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Recent developments in topological semimetals open a way to realize relativistic dispersions in
condensed matter systems. One recently studied type of topological feature is the “triple nodal
point” where three bands become degenerate. In contrast to Weyl and Dirac nodes, triple nodal
points, which are protected by a rotational symmetry, have nodal lines attached, so that a charac-
terization in terms of a chirality is not possible. Previous studies of triple nodal points considered
nonmagnetic systems, although an artificial Zeeman splitting was used to probe the topological
nature. Here instead we treat a ferromagnetic material, half-metallic GdN, where the splitting of
the triple nodal points comes from the spin-orbit coupling. The size of the splitting ranges from
15 to 150 meV depending on the magnetization orientation, enabling a transition between a Weyl-
point phase and a “nearly triple nodal point” phase that exhibits very similar surface spectra and
transport properties compared to a true triple-node system. The rich topological surface states,
manipulable via the orientation of the magnetization, make half-metallic GdN a promising platform
for future investigations and applications.

I. INTRODUCTION

In the last decade, an enormous expansion in stud-
ies of topological materials has opened a powerful new
perspective in materials science.1–5 While topological in-
sulators are classified by integer Chern numbers or Z2

indices,1–4 topological semimetals6–8 may be character-
ized by the type of low-energy excitations they admit, in
analogy with the description of elementary particles in
high-energy physics. In particular, the excitations near
a Dirac or Weyl point in a topological semimetal behave
similarly to the massless Dirac and Weyl fermions that
arise in the quantum field theory of elementary particls.
A Dirac point corresponds to a point fourfold degeneracy
resulting from a crossing of two-fold degenerate bands in
momentum space; since the Berry flux surrounding such
a point vanishes, it has no net chirality. By contrast,
a Weyl point results from a crossing of just two bands,
and depending on its chirality, either emits or absorbs a
2π quantum of Berry flux. As a consequence, Fermi arc
states emerge in the surface Brillouin zone (BZ) connect-
ing the projected locations of the Weyl points.

A recently studied three-fold band crossing point, re-
ferred to as a triple nodal point (TNP), is protected by a
crystalline (typically C3 rotation) symmetry.9–15 In con-
trast to the case of Dirac and Weyl points, the Berry
phase of the TNP is ill-defined due to the inevitable pres-
ence of nodal lines attached to the TNP, which prohibits
the occurrence of a gapped surface enclosing a single
TNP. Although the formation of surface states has been
demonstrated for several TNP materials, the identifica-
tion of a general feature expected in the surface states,
analogous to the Fermi arc states, has remained elusive.
Moreover, the surface-state features are likely to be ob-
scured if more than one TNP projects to the same point
on the cleavage surface; this commonly occurs if that sur-
face is orthogonal to the primary rotation axis, which is
the case in most of the suggested TNP metals proposed
to date.9–14

Here, we focus instead on half-metallic GdN possess-
ing three perpendicular C4 rotational axes so that at least
two pairs of TNPs are exposed on a surface. GdN and
most of the rare earth monopnictide compounds occur
in the rocksalt structure and exhibit a variety of mag-
netic and transport properties.16,17 Early systematic the-
oretical studies18–20 on the rare earth nitrides found a
range of electronic structures from narrow gap insulators
(TbN, DyN, HoN) to half-metallic ferromagnets (PrN,
NdN, PmN, SmN, EuN, GdN) and ordinary metallic fer-
romagnetic materials (CeN, ErN, TmN, YbN). Among
the half-metallic ferromagnets, GdN exhibits the highest
Curie temperature (TC) of 58 K21 and is reported to be
a Chern insulator in an ultrathin two-dimensional layer
form,22 suggesting potential Weyl nodes might emerge
in three dimensions BZ.23 Although its exact band gap
is still under debate even after intense study,18,24–30

there have been consistent reports that the band gap de-
creases upon magnetic ordering below TC,29,31 external
pressure,25,32,33 and external magnetic field.26

In view of the similarity of the electronic structure and
tunability of the band gaps in rare earth monopnictides,
we have chosen to focus here on GdN as a representative
material for in-depth study. We find that GdN exhibits
a “nearly triple nodal point” (NTNP) topological phase,
analogous to the TNP phase but with a very small lift-
ing of the degeneracy of the TNPs. The NTNPs come in
pairs centered on the three X points in the BZ. Because
the spin-orbit coupling (SOC) is so weak on N, while the
spin splitting of the Gd orbitals is so large that the Gd
SOC is largely quenched, the SOC-induced splitting at
each of the NTNP is quite small. In fact, the system is
characterized by the presence of several distinct energy
scales, with the hopping-controlled band width dominat-
ing the exchange splitting which in turn is much larger
than the SOC, leading to a complex electronic structure.

