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Magnetoelectric (ME) materials are of fundamental interest and have been investigated for their
broad potential for technological applications. The search for, and eventually the theoretical design
of, materials with large ME couplings present challenging issues. First-principles methods have only
recently been developed to calculate the full ME response tensor α including both electronic and ionic
(i.e., lattice-mediated) contributions. The latter is proportional to both the Born dynamical electric
charge Ze and its analogue, the dynamical magnetic charge Zm. Here we present a theoretical study
of the magnetic charge Zm and the mechanisms that could enhance it. Using first-principles density-
functional methods, we calculate the atomic Zm tensors in Cr2O3, a prototypical magnetoelectric,
and in KITPite, a fictitious material that has previously been reported to show a strong ME response
arising from exchange striction effects. Our results confirm that in Cr2O3, the Zm values and
resulting ME responses arise only from spin-orbit coupling (SOC) and are therefore rather weak.
In KITPite, by contrast, the exchange striction acting on the non-collinear spin structure induces
much Zm values that persist even when SOC is completely absent.

PACS numbers: 75.85.+t,75.30.Et,71.15.Rf,71.15.Mb

I. INTRODUCTION

There has been a recent resurgence of research on the
magnetoelectric (ME) effect, which describes the cou-
pling between electricity and magnetism.1 The linear ME
effect is defined as

αβν =
∂Pβ
∂Hν

∣∣∣
E

= µ0
∂Mν

∂Eβ

∣∣∣
H
, (1)

where the polarization P is linearly induced by an ex-
ternal magnetic field H, or the magnetization is linearly
generated by an applied electric field E . Here indices β
and ν denote the Cartesian directions and µ0 is the vac-
uum permeability. This coupling between electricity and
magnetism is of fundamental interest and shows broad
potential for technological applications.

The history of research on the ME effect dates back
to the 1960s when the magnetic symmetry started to be
emphasized. It was first realized by Landau and Lifshitz
that the ME response is only allowed in media with-
out time-reversal symmetry or inversion symmetry.2 In
1959, Dzyaloshinskii predicted that Cr2O3 should be a
ME crystal3 based on its magnetic point group, and ex-
periments successfully measured the linear induced mag-
netization by an external electric field4,5 and the in-
verse effect.6 The early theoretical studies and explana-
tions for the ME effect were based on phenomenological
models7–10 that typically do not distinguish carefully be-
tween microscopic mechanisms. The recent rapid devel-
opment of first-principles methods11–13 has now allowed
the underlying mechanisms in different materials to be
classified and investigated.

The linear ME effect can be decoupled into three con-
tributions, namely electronic (frozen-ion), ionic (lattice-
mediated), and strain-mediated responses.14 Each term
can be further subdivided into spin and orbital contri-
butions. The early ab-initio studies were focused on

the spin-lattice11 and spin-electronic12 terms. First-
principles methods have only recently been developed to
calculate the full ME response tensor α including both
spin and orbital contributions.13 As the symmetry condi-
tion for the strain-mediated term is more restrictive, this
term is absent in most bulk materials.

Previous studies have shown that the spin-lattice
term is dominant in many materials, as for example in
Cr2O3.13 Íñiguez has shown11 that the lattice contribu-
tion can be written as a product of the Born charge,
the force-constant inverse, and the dynamical magnetic
charge, which is the magnetic analogue of the dynamical
Born charge. This dynamical magnetic charge is defined
as

Zm
mν = Ω0

∂Mν

∂um

∣∣∣
E,H,η

. (2)

Here Ω0 is the volume of the unit cell containing N atoms
and um denotes a periodicity-preserving sublattice dis-
placement, where m is a composite label running from 1
to 3N to represent the atom and its displacement direc-
tion. The magnetic charge tensor Zm plays an important
role in various lattice-mediated magnetic responses and
contributes to the Lyddane-Sachs-Teller relationship in
magnetoelectric materials,15,16 but the mechanisms that
give rise to it are not yet well understood. In particular,
one route to optimizing the magnetoelectric coupling is
clearly to enhance Zm, but it is not obvious how to do
so.

