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The unique properties of topological semimetals have strongly driven efforts to 

seek for new topological phases and related materials. Here, we identify a critical 

condition for the existence of intersecting nodal rings (INRs) in symmorphic crystals, 

and further classify all possible kinds of INRs which can be obtained in the layered 

semiconductors with Amm2 and Cmmm space group symmetries. Several honeycomb 

structures are suggested to be topological INR semimetals, including layered and 

“hidden” layered structures. Transitions between the three types of INRs, named as α-, 

β- and γ-type, can be driven by external strains in these structures. The resulting 

surface states and Landau-level structures, more complicated than those resulting from 

a simple nodal loop, are also discussed. 
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Following the experimental detection of Fermi-arc surface states in Weyl 

semimetals[1-3], considerable attention has focused on the investigation of topological 

semimetals/metals (TMs) more generally[4-8]. Classic examples of TMs are the Weyl 

and Dirac semimetals[9-15], which exhibit twofold and fourfold degenerate Fermi 

points respectively. These nodal-point semimetals display a number of exotic transport 

phenomena such as negative magnetoresistance and the chiral magnetic effect[16-19]. 

Nodal line/ring semimetals belong to another class of TMs[20-27], in which the valence 

and conduction bands cross along one-dimensional lines in three-dimensional (3D) k-

space. In general, the line is not pinned at the Fermi energy[28-30], but passes through 

the Fermi energy at discrete points. As a consequence, the Fermi surface takes the shape 

of a thin tube with changing radius, possibly with constrictions. These semimetals are 

expected to exhibit graphene-like Landau levels and enhanced sensitivity to long-range 

Coulomb interaction[31-36]. Unlike nodal points, nodal lines/rings can form various 

topologically connected structures such as chains[37,38], knots[39], and Hopf links[40-

42], bringing new physics and topological properties. 

On the other hand, two-dimensional materials are the focus of another recently 

thriving field[43]. After graphene, many graphene-like honeycomb structures have 

been proposed, and some of them have been fabricated successfully[44-49], including 

silicene, germanene, BN, and phosphorene. These not only show intrinsic interesting 

properties in single-sheet form, but also have interesting hybrid properties when stacked 

into 3D materials[50-52]. These stacked structures often have a mirror symmetry along 

the stacking direction, and since nodal lines/rings can be protected by mirror 
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symmetry[53-56], it is natural to ask whether we can obtain topological nodal line/ring 

semimetals by the stacking of layered structures. 

Here we identify a necessary condition for the existence of intersecting nodal lines 

in symmorphic crystal structures. By stacking semiconducting honeycomb layers, three 

types of intersecting nodal rings (INRs), as shown in Fig. 1, are found to occur. The α-

type consists of isolated crossed rings as in Panel (a), the β-type corresponds to a nodal 

chain like that in Panel (c), and the γ-type is the structure of ladder of parallel rings as 

in Panel (d). Moreover, the three topological phases can be converted into one another 

via application of external strain. Interesting surface states and Landau levels (LLs) in 

these INR semimetals are discussed. Several 3D layered or “hidden” layered materials 

are suggested to possess the topological nodal rings. A tight-binding (TB) model is used 

to explain the relations between the topological phases and how they evolve into one 

another.  

For the INRs to be protected, a critical necessary condition is the presence of at 

least two intersecting mirror or glide planes commuting with each other in the crystal 

structure[57]. For simplicity, here we consider only two bands (occupied/unoccupied) 

near the Fermi level in the presence of two mirror planes without spin-orbit coupling. 

Let us denote the two mirror planes in the momentum space as A and B, as shown in 

Fig. 1(a). The occupied and unoccupied bands on the AB-intersecting line, say between 

points X and Y, can be labeled with two mirror eigenvalues a± and b± taking values ±1. 

The right half of Fig. 1(b) shows the bands on the XY-line. If the two bands have 

eigenvalue pairs (a+,b+) and (a-,b-) respectively, then they can cross without a gap 
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opening[58]. If we deviate from the XY-line to look at the bands on a generic k-path 

residing in plane A (see the curved arrow in Fig. 1(a)), then the two bands can cross 

again because of different A eigenvalues for each band, as depicted in the left half of 

Fig. 1(b). The same argument applies to plane B, hence this guarantees the presence of 

two nodal lines in planes A and B respectively, meeting at the band crossing point on 

the XY line and forming a nodal link. Note that non-symmorphic (glide or screws) 

characters are not mandatory, so this kind of nodal chains can exist even in symmorphic 

crystals[59-61], in contrast to a previous suggestion where the non-symmorphic nature 

was essential[37]. Whether the nodal lines are closed or open depends on details of the 

band dispersion, and the α-type INR can be transformed into β- or γ-type as shown from 

our following results. 