Because the splitting of the TNP is so weak, the NTNP
phase is found to have qualitatively similar surface spec-
tra and transport properties compared to a true TNP
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phase. Interestingly, depending on the magnetic moment
orientation, some of the NTNPs decompose into conven-
tional Weyl points. As a result, we predict that a se-
lected rotation of the magnetization with external field
can drive transitions between Weyl and NTNP behavior
in selected nodal regions, with associated transitions in
the surface-state topology.

II. METHODOLOGY

In order to investigate the electronic properties of
GdN, ab initio calculations are carried out using
VASP and wannierized using the VASP-WANNIER90

interface34–36 to arrive at a tight-binding description
of first-principles quality. The pseudopotential is of
the projector-augmented-wave type37 as implemented
in VASP.38 The generalized gradient approximation
exchange-correlation functional is employed as param-
eterized by Perdew, Burke and Ernzerhof39 with a
Coulomb U of 4.5 eV on the Gd f orbits. The plane
wave basis is expanded up to the cutoff energy of 400 eV
and 12×12×12 k-mesh grid is used in the VASP calcula-
tions. Six N p and ten Gd d atomic orbitals are projected
for the wannier representation with spin polarization but
without SOC. The atomic SOC is then included in the
tight-binding Hamiltonian. The surface states for a semi-
infinite geometry are calculated by employing an itera-
tive surface Green’s function method.40,41 Landau level
spectra are calculated using a symmetry-constraint k·p
model with Peierls substitution.42,43

III. RESULTS AND DISCUSSION

A. Without spin-orbit coupling

The electronic structure of GdN in the absence of SOC
is shown in Fig. 1. Near the Fermi level, the valence and
conduction bands mostly consist of N p and Gd t2g or-
bitals respectively. In the nonmagnetic phase, a small
indirect gap appears between the Γ and X points. When
cooled down below the Curie temperature of 58 K,21 GdN
becomes half-metallic due to the opposite sign of the
Zeeman splitting on Gd and N atoms, causing a band
inversion only in the majority-spin channel. The band
inversion does not open a mass gap because the bands
belong to different irreps of the C4 rotations about the
primary Γ-X axes. For example, concerning C4 ro-
tations about the z axis, the states on the Γ-X3 line
obey R

(
C ẑ4
)
|dxy〉 = −1|dxy〉 and R

(
C ẑ4
)
|px ± ipy〉 =

±i|px±ipy〉. Note that the |px±ipy〉 valence-band states
remain doubly degenerate, since in the absence of SOC
the orbital moment does not couple with the spin mo-
ment. The crossing point is thus triply degenerate and is
referred to as a TNP.12–15,44

Figures 1(c) and (h) show that each pair of TNPs near
an X point is connected by a nodal line. Since a cross

section of the nodal line is a quadratic touching point
[Fig. 1(d)], the Berry phase around the nodal line is zero
and no surface state is induced by the nodal line.13,14 In
the notation of Refs. [13 and 14], this corresponds to a
type-A TNP. (Their type-B TNP is connected by several
nodal lines lying off the symmetry axis in addition to
the one lying on the axis.) In contrast to the typical
TNP materials, the TNPs of GdN are protected by C4

rotational symmetry in the absence of SOC.45

Unlike Weyl points and nodal loops, which generate
Fermi arcs and drumhead states respectively, previous
work has not identified a corresponding general feature
expected in the surface-state spectrum of a TNP mate-
rial. In comparison with previously reported TNP mate-
rials, the TNPs of GdN are sufficiently well isolated from
irrelevant bands that the resulting surface states can be
well characterized.