In this work, we use first-principles density functional
methods to study the dynamical magnetic charges in two
materials and explore the different mechanisms responsi-
ble for them in these two cases. We first study the mag-
netic charges in Cr2O3, which are driven by the spin-
orbital coupling (SOC) mechanism. Then we study a
fictitious structure, “KITPite,” which was reported to
have a large spin-lattice ME coupling according to a pre-
vious theory.17 The structure of KITPite is such that
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the superexchange interactions between Mn moments are
frustrated, leading to a 120◦ noncollinear spin structure.
Our study shows that the Zm values, which are orders
of magnitude stronger than in Cr2O3, are responsible for
the strong ME coupling. We find that this enhancement
is present even when SOC is completely absent, thus con-
firming that it arises from exchange striction acting on
the non-collinear spins, in contrast to the case of Cr2O3

where Zm is driven only by SOC effects.
The paper is organized as follows. In Sec. II A we in-

troduce the formalism that describes how the dynamical
magnetic charge tensor enters into the lattice contribu-
tions to the magnetic, ME, and piezomagnetic responses.
In Sec. II B, we analyze the structure and the magnetic
symmetry of Cr2O3 and KITPite. The computational de-
tails are described in Sec. II C. In Sec. III, we present and
discuss the computed magnetic charge tensors for Cr2O3

and KITPite. Finally, Sec. IV provides a summary.

II. PRELIMINARIES

A. Formalism

Here, following Íñiguez,19 we generalize the formalism
of Wu, Vanderbilt and Hamann18 (WVH) to include the
magnetic field, and use this systematic treatment to de-
rive the ionic contribution of the ME coupling and other
magnetic properties.

For an insulating system with N atoms in a unit
cell, we consider four kinds of perturbation: (i) a ho-
mogeneous electric field E, whose indices β, γ run over
{x, y, z}; (ii) a homogeneous magnetic field H, whose
indices ν, ω also run over {x, y, z}; (iii) a homogeneous
strain η, with Voigt indices i, j = {1 . . . 6}; and (iv)
internal displacements u, indexed by composite labels
m,n (atom and displacement direction) running over
1, . . . , 3N . In this work we only consider internal dis-
placements that preserve the bulk periodicity, corre-
sponding to zone-center phonon modes.

The magnetoelectric enthalpy density is defined as

E(u,η,E,H) =
1

Ω 0
[E

(0)
cell − Ω(E ·P + µ0H ·M)] , (3)

where E
(0)
cell is the the zero-field energy per cell and Ω0

and Ω are the undeformed and deformed cell volumes
respectively. E(u,η,E,H) can be expanded around the
zero-field equilibrium structure as

E =E0 +Amum +Ajηj +AβEβ +AνHν

+
1

2
Bmnumun +

1

2
Bjkηjηk +

1

2
BβγEβEγ

+
1

2
BνωHνHω +Bmjumηj +BmβumEβ

+BmνumHν +BβjEβηj +BνjHνηj +BβνEβHν

(4)

where summation over repeated indices is implied. The
coefficients of the first-order terms correspond to the
atomic forces Fm = −Ω0Am, the stress tensor σj = Aj ,
the spontaneous polarization P S

β = −Aβ , and the spon-

taneous magnetization MS
ν = −µ−10 Aν . For the equilib-

rium structure, the atomic forces and the stress tensor
vanish. The diagonal second-order coefficients provide
the force-constant matrix Kmn = Ω0Bmn, the frozen-
ion elastic tensor C̄jk = Bjk, the frozen-ion electric sus-

ceptibility χ̄e
βγ = −ε−10 Bβγ , and the frozen-ion magnetic

susceptibility χ̄m
νω = −µ−10 Bνω, where the bar on a quan-

tity indicates a purely electronic response computed at
fixed internal coordinates of the atoms. The remaining
terms correspond to off-diagonal responses, namely the
force-response internal-strain tensor Λmj = −Ω0Bmj , the
frozen-ion piezoelectric tensor ēβj = −Bβj , the frozen-

ion piezomagnetic tensor h̄νj = −µ−10 Bνj , the frozen-ion
magnetoelectric tensor ᾱβν = −Bβν , the atomic Born
charges

Ze
mβ = Ω0

∂Pβ
∂um

∣∣∣
E,H,η

= µ−10

∂Fm
∂Eβ

∣∣∣
H,η

= −Ω0Bmβ , (5)

and the atomic magnetic charges

Zm
mν = Ω0

∂Mν

∂um

∣∣∣
E,H,η

= µ−10

∂Fm
∂Hν

∣∣∣
E,η

= −Ω0µ
−1
0 Bmν .