According to the necessary condition of INRs, two structure types are considered 

(Fig. 2). The first kind consists of 3D layered structures with sp2-hybridization atoms, 

as shown in Fig. 1(a), with the planar layers stacked in an AA' stacking sequence (Fig. 

2(c)). Each layer consists of hexagonal rings with each ring including two types of 

atoms labeled A1 and A2. The four-atom primitive cell (two A1 and two A2) is shown 

in Fig. 2(b). Atoms of the same type form dimers along the armchair direction, while 

those of opposite type make up the zigzag chains. The second structure type is a porous 

network in which sp2-hybridized zigzag chains are connected by sp3-hybridized linker 

atoms (Fig. 2(d)). Its primitive cell in Fig. 2(e) includes six (two sp3 and four sp2) atoms. 

Since the bands closest to the Fermi level will be dominated by the sp2 atoms, it is 

reasonable to neglect the sp3-hybridized atoms in a first approximation, in which case 
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the sp2 atoms form a structure of buckled layers stacked in an AA' sequence (Fig. 2(f)). 

The angle θ between lattice vectors is defined in the figures. Both types of structures 

have two mirrors on the planes xz and xy.  

When only one orbital of each atom in Fig. 2(a) is considered, a 4�4 TB model 

can be used to describe its electronic properties: 

% = ∑ ()*+
,*++ + ∑ ./*+

,*0+,0 ,                    (1) 

where *+
, /*0  represent the creation/annihilation operators, ()  (α = 1,2) represent 

site energies of atoms A1 and A2, ./ (β = 1…7) are the hopping parameters between 

atoms. Here t1 to t5 describe the intra-layer interactions, while t6 and t7 describe the 

inter-layer couplings (Fig. 2(b)). When the sp3-hybridization atoms in Fig. 2(d) are 

neglected, the porous network becomes a layered structure. From this point of view, the 

main difference between the structures of Figs. 2(a) and 2(d) is that the layers in the 

latter are buckled rather than planar. Because of this close analogy, Eq. (1) can be used 

to describe the electronic properties of both structures. 

We start from a semiconducting single layer. In this case the interlayer interactions 

in Eq. (1) can be omitted, i.e., we can set .8 = .9 = 0. The dashed red lines in Fig. 3(a) 

show the band structure of a typical single-layer semiconductor. It has a substantial 

band gap, and completely flat bands along paths Z-T, R-T and T-S because of the 

absence of interlayer couplings. When the semiconducting layers are stacked into a 3D 

structure, the interlayer couplings t6 and t7 become involved. As a result, the flat bands 

become dispersive, and the conduction and valence bands cross at the Fermi level. In 

Fig. 3(a) these crossings look like Dirac points, but as we shall see, they link together 
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in 3D to form nodal rings or lines.  

By tuning the parameters in Eq. (1), the three types of INRs in Fig. 1 can be 

generated. Figure 3(a) presents the band structure for the α-type rings. One can find 

that there are crossings along Z-T, T-Y, R-T and T-C. In the full Brillouin-zone (BZ), 

these crossing points lie on two perpendicular nodal rings with a common center at T, 

as shown in Fig. 3(d). One ring lies on the ka = kb plane (plane A) while the other lies 

on the kc = 0 plane (plane B). By comparing the band eigenvalues, it can be seen that 

this pattern corresponds to the α-type phase in Fig. 1(a). 

By increasing the intralayer hoppings while decreasing the interlayer ones, the 

band structure in Fig. 3(a) evolves into that of Fig. 3(b) by inverting 

occupied/unoccupied bands at C and R points, after which we find crossings along Z-

T, T-Y and C-Z. These crossing points lie on two perpendicular INRs on planes ka = kb 

and kc = 0 centered on the points T and Z respectively, as shown in Fig. 3(e). They link 

in the full BZ and form a nodal chain, corresponding to the β-type phase in Fig. 1(c). 

This phase is different from the type of nodal chain described in Ref. [36], which is 

protected by a nonsymmorphic glide-plane symmetry. 

By contrast, when the intralayer hoppings are decreased while the interlayer ones 

are increased, the band structure in Fig. 3(a) evolves into that of Fig. 3(c) by inducing 

a band inversion at Z. This introduces an additional nodal ring on the A plane encircling 

Z, and the ring on the B plane is now open and connects the two rings on plane A as 

shown in Fig. 3(f). The crossing points are now located on the k paths Γ-Z, T-Y, R-T, 

T-C and C-Z. In the extended BZ the nodal structure has an appearance like a ladder of 
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parallel rings, corresponding to the γ -type phase in Fig. 1(d). The topological 

protection of the three types of INRs can also be inferred from their 1D winding 

numbers along a close path ℒ encircling the rings: <ℒ =
=
>
∮ℒ@A ∙ C(A), where C(A) 

is the Berry connection at the point A. The calculation results indicate that all of them 

have nontrivial values. 