Figure 2 shows the surface states of semi-infinite GdN
in the absence of SOC. The right panels are blow-ups of
the left panels, with the TNPs shown as red dots. Pan-
els (c-d) are constant-energy intensity plots on a plane
containing four TNPs, at the energy of the TNPs. The
surface states attributed to the TNPs appear bright yel-
low in Figs. 2(b) and (d), in comparison to the dim bulk
states in dark yellow. In panel (d), the projected TNPs
are clearly seen to be attached by two branches of Fermi
arcs. Overall, the surface-state structure looks like two
overlapping copies of an elliptical dome rotated by 90◦

with respect to each other. The shape of the surface-state
structure is discussed and further illustrated in Sec. III-
C. These elliptical domes, which have open sides below
the two TNPs, are detached from the conduction band,
contrary to the case of the surface states of a conven-
tional Weyl phase. The dome shape can be understood
as a hybridization of two surface states individually in-
duced by two pairs of conventional Weyl points, as will
be discussed in more detail below.

B. With spin-orbit coupling

When taking SOC into account, a direction of the net
magnetic moment has to be specified. If we take it along
the [001] direction, the degeneracy of the |px ± ipy〉 va-
lence bands on the kz axis is significantly lifted, whereas
the corresponding states on the kx and ky axes are hardly
altered, as shown in Fig. 3. On the kx axis, for in-
stance, the band of |px〉 character is more dispersive and
located lower in energy than the |py〉 and |pz〉 bands, due
to stronger orbital overlaps along the x̂ direction. The
large energy separation of |px〉 and |py〉 bands causes a
weak coupling with the magnetic moment, M ‖ [001]. As
will be discussed below, the resulting surface states are
quantitatively similar to those of the true TNP phase, as
manifested by turning off the SOC. Therefore, we refer
to the nearly triply degenerate crossing points as “nearly
triple nodal points” (NTNPs). Figures 3(c-f) show the
zoomed-in band dispersion of the NTNPs corresponding
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FIG. 1. (a-e) Band structure of GdN calculated without SOC. In (a,b) the purple (green) colors represent spin majority
(minority) bands, while in the blow-ups in (c-e) the colors are keyed to indicated band index numbers, where band 6 is the
highest valence band. Triple nodal points are marked with red arrows. (f) Relation of the bulk Brillouin zone (BZ) to the
two-dimensional (2D) projected BZ on the (001) surface. Six red dots denote triple nodal points; yellow rectangle defines the
three variables κ1, κ2, and κ3 used as the horizontal axes in (c-e). (g) Top view of the BZ, showing the overlap between bulk
and surface BZs. Blue square is the area used for constant-energy scans in Figs. 2 and 4-6. (h) 2D band structure plotted on
the kz =0 plane near the X1 point; the arrow at the base is directed toward the Γ point, and the shifted blue line terminating
in two dots illustrates the nodal line connecting the two triple nodal points.

to Figs. 1(c-e,h) respectively. The NTNPs have a small
gap opening of ∼15 meV.

When SOC is introduced, the C4 rotational symme-
tries are generally broken in the presence of a magnetic
moment that is not parallel to the rotation axis. How-
ever, with the parallel magnetic moment M ‖ [001], C ẑ4
symmetry still remains and Bloch states on the kz axis
are classified with the eigenvalues of the rotational op-
erator, R

(
C ẑ4
)
. Figure 3(b) shows the band structure

labeled by the phase θ =
{
π
4 ,

3π
4 ,

5π
4 ,

7π
4

}
of the eigenval-

ues of the C ẑ4 operator. The two bands having the same
phase θ = 5π/4 mix with each other and open a mass
gap, whereas others with distinct phases cross each other
without a gap opening, producing a conventional two-
fold Weyl node. The Chern number of a Weyl point can
be determined by the phase difference of the two crossing
bands.46,47 For example, the point at which a θ = 3π/4
band crosses up (down) through a θ = 5π/4 band with
increasing z has a Chern number of +1 (−1), and would
serve as the terminus for a single Fermi arc on the sur-
face. The other crossing points between θ = 5π/4 and
θ = 7π/4 bands produce another pair of Weyl points,
of which one is shown in the inset with a Chern num-
ber of +1. The 2D band structure in Fig. 3(g) shows
that the parabolic band is shifted down in energy due
to the Zeeman splitting, leaving two conventional Weyl
nodes prominently exposed. Since the Weyl points are
robust unless they are mutually annihilated, the Weyl

points still survive under a small rotation of the mag-
netic moments even without the C ẑ4 symmetry. Under
the rotation, the Weyl points are found to migrate in the
vicinity of the primary axis (not shown here).

