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A: Experimental methods 

All samples were grown using 10 mm × 10 mm c-plane Al2O3 substrates. The first Bi2Se3 layer was 

grown according to the two-step growth method developed at Rutgers University where the first 3 QL 

was grown at 135°C, which was followed by slowly annealing the sample to 300°C, where the subsequent 

27 QL of Bi2Se3 layers were grown. Once the first Bi2Se3 layer finished growth, the In2Se3 of the 

specified thickness was grown, followed by the remaining Bi2Se3 layer. All the samples were then capped 

by 50 QL of In2Se3 which stabilized the films during exposure to atmosphere. For the samples with (Bi1-

xInx)2Se3 as the barrier layer, the same basic recipe was used. The Bi and In cell temperatures were 

adjusted such that when opened together the resulting film gave the concentration that was sought. All the 

concentrations were checked by a combination of ex situ Rutherford back scattering spectroscopy and in 

situ quartz crystal microbalance measurements, and the results were within ±1% of the target values.  

 All transport measurements were carried out at 1.5 K using the standard Van der Pauw lead 

geometry, and the magnetic field was applied perpendicular to the films' surface. The raw data was 

symmetrized to remove any odd component from Rxx and any even component from Rxy. The carrier 

density and mobility of the films ranged between 3-7 × 10
13

 /cm
2
 and 500-1000 cm

2
/Vs, and there was no 

correlation between the transport data and the value of Ã. From the WAL fitting, l ranged between 50-

100 nm and also showed little correlation with the other transport data or Ã. The temperature dependence 

of resistivity for all samples showed typical monotonic decreasing behavior with decreasing temperature, 

which is typical of a metal. Ã was independent of temperature below ~20 K, above which deviation 

occurred as thermal effect suppresses the WAL signal. 

 TEM sample preparation was carried out with focused-ion beam (FIB) technique using 5 keV Ga
+
 

ions. A JEOL ARM 200CF equipped with a cold field-emission gun and double-spherical aberration 

correctors operated at 200 kV was used for high-angle annular dark-field (HAADF) scanning 

transmission electron microscopy (STEM) with the collection angles ranging from 68 to 280 mrad. 
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B: Computational methods 

B1. Tunneling between topological interface states 

We study the tunneling between the topological surface states (TSS) in Bi2Se3-In2Se3-Bi2Se3 

heterostructures based on density-functional theory (DFT) (1-2). We first use the Quantum ESPRESSO 

package (3) to perform calculations on bulk Bi2Se3 and In2Se3, with the generalized gradient 

approximation (GGA) (4) to the exchange-correlation functional and fully relativistic norm-conserving 

pseudopotentials. The Brillouin zone (BZ) is sampled on an 8×8×8 Monkhorst-Pack (5) k mesh, with an 

energy cutoff of 55 Ry (1 Ry ≈ 13.6 eV) for Bi2Se3 and 65 Ry for In2Se3. The first-principles output is fed 

into the Wannier90 package to produce Wannier functions (WFs) and to generate a realistic tight-binding 

(TB) model defined in the chosen Wannier basis (6-7). 30 Wannier functions are constructed for Bi2Se3, 

including all the valence p orbitals, while four extra In 5s orbitals are included for In2Se3. Both models 

are constructed in such a way that they exactly reproduce the first-principles bandstructures within a 

certain energy range, spanning from 3 eV below to 3 eV above the Fermi level. 

 Once the first-principles TB model is obtained, we are ready to construct supercells including a 

Bi2Se3-In2Se3 interface. First, the Wannier-based model Hamiltonians for bulk Bi2Se3 and In2Se3, denoted 

as H1 and H2, are extrapolated to N1 QL and N2 QL slabs stacked in the [111] direction with open 

boundary conditions. These two isolated slabs are connected together in such a way that all the first-

neighbor hoppings (by first-neighbor hopping, we actually refer to hopping terms between nearest-

neighbor QLs) across the interface are taken as the average value of the corresponding hopping terms in 

the Bi2Se3 and In2Se3 bulk TB models. Then the periodic boundary condition is applied to the (N1 + N2)-

QL slab to make it a periodic supercell. In our calculations, the total thickness of Bi2Se3 and In2Se3 is 

fixed to be N1 + N2 = 12 QLs, and the thickness of In2Se3 is varied from N2 = 1 to 6 QLs (for the data 

shown in Fig. 2 H of the main text, N1 + N2 = 16 QLs with N2 = 8). Working in the Wannier basis allows 

for the thickness of In2Se3 in the heterostructure to be highly tunable, and the computational cost is 

negligible compared with a fully self-consistent interface calculation. 
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 In implementing this procedure, two issues need to be addressed. First, at the bulk level, we note 

that standard DFT tends to underestimate the energy of the In 5s level. Because the lowest conduction 

band and highest valence band of In2Se3 are dominated by In 5s and Se 4p orbitals respectively, DFT 

predicts a smaller band gap compared with experiment (8). Here we adopt the corrective treatment 

described in Ref. (8) which involves applying a +0.79 eV rigid shift (taken from many-body GW 

calculations) to the four In 5s levels in the 34-band model for In2Se3, leaving all the other matrix elements 

unchanged. 