To find topological materials possessing these INR phases, we construct structures 

like Figs. 2(a) and 2(d) based on IV or III/V elements. By calculating band structures 

using density functional theory (DFT) [62], we find that layered structures BN, AlP and 

GaP and “hidden” layered structures SiC, BP and BAs can fit the requirements (Fig. S7 

in SI). The structural parameters of these structures are shown in Table S1. We calculate 

their phonon dispersions, and find that there are no soft modes in the spectra of BN and 

SiC (Fig. S8 in SI). This indicates that BN and SiC are metastable structures having 

good stability. Therefore, BN and SiC are used as two examples to exhibit the 

topological properties.  

Figure 4(a) shows the band structure of single-layer honeycomb BN, which we find 

to be a semiconductor with a direct band gap. After the BN layers are stacked into 3D 

structure by AA’ stacking, the band structure changes as shown in Fig. 4(b), which looks 

quite similar to Fig. 3(a). A close examination indicates that there are indeed α-type 

nodal rings in BZ. The projections of the band structures illustrate that the states around 

the Fermi level are contributed mainly by pz orbitals on B and N atoms. Therefore, it is 

reasonable that we use Eq. (1) to describe the structures [Detail parameters for fitting 

the DFT results can be seen in Table S2 in SI].    
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The band structure of "hidden" layered SiC structure is shown in Fig. 4(c). It is also 

very similar to the spectrum in Fig. 3(a), and α-type nodal ring is also found here. As 

mentioned above, the α-type phase evolves into β- and γ-type phases by tuning the 

hopping energies. An external strain along the direction (110) can induce the same 

effect as the variation of hopping parameters. As the angle θ changes with the strain 

from 89º to 80º, meanwhile He atoms are squeezed into the holes of the porous 

structure[63,64] (the inset in Fig. 4(d)), the band structure changes to that of Fig. 4(d). 

It is similar to the band spectrum in Fig. 3(c), which means that the system is changed 

to a β-type nodal-ring semimetal. After θ is increased further from 89º to 108º, the 

band structure in Fig. 4(e) corresponds to the γ-type nodal ring. As seen from Figs. 

4(c-e), all three types of INR structures are accessible for SiC under strain. 

Figure 5 presents [010] and [ ] surface band structures of the three kinds of INRs. 

On the [010] surface, we find that all types of INRs exhibit drumhead states inside the 

projections of the nodal rings (Figs. 5(a-c)). However, the surface states on the [ ] 

surface are different. The surface states of the α-type phase are still drumhead states, 

as shown in Fig. 5(d). Instead, in the cases of β- and γ-type nodal rings, the linking of 

the nodal rings induces exotic surface states. In Fig. 5(e), the surface states are 

distributed in a dumbbell-like region with the two ends corresponding to overlap 

regions. In Fig. 5(f), the surface state region has the appearance of a donut or an annular 

eclipse, because the projection of one ring is right in the center of the other. The areas 

of the surface state regions can be tuned by strain, and the transition between the three 

types of linked rings can also be tuned. 

101

101
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In search of other types of possible symmetry-allowed INRs, we apply a band 

representation analysis for our pz-orbital model [65-73]. Although many different kinds 

of nodal line structures are allowed, as listed in SI [70], we do find that the D- and E-, 

and F-type INRs we presented here are actually an exhausting set of allowed INRs. 

This is because the formation of nodal intersecting point is not allowed on another 

mirror-intersecting line G -Y, due to the absence of irreducible representations 

necessary to form the INR. We comment that, a similar analysis on various types of 

nodal line structures in a non-symmorphic crystal was done in Ref. [73]. 

One interesting consequence of INRs would be the emergence of flat zeroth LLs 

in the presence of a magnetic field B applied along the mirror-intersecting line. As 

discussed in Ref. [74], one should have a set of 2N essentially degenerate zeroth LLs 

at any given wavevector k along this line, where N is the number of nodal rings 

spanning the wavevector interval where this k is found. Thus, when there is a chain of 

β-type INRs connected in k-space, this should yield a flat band of zeroth LLs extending 

over almost all k, with only small LL gaps opening in the vicinity of the nodal 

intersections. Electron or hole doping, yielding fully filled or empty zeroth LLs, could 

lead to a rare realization of the 3D quantum Hall effect[74]. In addition, since the 

density of states of the zeroth LL varies as a function of angle between the B-field and 

nodal-ring plane, angular magnetoresistance measurements should be useful in 

distinguishing between different types of nodal rings[75].  