C. Manipulation via magnetization and strain

It is important to note that the NTNPs appear on
the axes perpendicular to the magnetic-moment direc-
tion, while the Weyl points lie on the parallel axis. Thus,
if one rotates the magnetic moment from M ‖ [001] to-
ward the [100] direction (keeping My = 0), the NTNPs
on the ky axis are unaffected, whereas those on the kx
axis split into Weyl points because the degeneracy of the
|py ± ipz〉 valence-band states is lifted by the finite Mx.

Because the magnetocrystalline anisotropy of GdN is
very small,48 one can easily control the magnetization
orientation by applying an external magnetic field. In
cooperation with the SOC, the magnetic moment of GdN
is thus a tool that can be used to manipulate the Weyl
nodes in energy and momentum space, and thus the sur-
face states as well. The calculated semi-infinite (001)
surface states are shown in Fig. 4 - 6 with respect to the
magnetic moment orientation. For a magnetic moment
normal to the surface, two pairs of NTNPs are projected
on the surface BZ and connected by elliptical dome-like
surface states as illustrated in Fig. 4(c). This surface
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FIG. 2. Surface states on the (001) surface calculated for
a semi-infinite geometry without SOC. (a-b) Surface band
spectral function. (c-d) Constant-energy scan at E = EW .
Bright (dim) yellow color represents surface (bulk) state. The
origin has been shifted to theM point. (b) and (d) are zoomed
in around the M point; red dots indicate triple nodal points.

state has similar features as that of the true TNP phase
presented above in the absence of the SOC [Fig. 2(b) and
(d)].

A magnetic moment along the [110] direction makes
the four NTNPs split into four pairs of conventional Weyl
points (Fig. 5). This is different from the splitting of a
Dirac point into two Weyl points, in that here one Weyl
point is located one band index higher than the other
Weyl point. For instance, four Weyl points are crossings
of valence and conduction bands (at an energy level of

E
[110]
1 ) while the other four Weyl points are crossings of

two valence bands (at an energy level of E
[110]
2 ). Fig-

ure 5(d) shows two Fermi arcs connecting two pairs of

Weyl points on the constant-energy plane E = E
[110]
1 .

Since the Weyl points are crossings of valence and con-
duction bands, the surface states are guaranteed to con-
nect valence and conduction bands crossing the energy

gap at E
[110]
1 [Fig. 5(a-c)]. Surface states from the other

four Weyl points on E = E
[110]
2 are immersed in the bulk

valence bands as marked by an arrow in Fig. 5(b). Nev-
ertheless, the constant-energy plot [Fig. 5(e)] still shows
embedded Fermi arcs connecting the Weyl nodes. An ar-
row in Fig. 5(c) shows a small gap at the crossing points,
implying a finite interaction between the two Fermi arcs.

The last case we discuss here is when the magnetic mo-
ment is aligned along the [100] direction, which lifts the
NTNPs on the kx axis but not on the ky axis as shown in
Fig. 6(a) and (b), respectively. The Fermi arcs at relevant
energy levels are plotted in Fig. 6(e-h), showing the co-
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FIG. 3. Electronic structure of GdN calculated with SOC.
The magnetic moment is aligned along the [001] direction.
(a) Band dispersion along the three cartesian axes. The pur-
ple (green) colors represent spin majority (minority) bands.
(b) Band structure on the kz axis, where band labels denote
eigenvalues of the C ẑ

4 operator. (c-e) Band structure on κ1,
κ2, and κ3 lines. Blue and red arrows denote Weyl and nearly
triple nodal points, respectively. (f) and (g) 2D band struc-
ture on kx-ky and kz-kx planes at X1 and X3, respectively.
The arrows at the base are directed toward the Γ point.

existance of the NTNP and the conventional Weyl point
phase. It is noteworthy that the Fermi arc is tangen-
tially attached to the hole or electron pockets enclosing
the Weyl points, as is clearly demonstrated in Fig. 6(e).
This is expected based on the analysis of Haldane,49 but
to our knowledge this has not previously been demon-
strated using ab initio calculations. If the energy is de-
creased so that it falls below the Weyl point, the Fermi
arc becomes attached to the other side of the hole pocket
[Fig. 6(g)], preserving the tangential attachment in good
agreement with the prediction.49

Figure 6(i) illustrates the surface states of a cubic crys-
tallite of GdN, showing that the surfaces parallel to the
magentic moment direction have chiral conducting chan-
nels associated with the bulk Weyl nodes. These chiral
channels circulate in a right-handed manner relative to



5

FIG. 4. Electronic structure on the (001) surface calculated
for a semi-infinite geometry with the magnetization orienta-
tion of [001] direction. (a) Band structure at the M point.