 Second, when constructing interface models, we have to take extra care of the band offset 

between the two bulk materials. Initially the zeroes of energy of the Wannierized tight-binding models for 

Bi2Se3 and In2Se3 are inherited from the respective bulk DFT bulk calculations, but as is well known, 

these are largely arbitrary, as they depend on irrelevant details such as the choice of pseudopotentials. We 

adopt the alignment method based on surface work functions (9) by carrying out self-consistent surface 

slab calculations on Bi2Se3 and In2Se3 slabs individually, from which we evaluate the difference between 

the average electrostatic potential energy deep in the bulk vs in the vacuum for each material. We do this 

by computing the macroscopic-averaged electrostatic potential      from the microscopic potential 

         as:               
     

                   
 

 
 , where c and A are the cell height (size of a 

QL) and basal area respectively. For these calculations, a 3-QL slab is used, and slabs are separated from 

each other by a vacuum space of 2.9 nm. The macroscopic averages of the electrostatic potentials are 

plotted in Fig. S1. Note that due to the non-polar crystal structure and the homogeneous nature of the 

vacuum,      remains constant both deep in the bulk and in vacuum. Aligning the vacuum levels, we 

conclude that the relative shift between the average electrostatic potential in bulk Bi2Se3 vs In2Se3 

is       –            . Therefore, the arbitrariness in the energy zeroes can be removed by shifting 

all the Kohn-Sham eigenenergies of In2Se3 using                     . 

 With the GW correction to In 5s levels and the shift    on all the In2Se3 on-site energies, our 

interface model is ready to be used for the superlattice calculations. The eigenvalues are calculated in the 
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(kx, ky) plane, setting kz = 0. If the TSS do not interact, we expect to see a doubly degenerate gapless Dirac 

cone around Γ (kx = 0, ky = 0), but the energy spectrum should become gapped when a tunneling 

interaction is allowed. Therefore, the band gap at Γ, denoted as ∆(Γ), should provide a measure reflecting 

the tunneling amplitude between the TSSs. As shown in Fig. 2D in the main text, ∆(Γ) is found to drop 

exponentially as the thickness of the In2Se3 layer increases. Setting 0.05 eV as a threshold below which 

the tunneling between the TSS is considered as negligible, the corresponding critical thickness tc is about 

~2.6 QLs, which agrees well with experimental data.  

        One may also be interested in the real-space distribution of the interface states, which can be easily 

calculated using the interface model described above.  We define the following quantity as a weight of the 

real space density of the interface states around the Fermi level (10):          
          

          

where   
     and   

     are the components of the Bloch states at Γ projected onto the Wannier functions 

centered at  , and the superscripts   and   refer to the highest occupied and lowest unoccupied states 

respectively. In other words, if the Fermi level lies slightly above the conduction band minimum (CBM) 

at Γ,       measures the  -dependence of the charge density averaged over the  -  plane around the 

Fermi level.      is denoted as the real space density of the states (RDOS) in the main text, as shown in 

Fig. 2E-H. 

 

B2. Band alignment 

From the above self-consistent superlattice calculations, we are also able to determine the position of the 

In2Se3 conduction band minimum (CBM) and valence band maximum (VBM) with respect to the Bi2Se3 

VBM. It turns out that the In2Se3 CBM and VBM at Γ (including the +0.79 eV correction on In 5s levels) 

are 1.286 eV above and -0.018 eV below the Bi2Se3 VBM respectively. Such information is useful in 

evaluating the band alignment in (Bi1-xInx)2Se3. However, if one tries to estimate the CBM and VBM 

positions for different x values simply by linearly interpolating the two end points (x = 0% and 100%), 

one would not get a reasonable result. Because a linear gap-closure picture does not apply to (Bi1-xInx)2Se3 
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over the entire x interval, the bulk band gap vanishes at very low In composition as a result of the In 

clustering tendency and the presence of In 5s orbitals (8) (11) (12). Therefore, in order to treat the band 

alignment in (Bi1-xInx)2Se3 better, we also extract the position of the 3D Dirac point at criticality from Ref. 

(8) which is 0.106 eV above the VBM of Bi2Se3. Even though the theoretical critical point of (Bi1-

xInx)2Se3 (xc ≈ 16.7%) is higher than the experimental value (xc ∼6%, (11) xc ∼4% − 7%, (12)), here we 

assume that the theoretical shift of the 3D Dirac point with respect to the Bi2Se3 VBM at criticality also 

applies to the experimental situation. Namely, we assume that the 3D Dirac point is 0.106 eV above the 

Bi2Se3 VBM at x = 6%. 

 

Table S1: Band alignment of (Bi1-xInx)2Se3 

 

 

Using the positions of the CBM and VBM at 3 different x values as specified above (x = 0%, 6% and 

100%), we can obtain the CBM and VBM for any other x from two separate linear interpolations in the 

left and right intervals partitioned by xc. Under such an approximation, the gap vs x consists of two linear 

curves with different slopes, as shown in Fig. S2, instead of a single straight line as predicted by a simple 

linear-gap-closure picture. 

 Table S1 shows the alignments of the CBM and VBM of (Bi1-xInx)2Se3 with respect to the VBM 

of Bi2Se3 at different x. When x is 20%, the CBM of (Bi1-xInx)2Se3 is below that of Bi2Se3, which means 

that in a realistic case in which the Fermi level is slightly above the CBM of Bi2Se3, the (Bi1-xInx)2Se3 

barrier layer would behave as a metal with the TSS extending through the entire barrier layer. On the 

other hand, the CBM goes above the Bi2Se3 CBM when x is 60%, such that the (Bi1-xInx)2Se3 layer acts as 

an actual potential barrier which would decouple the two TSS. 

 

x 0 6% 20% 60% 100% 

VBM (eV) 0 0.106 0.088 0.035 −0.018 

CBM (eV) 0.490 0.106 0.280 0.786 1.286 
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Fig. S1 The macroscopic average of the electrostatic potentials of Bi2Se3 and In2Se3 slabs. 

 

 

 

Fig. S2 The bulk gap of (Bi1-xInx)2Se3 at Γ from linear interpolations. The asterisk marks the critical point. 

A negative gap (red segment) indicates a topological band inversion. 
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