In conclusion, we suggest a generic condition for the presence of INRs and classify 

them in layered semiconductor materials. These INR semimetals show interesting and 
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unique transport properties including topological surface states and LLs. Our results 

suggest a guiding principle to engineer INR semimetals not only in fermionic systems 

but also in photonics crystals or other bosonic lattices, shedding light on nodal line 

engineering for further studies. 
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Figure captions 
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Figure 1. (color online) (a) An α-type INR, and (b) a simple model band structure 

manifesting nodal links from the two mirror symmetries A and B in (a). The right and 

left halves of (b) correspond to the bands on the k-path X-Y (straight arrow in (a)) and 

X-Z (curved black arrows), respectively. Different color (red and blue) represents 

different symmetry eigenvalues. (c) β -type and (d) γ -type INRs. Symmetry 

eigenvalues of the occupied band are shown in (a), (c) and (d).   
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Figure 2. (color online) AA' stacked honeycomb layered structure (a), its primitive cell 

(b) and top view (c). "Hidden" AA' stacked honeycomb layered network (d), its 

primitive cell (e) and top view (f). Both of the structures are made of two kinds of atoms 

A1 and A2. t1~t7 in (b) and (e) describe the hopping parameters of the structures.  
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Figure 3. (color online) Band structures based on Eq. (1) with different parameters: (a) 

t1=-1, t2=-0.5, t3=-1.2, t4=t5=0, t6=0.55, t7=0.25; (b) t1=-2.0, t2=-1.1, t3=-1.2, t4=t5= 0, 

t6=0.25, t7=0.15; (c) t1=-0.1, t2=-0.05, t3=-1.2, t4=t5=0, t6=1.0, t7=0.55. Other parameters 

are (==1.7, (H=-0.9. All the values are in units of eV. Red dashed line in (a) depicts 

band structure for a single-layer semiconducting with the same parameters as (a) but 

t6=t7=0. (d-f) Arrangements of the topological INRs in reciprocal space corresponding 

to the band structures in (a-c) respectively. In (a-c), eigenvalues for A- and B-mirror 

planes are shown, where the two mirror planes are illustrated in (d). Note that, in (f), 

the A-eigenvalues at T and Z are denoted in different symbols (a1± and a2± respectively), 

and the BZ is different from (d-e) because of changed unit cell parameters, which is 

used to mimic the DFT results discussed later. 
�

�
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Figure 4. (color online) Projected band structures of (a) single-layer and (b) stacked 3D 

layered BN (Fig. 1(a)). Projected band structures of "hidden" layered structure SiC with 

θ	= 890 (c), 800 (d) and 1080 (e). Insets: (c) charge density of a state around the nodal 

point, indicating the bonds are similar to the π bonds in graphene; (d) a primitive cell 

of SiC where He atoms are inserted into the holes.  
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�
�

Figure 5. (color online) (a-c) Topological surface states for α-, β- and γ-type LNRs, 

respectively, on the [ ] surface. Insets show the surface states regions (red shadows) 

in the BZ. (d-f) Same but for the [ ] surface. Because the [010] slabs are terminated 

by two different surfaces, two different surface states appear in (a-c). However, the 

surfaces of [ ] slabs are the same, and thus the two surface states in (d-f) are 

degenerate. 
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I. BAND REPRESENTATION ANALYSES FOR LAYERED AND BUCKLED HONEYCOMB

STRUCTURES

A. An introduction to band representation analysis

Here we denote nodal rings touching each other as intersecting nodal rings (INRs), rings wind-

ing each other as Hopf links, and those with neither intersecting nor forming Hopf links as separate

nodal rings. In the INR case, the point where the two nodal line cross will be denoted as the nodal

intersecting point. Also, we use ‘IRREP’ as a shorthand notation for ‘irreducible representation.’

In the manuscript we showed that INRs can exist when there are two (or more) mirror planes

intersecting each other, so that the nodal intersecting point exists on the mirror-intersecting line.

This suggests that we may also have additional INRs with nodal intersecting points located on

the other mirror-intersecting line �-Y (see Fig. 3(d-f) in the manuscript for the special points

notation), which were not found in the tight-binding and ab-initio calculations. It can be seen that,

by employing a band representation (BR) analysis, nodal intersecting points can exist only on the

Z-T line when we are considering only the pz-orbitals at sp2-bonded sites, so that our listing of

INR structures in Fig. 3 covers all possible INR cases. This is because the symmetries of the local

orbitals underlying the band structure determines the kind and number of IRREPs in the entire

momentum space.

Before describing these results, we describe below what a BR analysis is in a hand-waving man-

ner. For a mathematically rigorous presentation please refer to Refs. 1–4 and references therein.5

Basically, it is a momentum-space representation of a space group. We know well about the rep-

resentation theory of little co-groups (which are point groups) at high-symmetry k-points, which

tells us how many different kinds of degenerate states (i.e., IRREPs) we can have for each k-point.