(b) Constant-energy scan at E = E[001]. Bright yellow color
denotes intense spectral density. (c) Schematic view of the
nearly triple-nodal-point surface state emerging from the X1

and X2 points. Red dots are nearly triple nodal points.

the magnetic moment direction. This is true not only for
M ‖ [100], but also for an arbitrary direction of M , be-
cause the component of the Weyl-point chiral dipole mo-
ment is proportional to the magnetization in each Carte-
sian direction. Figure 7 shows that in the simplest case
of M ‖ [100], only one pair of Weyl points lies on the
kx axis in the vicinity of the Fermi level, giving non-zero
anomalous Hall conductivity σyz. Panel 7(c) shows the
partial Chern numbers Z where

σyz (kx) = −e
2

h
Z (kx) , (1)

calculated in 2D (ky, kz) momentum space as a function
of kx for two chemical potentials. It shows plateaus in
gapped windows of kx where σyz is well quantized to
either 0 or −1, corresponding the region between the two
Weyl points associated with the surface chiral channels.
Unfortunately, the Weyl points are separated from the
Fermi level by about −0.2 eV, suggesting that gating or
doping would be required to measure the chiral transport
properties shown in Fig. 7(d).

The dome-like surface state of the NTNP phase can be
understood as a transitional state between the two Weyl
phases. This is illustrated in Fig. 8, which shows the
topological surface state on the (001) surface induced by

FIG. 5. Electronic structure on the (001) surface calculated
for a semi-infinite geometry with the magnetization along the
[110] direction. (a-c) Band structure at the M point along kx,
k1, and k2 directions [see Fig. 1(g)]. Constant-energy-scans

at (d) E = E
[110]
1 and (e) E = E

[110]
2 . Magenta (cyan) dots

denote the position of Weyl points with positive (negative)
chirality. In (d-e), large dots lie on the energy plane of the
plot, while small dots lie off the plane.

Weyl points or NTNPs on the kx axis. When rotating
the magnetic moment from the [100] to the [001] direc-
tion, two initially separated valence bands become nearly
degenerate, inducing a pair of NTNPs. A further rota-
tion to the [1̄00] direction splits the two valence bands
again, in such a way that the chirality is exchanged and
the surface states acquire the opposite group velocities.
Note that an external magnetic field will also split TNPs
into Weyl nodes,13 and the rotation of the applied field
can cause a qualitatively similar transition in the TNP
surface states. Thus, the TNP and NTNP phases act
as intermediate neutral states at which the chirality is
reversed via the fusion and fission of two chiral surface
states.

An essential prerequisite for the occurrence of the band
crossings that we have analysed above is the presence of
a band inversion at the X points, which is quite sensi-
tive to the lattice constant and to the exchange coupling
strength. Figure 9 shows the calculated location of the
band gap closure as a function of these two parameters.
We find that both compressive strain and stronger ex-
change coupling enhance the band inversion, in agree-
ment with previous reports.25,26,29,31–33 The SOC also
strengthens the band inversion, especially on the pri-
mary axis parallel to the magnetic moment, due to its
larger band splitting. Therefore, in the region between
the blue and red lines, GdN has only one pair of Weyl
points. It is noteworthy that a uniaxial pressure may
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FIG. 6. Electronic structure of the (001) surface calculated for a semi-infinite geometry with the magnetization along the [100]

direction. (a-d) Band structure at the M point along kx, ky, k1, and k2 directions. Constant-energy-scans at (e) E = E
[100]
0 ,

(f) E = E
[100]
1 , (g) E = E

[100]
2 , and (h) E = E

[100]
3 . Red dots represent nearly triple nodal points. Magenta (cyan) dots denote

Weyl points with positive (negative) chirality. In (e-h), large dots lie on the energy plane of the plot, while small dots lie off
the plane. (i) Schematic view of the chiral surface states. Red and blue arrows indicate direction of magnetization and surface
group velocity, respectively.

