the branch ambi-
guity. The Berry flux diagonalization approach in both
cases, shown by the blue arrow, predicts the change in
polarization (with the correct branch choice) using only
the wavefunctions in the initial and final states.

We note that other approaches have been discussed
that utilize partial information in addition the evolution
of Pformal, such as nominal valence charges and Born ef-
fective charges. This additional information can help de-
termine the choice of polarization value at the next point
on the path even when this is not the smallest change, re-
ducing the sampling density needed. However, the imple-
mentation tends to be ad-hoc and is not suitable for auto-
mated high-throughput applications. Furthermore, such
approaches may not be reliable in situations where these
assumed charges are not constant through the switching
process.

B. Relation to Wannier functions

The Wilson loop eigenvalues φpn used in Eq. (27) and
shown in Fig. 2 have a close relation to maximally lo-
calized Wannier centers. The parallel transport formal-
ism used to obtain these φpn is precisely the same as that
used to obtain maximally localized Wannier centers in 1D
systems. Such maximally localized Wannier centers are
obtained by performing this procedure not across the pla-
quets discussed in Sec. (II D), but by the loop formed by
traversing the Brillouin zone at a given λ. The resulting
Wilson loop eigenvalues are then the maximally localized
Wannier centers corresponding to a set of Wannier func-
tions (given by their corresponding eigenvectors) which
diagonalize the position operator, and sum to compute
the formal polarization.

In an analogous way the Wilson loop eigenvalues used
in the Berry flux diagonalization method correspond to
a set of eigenvectors which diagonalize contributions to a
“change in position.” The Wilson loop eigenvalues being
used here are summed to compute the change in formal
polarization.

C. Conditions for applicability

To make any branch choice and compute the change
in polarization, some assumption about the dynamics of
the switching process must be made. In the method pre-
sented in this work, the assumption is that the system
evolves in some minimal way between oppositely polar-
ized states. Ionic contributions to the change in po-
larization are separated by assuming displacements are
minimized, and electronic contributions are separated by
assuming single-particle wavefunctions evolve into those
which have maximal overlap across changes in λ. Such
assumptions can fail or become difficult to satisfy for cer-
tain systems.

This regime where the technique breaks down can be
detected automatically. When the changes in the elec-
tronic states across changes in λ becomes large, the over-
laps in wavefunctions become small, and some singular
values of the Σ matrix of Eq. (26) approach zero. The
implementation of the method checks to make sure that
no singular values anywhere in the Brillouin zone fall
below a threshold (see Fig. 3). Numerical experiments
have shown that a threshold of around 0.15 seems to
work well for systems tested. There is of course also a
branch ambiguity if the Wilson loop eigenvalues (φpn of
Eq. (27)) have magnitudes close to π. In practice, we
have found no cases where this happens without the re-
quirement on the singular values failing first. This can
be understood from the viewpoint that the Wilson loop
eigenvalues are related to displacements of Wannier cen-
ters, with a value of π corresponding to a single charge
moving by half a unit cell. When the charge is moved over
such a distance the overlaps tend to become small, espe-
cially in an insulating system where states are localized.
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For such systems, one can revert to constructing inter-
mediate states along λ. If each change in polarization is
computed using the Berry flux diagonalization method,
λ can be sampled more coarsely than methods that track
only the total phase. However, in doing so one should
beware of making possibly unsafe assumptions about the
dynamics of the switching process.

VI. CONCLUSION

The Berry flux diagonalization method presented here
provides a way to compute the change in polarization
that is more easily automated, as well less computation-
ally expensive, than existing approaches. The magni-
tudes of the singular values obtained in the course of
the calculation provide a built-in test that the two sys-
tems being compared are sufficiently similar that a class
of minimal paths producing the same change in polar-
ization can be inferred. Future work will explore the

application of this method to the change in polariza-
tion between two states that are not symmetry related,
such as in pyroelectrics, antiferroelectrics, heterostruc-
tures and insulators in finite electric fields. It will also
be interesting to test the applicability of the approach
to different classes of ferroelectrics, such as organic, in-
organic order-disorder, charge-ordered, or improper fer-
roelectrics. Generalizations of the method to the com-
putation of other quantities requiring Berry curvature
integration, such as Chern numbers and characterization
of Weyl points, should also reward future investigation.
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