On the other hand, from the number of local orbitals and number of sites in our choice of unit cell,

we know how many bands we will have in our tight-binding model. BR theory is, roughly speak-

ing, the combination of these two ideas; choosing our set of sites and local orbitals from which we

will construct our model, we can explicitly write the the representation of each space group oper-

ation in terms of a local-orbital basis in real space (which becomes an infinite-dimensional unitary

matrix) and then do the Fourier transform to obtain a k-space representation. Among the original

space-group operations, we can choose a little group of a lower-symmetry k-point (i.e., ‘subduc-

ing’ the representation) and find which kind of IRREPs we have at that point. Furthermore, for any
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FIG. S1. (color online) Crystal structrue of buckled honeycomb SiC with Amm2 space group. pz-like
orbitals at Si1 and C2 sites, highlighted with green (Wyckoff position 4e) and pink (4d) circles respectively,
contributes to the bands near the Fermi level.

high-symmetry lines connecting two points with even higher symmetry, we can find ‘compatibility

relations’ telling us about how each IRREP on one higher-symmetry point is connected to IRREPs

on another point through the line connecting the two points. From this analysis the connectivity

of high-symmetry IRREPs to form a band structure can be obtained, and the nodal ring structure

can also be deduced.

B. Choice of local orbitals in buckled honeycomb SiC (space group Amm2)

Below we apply the BR theory to a simple example, the buckled honeycomb SiC with the

Amm2 space group symmetry discussed in the manuscript. Note that the BR analysis employed

in this Amm2 example can be applied to the layered honeycomb structure with the Cmmm sym-

metry to yield the same conclusion as presented in Sec. I E. Here we do not consider the effect of

SOC, which gaps out all nodal lines and drives the system either to a weak or strong topological

insulator.6 Fig. S1 shows the crystal structure of SiC with Amm2 symmetry in a conventional

setting, where there are two mirror planes perpendicular to a (denoted mA) and to b (mB). In

the primitive cell there are four different symmetry-inequivalent sites: C1 and Si2 with C2v site

symmetry, and C2 and Si1 with lower Cs symmetry associated with mA only. Since C1 and Si2

sites are sp
3-bonded, we choose instead to explore the bands induced from the pz-like orbitals at

3
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FIG. S2. (color online) (a) Brillouin zone and high-symmetry planes of Amm2 structure, where mA and
mB are perpendicular to the a and b axes in Fig. 1 respectively. Note that B0, G0, �0, and F0 has only mA

symmetry. (b,c) Tables of BRs generated from Wyckoff position 4d (b) and 4e (c). Note that C2 (shown
in Fig. 1) and Si1 are located at 4d and 4e sites respectively. In both tables, grey rectangles highlight BRs
induced from pz-like orbitals (A0 IRREP of Cs site symmetry, symmetric upon mA operation, at both 4d
and 4e sites).

the C2 and Si1 sites, which are nearer to the Fermi level.

To construct the BRs, we start from the pz-like orbitals (A0 IRREP, symmetric upon mA) at C2

and Si1 sites with Cs point group symmetry. Using the BANDREP program recently implemented

in the Bilbao Crystallographic Server,7,8 we can generate BRs as shown in Fig. S2(b) and (c).

In the tables, the first row shows which local IRREP we chose to construct the BR. Here we

4



are interested in bands consisting of A
0 IRREP (pz-like orbitals) at 4d (b) and 4e (c) Wyckoff

sites. The ‘composite’ band-type in the second row means that the two bands generated can

be separated into two ‘elementary’ sets of BRs with a constant energy shift of each subband,

where elementary BRs (EBRs) are defined as BRs induced from IRREPs at Wyckoff positions with

maximal site symmetry. In spinless systems it has been shown that EBRs are indecomposable,9,10

i.e. an EBR cannot be decomposed into two sets of smaller BRs separated by a band gap. Note

that Amm2 symmetry allows only one-dimensional EBRs in the absence of spin. Lastly, the third

and subsequent rows in the tables show which IRREPs exist at six high-symmetry points (Z, T,

R, S, T, and �), where the BZ and high-symmetry k-points are shown in Fig. S2(a). Note that

the Z-T and �-Y lines are mirror-intersecting lines with C2v symmetry, so they can host four one-

dimensional IRREPs {Z,T,Y,�}1,··· ,4, while points R and S have only two IRREPs {R,S}1,2 from

their Cs symmetry. Also note that, in Fig. S2(a), point R (S) has the same symmetry with B0 and

G0 (�0 and F0).