widen the single-pair area by causing compressive and
tensile strains along the X3 and X1,2 axes respectively,
as will be discussed below. Once all three band inver-

FIG. 7. Anomalous Hall conductivity for magnetization along
the [100] direction. (a) Electronic states projected on the kx
axis from the tetragonal Brillouin zone (BZ) having the same
volume as the conventional Wigner-Seitz BZ, as shown in (b).
(c) Two-dimensional anomalous Hall conductivity vs. kx cal-
culated on constant-kx planes, one of which is shown as a
colored square in (b), including all states below EF (blue)
or EW (brown). (d) Bulk anomalous Hall conductivity as a
function of chemical potential.

FIG. 8. Schematic view of the GdN surface-state transition
on the (001) surface for magnetization orientation along (a)
[100], (b) [001], and (c) [1̄00]. Orange and blue lines repre-
sent two bulk bands on the kx axis having C x̂

4 eigenvalues of
exp (i3π/4) and exp (i7π/4), respectively [see Fig. 3(b)].

sions have occurred, the number of NTNP is determined
by the magnetic moment direction. If the magnetic mo-
ment disappears at T > TC, the C4-rotational and time-
reversal symmetries are recovered together with the spin
degeneracy of each band. On the Cartesian axes, the
spin-degenerate valence and conduction bands near the
Fermi level have C4 eigenvalues of θ = ±3π/4, implying
a mass gap where they cross. The band inversion at the
three X points implies that the topology of the bands
lying below the global direct gap is that of a Z2 time-
reversal topological insulator, and if a weak ordering of
the magnetic moments is turned on, this turns into an ax-
ion insulating phase in a narrow window of the exchange
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Acronyms are WSM for Weyl semimetal, NTNP for nearly
triple nodal point, FMI for ferromagnetic insulator, TI for
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mal insulator.

coupling parameter labeled as “AI” in Fig. 9.
The fact that the three band inversions occur on three

orthogonal primary axes opens the possibility of tuning
these gaps individually via anisotropic strains. A uniaxial
compressive stress, for instance, should enhance the band
inversion on the primary axis while reducing or eliminat-
ing it on the other two axes. Thus, this might result
in just a single band inversion, with one pair of NTNPs
or one pair of Weyl points (depending on magnetization
direction) on the primary axis. A biaxial stress might
induce two pairs of Weyl points without any NTNPs. It
is worth recalling that the effective degeneracy on the kx
axis originates from N py and pz orbitals and is lifted by
distinct lattice constants ay 6= az. Under biaxial pres-
sure, therefore, the NTNPs cannot emerge on the two
in-plane axes, regardless of the magnetic moment direc-
tion.

D. Landau level spectra

One characteristic feature of a TNP material is the ap-
pearance in magnetotransport of equally spaced Landau
levels crossing the Fermi level, instead of a single chiral
level as in Weyl semimetals.13,14 To investigate the mag-
netotransport properties of both TNP and NTNP phases,
the Landau level spectra are calculated by performing a
Peierls substitution in a k·p model. First, a simple k·p
model in the absence of SOC is constructed with a min-
imal basis set of |px〉, |py〉, and |dxy〉 orbitals (in that
order) respecting the D4h point symmetry around the
X3 point. Our model includes a pair of TNPs in con-
trast to the previous study focusing on a single TNP.14

By applying symmetry constraints and keeping terms up

to quadratic order, a k·p model for a pair of TNPs is
obtained as

H (k) =

 h11 (k) b2kxky c2ky
b2kxky h22 (k) c2kx
c2ky c2kx h33 (k)

 , (2)

where k is a relative wave vector from the X3 point and
the diagonal terms are

h11 (k) = a0 + a1k
2
x + a2k

2
y + a3k

2
z ,

h22 (k) = a0 + a2k
2
x + a1k

2
y + a3k

2
z ,

h33 (k) = d0 + d1
(
k2x + k2y

)
+ d3k

2
z . (3)

Figures 10(a) and (e) show the band structure cal-
culated with parameters chosen to resemble the first-
principles results. Assuming an external magnetic field
along the [001] direction, the kx and ky terms are replaced
by Landau-level ladder operators according to

πx = kx − eAx →
1√
2lB

(
â+ + â

)
,

πy = ky − eAy →
1

i
√

2lB

(
â+ − â

)
, (4)

where Ai is the vector potential, lB =
√
~/eB is the

magnetic length, and â |n〉 =
√
n |n− 1〉, and â+ |n〉 =√

n+ 1 |n+ 1〉 are the lowering and raising operators act-
ing on the nth Landau level.