(6)
Static physical responses arise not only from the elec-

tronic part (barred quantities), but also from the ionic
contribution associated with the change of the equilib-
rium internal displacements um with fields or strain. The
relaxed-ion magnetoelectric enthalpy is

Ẽ(η,E,H) = min
u
E(u,η,E,H) , (7)

and the minimization is accomplished by substituting

um = −(B−1)mn(Bnjηj +BnβEβ +BnνHν) (8)

into Eq. (4) to obtain the total relaxed-ion response
(including both electronic and ionic parts). The total
relaxed-ion electric susceptibility, magnetic susceptibil-
ity, elastic, piezoelectric, piezomagnetic, and magneto-
electric tensors are then

χe
βγ = −ε−10

∂2Ẽ

∂Eβ∂Eγ

∣∣∣
H,η

= χ̄e
βγ+Ω−10 ε−10 Ze

mβ(K−1)mnZ
e
nγ ,

(9)

χm
νω = −µ−10

∂2Ẽ

∂Hν∂Hω

∣∣∣
E,η

= χ̄m
νω+Ω−10 µ0Z

m
mν(K−1)mnZ

m
nω ,

(10)

Cjk =
∂2Ẽ

∂ηj∂ηk

∣∣∣
E,H

= C̄jk −Ω−10 Λmj(K
−1)mnΛnj , (11)

eβj = − ∂2Ẽ

∂Eβ∂ηj

∣∣∣
H

= ēβj + Ω−10 Ze
mβ(K−1)mnΛnj , (12)
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FIG. 1. (Color online) Sketch showing how the six lattice-
mediated responses indicated by solid circles (orange) are each
built up from the four elementary tensors indicated by open
circles: the Born charge Ze (yellow), magnetic charge Zm

(blue), internal strain Λ (green), and force-constant inverse
K−1 (magenta). Each lattice-mediated response is given by
the product of the three elementary tensors connected to it,
as indicated explicitly in Eqs. (9-14).

hνj = − ∂2Ẽ

∂Hν∂ηj

∣∣∣
E

= h̄νj + Ω−10 Zm
mν(K−1)mnΛnj , (13)

αβν = − ∂2Ẽ

∂Eβ∂Hν

∣∣∣
η

= ᾱβν + Ω−10 µ0Z
e
mβ(K−1)mnZ

m
nν .

(14)

The six lattice-mediated responses in Eqs. (9-14) are
all made up of four fundamental tensors: the Born charge
tensor Ze, the magnetic charge tensor Zm, the internal
strain tensor Λ, and the inverse force-constant matrix
K−1. The manner in which these six lattice responses
are computed from the four fundamental tensors is illus-
trated in Fig. (1), which depicts the linear-response con-
nections between elastic, electric and magnetic degrees of
freedom.

If the crystal symmetry is low enough that piezoelectric
or piezomagnetic effects are present, then the strain de-
grees of freedom can similarly be eliminated by minimiz-
ing the magnetoelectric enthalpy with respect to them,
leading to additional strain-relaxation contributions to
χe, χm, and/or α. We do not consider these contribu-
tions in the present work because such terms are absent
by symmetry in the materials under consideration here.

The above derivations are carried out in the (E ,H)
frame, which is consistent with the usual experimental
conventions. In the context of first-principles calcula-
tions, however, it is more natural to work in the (E ,B)
frame, as E and B are directly related to the scalar and
vector potentials φ and A. The magnetoelectric tensor
α has different units in these two frames. In the (E ,H)
frame, α is defined through Eq. (14) so that the units are

Cr

O

(a) (b)

FIG. 2. (Color online) Structure of Cr2O3. (a) In the rhom-
bohedral primitive cell, four Cr atoms align along the the
rhombohedral axis with AFM magnetic moments shown by
(blue) arrows. (b) Each Cr atom is at the center of a dis-
torted oxygen octahedron.

s/m. In the (E ,B) frame, α is instead defined as

αEBβν =
∂Mν

∂Eβ

∣∣∣
B

=
∂Pβ
∂Bν

∣∣∣
E

(15)

and carries units of inverse Ohm, the same as for
√
ε0/µ0,

the inverse of the impedance of free space. The ME ten-
sors in these two frames are related by αEH = (µα)EB,
where µ is the magnetic permeability. The electric and
magnetic dynamical charges in the two frames are re-
lated by (Ze)EH = (Ze + αµZm)EB and (Zm)EH =
(µZm/µ0)EB.

For non-ferromagnetic materials we have µ ≈ µ0, so
that the Zm values are essentially the same in the two
frames. The same is also true for Ze, since the product
(αµZm)EB is at least five orders of magnitude smaller
than Ze in most magnetoelectric materials. In this work
we report our results in the more conventional (E ,H)
frame, even though the computations are carried out in
the (E ,B) frame.