C. Compatibility relation between high-symmetry k-points

Since we know how many different IRREPs we have in our system, we now need to connect

them to form the band structures. BANDREP provides the information about the connectivity (i.e.,

the compatibility relations), so that one can simply use them, but here we want to be a bit more

illustrative. The compatibility relations between different IRREPs is determined by how IRREPs

at higher-symmetry points are reduced into IRREPs with lower symmetries, deduced from their

symmetry eigenvalues. Eigenvalues of mA and mB for each IRREP at different k-points are as

5



follows;

mA mB

{Z, T, Y,�}1 + +

{Z, T, Y,�}2 � �

{Z, T, Y,�}3 � +

{Z, T, Y,�}4 + �

{B0, G0,�0, F0}1 + ·

{B0, G0,�0, F0}2 � ·

⇤1 · +

⇤2 · �

(S1)

where ⇤ denotes a generic point on the mB plane in Fig. S2(a). From this, we know that

{Z,T,Y,�}1,4 are connected to {B0,G0,�0,F0}1 and {Z,T,Y,�}2,3 to {B0,G0,�0,F0}2 when we

deviate from the mirror-intersecting line but stay in the mA plane. Similarly, {Z,T,Y,�}1,3 and

{Z,T,Y,�}2,4 are connected to ⇤1 and ⇤2, respectively, in the mB plane.

D. Possible band structures and nodal lines in SiC

Now we are ready to generate possible set of band structures from the sp
2-bonded sites in

buckled SiC. A couple of remarks are worth mentioning for further simplification of our analysis;

i) Unlike other high-symmetry points, the points on the mA plane with kx = 0 (represented by

S) host only a single IRREP S1 as shown in Fig. S2(b) and (c), implying we do not have any

protected band crossing on the plane. ii) From the symmetry argument in the manuscript, we

know that nodal intersecting points can only happen on the mirror-intersecting lines and when two

IRREPs with two opposite eigenvalues cross each other. Denoting the IRREPs at generic k-points

on the mirror-intersecting Z-T and �-Y lines as ZT1,··· ,4 and �Y1,··· ,4, respectively, we can have

nodal intersecting points when {ZT,�Y}1 and {ZT,�Y}2 (or {ZT,�Y}3 and {ZT,�Y}4) cross on

the mirror-intersecting lines. While we have all four IRREPs on the Z-T line, on the contrary, we

have only two IRREPs �Y1,4 on the �-Y line, implying that we cannot have nodal intersecting

points on the �-Y line. This is a crucial distinction between the two mirror-intersecting lines that

will have important consequences shortly.

With the IRREPs at high-symmetry points in Fig. S2 and the compatibility relations in Table
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(S1), the qualitative nature of the band dispersion is determined by the energy ordering of IRREPs.

Assuming for simplicity that the dispersions are monotonic along a line segment connecting two

high-symmetry points in the BZ, the band structure is determined by energy ordering of IRREPs

at six k-points, Z, T, Y, �, B0, and G0 (since no crossing can exist on the mA plane with ka, the

plane containing the S point). Because there are four 1D IRREPs at Z and T, two 1D IRREPs at Y,

�, B0, and G0, and four bands in total, the number of all possible band structures are (4!)2
�
4!
22

�4
=

746496, so generating all of the bands is neither possible nor necessary. Hence, below we will

discuss a few illustrative examples about how different kinds of nodal ring structures (separated,

INR, and Hopf link) can be generated from our 4-band model. Note that similar but more elaborate

analysis was done by Bouhon and Black-Schaffer for space group Pna21 (SG #33),11 where the

number of possible band structures is greatly reduced by the degeneracy enforced by the three

perpendicular screw axes.

1. NLs involving two bands

First we consider situations with only two bands crossing at the Fermi level. For simplicity,

here we assume that the other two bands are away from the Fermi level (one occupied, another

unoccupied) and do not cross with others as shown in Fig. S3. Hereafter we consider half-filling (2

bands occupied), and because we have time-reversal (TR) symmetry, only high-symmetry planes

and lines in the TR-irreducible section in the BZ will be depicted.12

Fig. S3(a) shows bands with NL crossing on the mB plane. Here we are depicting bands

contributing and not contributing to the NLs as solid and dotted lines, respectively. In Fig. S3(a),

we chose that only bands induced from the 4d Wyckoff position (C2) are crossing near the Fermi

level, while the bands from the 4e sites (Si1) are away from the Fermi level. Note that when we

are making only the solid bands cross, we may have NLs only on the mB plane since {ZT,�Y}1,4

have the same mA eigenvalue. Since no degeneracy is enforced at any k-points, the open NL can

be freely deformed into a closed nodal ring or even be removed without any symmetry breaking.

Similarly, it is easy to see that we get an identical result when we have two bands from the 4e sites

near the Fermi level.

Fig. S3(b) and (c) show the band crossings, choosing one 4d-induced band and another from

4e-induced ones. Fig. S3(b) shows bands with a NL only on the mA plane, while Fig. S3(c) shows

the �-type INR. By comparing Fig. S3(a-c), we can see that the mirror eigenvalues of the IRREPs

7



crossing on the mirror-intersecting Z-T line determines the presence of NLs on each mirror plane,

as discussed above and in the manuscript.