The Landau level spectra are then calculated with a fi-
nite number of Landau levels in the basis. The result for
the TNP phase is shown in Fig. 10(b). The zeroth Lan-
dau level, the outermost of the parabolic ones, connects
valence and conduction Landau bands. In contrast to
Weyl semimetals, additional Landau levels appear in the
vicinity of the zeroth Landau level with a gradual shift to
lower energy, forming a dense parabolic spectrum.14 The
small downward shift between subsequent Laundau levels
is determined by the negative dispersion of band 6 shown
in Fig. 1(c-e,h), whose parabolic dispersion along the di-
rection normal to the applied magnetic field allows higher
Landau levels at lower energy. This behavior is consis-
tent with the results of a previous study14 after taking
into account that the dispersion was positive there, so
that the Landau levels shifted upwards instead.

In the case of the NTNP phase, the SOC together
with the [100]-oriented magnetization lowers the symme-

try considerably, but C
[100]
2 and σ[100] symmetries sur-

vive. The result is that the modified symmetry allows
new terms in the k·p model of the form kykz in all the
diagonal terms, kxkz in h12, and kz in h13.50 The extra
term in h13 is relevant to the mass gap of the NTNP.

The Landau level spectrum of the NTNP phase is
shown in Fig. 10(c). This also exhibits a zeroth Landau
level connecting valence and conduction Landau bands,
spreading downward as in the TNP phase. Although
the NTNP phase gives similar results to the TNP phase
and previous studies, this specific calculation is not re-
alistic in the sense that the applied orbital magnetic
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FIG. 10. Landau level spectra of GdN calculated with the k·p model. (a) and (e) Band structure calculated with the k·p
model along kz and kx directions, respectively. (b) and (c) Landau level spectra along kz axis for triple-nodal-point and nearly-
triple-nodal-point phases, respectively. (d) Landau-level spectra along the kz axis for the Weyl semimetal phase. (f) and (g)
Landau-level spectra along the kx direction for the triple-nodal-point and nearly-triple-nodal-point phases, respectively. Dark
blue color in (b-d) and (f-g) indicates low-index Lanew dau levels [see color bar in (d)].

field (along [001]) and the spin magnetization orientation
(along [100]) are not parallel. If the spin magnetization
aligns with the external field, the NTNP splits into Weyl
points as shown in Fig. 10(d), where the upper and lower
Weyl points exhibit opposite chirality.

Therefore, we consider a case in which both the exter-
nal field and magnetization orientation are aligned along
the [100] direction by carrying out the ladder-operator
replacement on the ky and kz terms in the k·p Hamilto-
nian. Figures 10(f) and (g) show the Landau-level spec-
tra along the kx direction for the TNP and NTNP phases,
respectively. In contrast to previous cases [Fig. 10(b-
d)], the parabolic spectrum of Landau-level curves now
spreads in both directions in energy, and the zeroth Lan-
dau level does not appear among them, since there is no
longer a band extremum in the 2D momentum space or-
thogonal to the axis. In this case we find difficulty in con-
verging the calculation with respect to the basis set size,
so that our confidence in the accuracy of the calculation
is reduced. Nevertheless, the similarity of the magneto-
transport properties between the NTNP and TNP phases
is clear, implying that half-metallic GdN can serve as
a useful platform for investigating the properties of the
TNP phase.

IV. SUMMARY

By employing ab initio calculations, we have investi-
gated the topological nature of the band crossing points

in half-metallic GdN. The emergent triple nodal points in
the absence of SOC split into conventional Weyl points
when taking the weak SOC into account. Interestingly,
some crossing points on the C4 rotation axis orthogo-
nal to the magnetization direction remain in the nearly-
degenerate triple-nodal-point state. These “nearly triple
nodal points” induce quantitatively similar surface spec-
tra and transport properties compared to those of true
triple nodal points. The transition as a function of mag-
netization orientation between the nearly-triple-nodal-
point and Weyl-point phases opens promising opportuni-
ties for the manipulation of the rich surface-state struc-
ture.
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