2. NLs involving three bands

Now we discuss the band crossings involving three bands. As shown in Fig. S4, we can in-

troduce two separate NLs without sharing the mirror-intersecting Z-T line by combining band

crossings depicted in Fig. S3(a) and (b). On the contrary, when we want to make the two NLs

share the mirror intersecting line to form INR or Hopf link, as shown in Fig. S5, then we need to

cross IRREPs with two opposite eigenvalues on the Z-T line (ZT1 and ZT2, or ZT3 and ZT4). We

mention that, this condition is similar with the one presented in Ref. 13, where the transformation

of two separate nodal rings into a Hopf link is shown in a four-band model with three distinct

IRREPs on the mirror-intersecting line. Unlike their model, however, in Fig. S5 we are consider-

ing situations with only three bands with distinct IRREPs are crossing on the mirror-intersecting

line. Because of this, it is not possible to transform two separate NLs into a Hopf link by inverting

bands only on the Z-T line, which is evident by comparing Fig. S5 (b) and (c).

3. NLs involving four bands

Finally we discuss situations where all the 4 bands are contributing to the NL crossings.

Fig. S6(a) shows the �-type nodal intersecting points, while Fig. S6(b) depicting two NLs on

the mA plane. Note that both in Fig. S6(a) and (b), by shifting the NL crossing points on the Z-T

line, they can overlap at a same point so that all the NLs (4 in (a), 2 in (b)) are connected. However

this is just an accidental crossing by a fine-tuning of parameters so may not be physically relevant.

E. Band representations for layered honeycomb (space group Cmmm)

In the manuscript, we discuss the layered honeycomb structures with the Cmmm space group

in addition to the buckled honeycomb structures. Because the inversion symmetry is present in

Cmmm in addition to all the operations in Amm2, it has three mirror planes perpendicular to

each other. Since there exist more mirror-intersecting lines in the momentum space compared

to the Amm2 structure, we might have additional nodal intersecting points on different mirror-

8



intersecting lines to form even more complicated nodal structures. Inducing the band representa-

tion from the pz orbitals at each site and looking into the allowed IRREPs on the lines, however,

it turns out that there is only one line, the Z-T line, accommodating IRREPs which can form the

nodal intersecting points. Hence the presence of the additional mirror plane in the Cmmm struc-

ture (compared to the Amm2 one) does not change our conclusion that the three types of INR

(↵-, �-, and �-type) exhaust all possible kind of INRs in our layered and buckled honeycomb

structures.

II. A k · p MODEL FOR THE THREE TYPES OF INRS

Comparing the four-band TB model in Eq. (1) in the manuscript, we can construct a two-band

k · p model to further compare the INRs. All the three types of INRs have a common nodal ring

centered on the point T (see Figs. 3(d-f) in the manuscript). Constrained by the symmetries and

the time reversal symmetry for a spinless system, one obtains a model up to quadratic order in k

around T as

H(q) =

0

@ A1q
2
x +B1q

2
y + C1q

2
z �iDqxqy

iDqxqy �+ A2q
2
x +B2q

2
y + C2q

2
z

1

A

where qi = ki � ki0 (i = x, y, z) and (kx0, ky0, kz0) is the momentum coordinate at point T.

The parameters �, {A,B,C}{1,2}, and D are determined by fitting DFT or TB results. When

{A,B,C}1 > 0 and {A,B,C}2 < 0, it produces an ↵-type INR; when A1, B2, C1 > 0 and

A2, B1C2 < 0, a �-type-like INR is produced, in which a nodal ring linked two curved nodal

lines; when A1, C1 > 0, A2, C2 < 0 and B1, B2 = 0, a �-type-like INR is produced, where a nodal

ring linked two straight nodal lines. Note that we need a find-tuning of B1 and B2 parameters to

realize the �-type INR in this two-band model since it generally requires 4 bands.

III. COMPUTATIONAL DETAILS

Our first-principles calculations were based on the density functional theory (DFT) as imple-

mented in the Vienna Ab-initio Simulation Package.14 The core-valence interactions were de-

scribed by projector augmented-wave (PAW) potentials within the Perdew-Burke-Ernzerhof (PBE)

approximation for the exchange-correlation energy.15 Plane waves with a kinetic energy cutoff of

9



500 eV were used as the basis set. We used the conjugate gradient method to optimize the atomic

positions, and the energy convergence criterion between two consecutive steps was 10�5 eV. The

maximum allowed force on the atoms is 10�3 eV/Å.
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FIG. S3. (color online) Three examples of band structures with two bands contributing to the NLs, where
(a) shows the bands induced from 4d (C2) sites near the Fermi level with an open NL on the mB plane as
shown in the right panel, while in (b) one band from 4d and another from 4e (Si1) is crossing to form a
NL on the mB plane. Note that the NLs can be closed to form nodal rings by inverting bands on the mirror
planes. (c) shows the �-type INR, which can be transformed to ↵-type, or crossing of two open NLs. Note
that the nodal intersecting point is marked with grey circle. In the left panels, numbers represent IRREPs at
each k-points, and dotted lines depict bands not contributing to the NLs. Band crossings, giving rise to the
NLs in the right panels (blue and orange lines), are marked with blue triangles and orange stars.

11



Γ

Y

BZ

T

C2v

G

Γ

Y

BZ

T

C2v

G

Γ-Υ1,3Ζ-Τ1,4
Ζ-Τ2,3B-G2

B-G1 Ζ-Τ1,3
Ζ-Τ2,4 Γ-Υ2,4

Λ1

Λ2

2

3

4

1

3

2

1

4

4

1

2

3

4

1

3

2

1

4

1

4

1

4

1

4

B Z T Y Γmx,y mx,yGT Z

En
er
gy

2

1

1

2

1

2

1

2

Λ

1

1 2

2

2

3

4

1

2

3

1

4

1

4

2

3

4

1

2

3

1

4

4

1

1

4

1

4

B Z T Y Γmx,y mx,y

my (ky=0)

GT Z

mx (kx=π)

En
er
gy

2

1

1

2

2

1

1

2

Λ

1

2 1

2

(a)

(b)

FIG. S4. (color online) Two examples of NLs with three bands, where the two NLs are not sharing the
mirror-intersecting Z-T line. (a) Two open NLs, and (b) two nodal rings.
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FIG. S5. (color online) Three examples of 3-band-NLs sharing the mirror-intersecting line, where one can
have (a) INR, (b) two separate nodal rings, and (c) Hopf link. Note that (a) is actually equivalent to the
INR depicted in Fig. S3(c), except the band inversion between Z1,3 and T2,3 in the unoccupied bands. The
nodal intersecting point splits into two separate nodal lines as the {Z,T}3 band moves down and is occupied,
as shown in (b). (c) shows an example of Hopf link from crossings of three bands. Note that unlike the
transition from (a) and (b), transition from (a) (or from (b)) to (c) requires global change of band ordering
in the k-space.
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FIG. S6. (color online) Two examples of NLs involving four bands. (a) shows bands with two nodal
intersecting points on the Z-T line, which corresponds to the �-type INR in the manuscript. (b) shows two
nodal lines on the mA-plane. Note that we can also have two nodal rings on the mA-plane by exchanging
IRREPs on the Z-T line.
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IV. ADDITIONAL SUPPLEMENTARY TABLES AND FIGURES

✓ (Å) a (Å) c (Å) Bond length
(Å)

Cohesive energy
(eV/atom)

Layered
honeycomb
structures
(Cmmm)

BN 64.0 4.424 2.495 1.43-1.70 6.270

AlP 68.6 6.224 3.926 2.16-2.55 3.303

GaP 87.9 4.942 3.978 2.10-2.42 2.903
Buckled

honeycomb
structures
(Amm2)

SiC 88.9 5.321 3.086 1.77-1.91 6.072

BP 88.2 5.537 3.193 1.84-1.96 3.606

BAs 88.1 5.861 3.378 1.95-2.08 2.941

TABLE S1. Structural parameters of the layered and buckled layered structures, consisting of IV or III/V
elements. All these structures have topological linked nodal rings.

✓ (deg) ✏1,2 ✏3,4 t1 t2 t3 t4 t5 t6 t7

BN 64 1.80 -0.90 -1.10 -0.70 -1.50 -0.05 -0.10 0.45 0.10

SiC
89 1.70 -0.90 -1.00 -0.50 -1.20 0.00 0.00 0.45 0.25

80 (He) 1.70 -0.90 -1.65 -1.00 -1.00 0.15 0.20 0.12 0.10

108 1.70 -0.90 -0.20 -0.10 -1.40 0.00 0.00 1.10 0.60

TABLE S2. Tight binding parameters (in eV) in Eq. (1) for fitting the DFT band structures in Figs. 4(b-e)
in the manuscript.
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Figure S1. Band structures for (a) single-layer AlP, (b) layered 3D AlP, (c) single-layer 

GaP (d) layered 3D GaP, (e) “hidden” layered 3D BP and (f) “hidden” layered 3D 

BAs. 

 

 

 

FIG. S7. (color online) Band structures for (a) single-layer AlP, (b) layered 3D AlP, (c) single-layer GaP
(d) layered 3D GaP, (e) buckled layered 3D BP and (f) buckled layered 3D BAs.
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Figure S2. Phonon dispersions for (a) “hidden” layered 3D SiC structure, (b) layered 

3D BN structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. S8. Phonon dispersions for (a) the buckled layered 3D SiC structure, (b) layered 3D BN structure.
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