B. Structure and symmetry

1. Cr2O3

Cr2O3 adopts the corundum structure with two for-
mula units per rhombohedral primitive cell as shown in
Fig. 2(a). Each Cr atom is at the center of a distorted
oxygen octahedron as shown in Fig. 2(b). It is an antifer-
romagnetic (AFM) insulator up to the Néel temperature
TN = 307 K. The AFM phase has the magnetic space
group R3̄′c′ and the spin direction on the Cr atoms alter-
nates along the rhombohedral axis. The magnetic sym-
metry allows a non-zero ME tensor with two independent
components α⊥ = αxx = αyy and α‖ = αzz. Another
feature of this magnetic group is that all the improper
rotations are coupled to the time-reversal operator and
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Dec 13

equal component
equal magnitude with opposite sign 

FIG. 3. Symmetry pattern of the Born and magnetic charge
tensors for (a) the Cr atom in Cr2O3, (b) the O atom in
Cr2O3 and the O2 atom in CaAlMn3O7, (c) the Ca, Al and
O1 atoms in CaAlMn3O7, and (d) the Mn and O3 atoms in
CaAlMn3O7. The elements indicated by an asterisk vanish in
the absence of SOC for Zm in CaAlMn3O7.

vise versa, so that pseudovectors and ordinary vectors
transform in the same way, implying that the magnetic
charge Zm and the Born charge Ze have the same ten-
sor forms. The three-fold symmetry on each Cr atom
restricts its tensor to have the form shown in Fig. 3(a).
The symmetry is lower on the O atoms; for the one lying
on the two-fold rotation axis along x̂, for example, the
charge tensor take the form shown in Fig. 3(b).

2. KITPite

The fictitious “KITPite” structure with chemical for-
mula CaAlMn3O7 is Kagome-like with 120◦ in-plane
AFM spin ordering as showed in Fig. 4. The unit cell in-
cludes two formula units made by stacking two MnO lay-
ers with 180◦ rotations between layers. Each Mn atom is
surrounded by an oxygen bipyramid and the O atoms are
in three nonequivalent Wyckoff positions: O1 are in the
voids of the Mn triangles; O2 are the apical ions located
between the two MnO layers (not shown in the planar
view); and O3 form the MnO hexagons. The magnetic
space group is 63/m

′m′c′; this has the same symmetry
feature as Cr2O3, namely that all the improper rotations
and time-reversal symmetries are coupled together, so
that the Born charges and the magnetic charges follow
the same symmetry restrictions. The charge tensors for
Ca, Al and O1 atoms have the symmetry pattern shown
in Fig. 3(c), and the Mn and O3 atoms have the charge
tensor form of Fig. 3(d). For the apical O2 atoms, the
five independent components in the charge tensor can be
written in the form of Fig. 3(b) when the on-site two-fold
axis is along the x̂ direction.

The elements marked by asterisks in Fig. 3 are those
that vanish for Zm in CaAlMn3O7 when SOC is ne-
glected. The system of magnetic moments is exactly
coplanar in the absence of SOC, and will remain so even
after the application of any first-order nonmagnetic per-
turbation. Thus, spin components along ẑ cannot be
induced, and it follows that the elements in the third col-

Ca       Al     5Mn 6Mn    11O 19O  20O
Dec 13

Mn

O

Al

Ca

x

y

B

FIG. 4. (Color online) Planar view of the CaAlMn3O7 (KITP-
ite) structure. The broad arrows (blue) on the Mn atoms
represent the magnetic moment directions in the absence of
electric or magnetic fields. Small (black) arrows indicate the
atomic forces induced by an external magnetic field applied
in the ŷ direction.

umn all vanish in all atomic Zm tensors in CaAlMn3O7

when SOC is neglected.

C. First-principles methods

The first-principles calculations for Cr2O3 are per-
formed with the QUANTUM ESPRESSO20 package us-
ing the generalized-gradient approximation parametrized
by the Perdew-Burke-Ernzerhof functional.21 We employ
Troullier-Martin norm-conserving pseudopotentials22

with SOC included and Cr 3s and 3p states incorporated
in the valence. The wavefunctions are expanded in
a plane-wave basis with cutoff energy 150 Ry, and a
4 × 4 × 4 Monkhorst-Pack k-point mesh is used for the
self-consistent-field loop. In the Berry-phase polarization
calculation,23 a 4 × 4 × 5 k-point sampling is found to
be sufficient. In order to calculate magnetic charges,
Born effective charges and the Γ-point force-constant
matrix, the finite-difference method is used by displacing
each atomic sublattice in each Cartesian direction and
computing the total magnetization, the Berry-phase
polarization and the Hellmann-Feynman forces. The
orbital magnetization is calculated using the modern
theory of orbital magnetization.24–26

The calculations for the fictitious KITPite material are
carried out with plane-wave density-functional theory im-
plemented in VASP.27 PAW pseudopotentials28 with en-
ergy cutoff 400 eV are sufficient in the non-collinear mag-
netization computation without SOC. For the exchange-
correlation functional we use the rotationally invariant
LSDA+U functional,29 with Hubbard U = 5.5 eV and
J = 2.0 eV on the d orbitals of the Mn atoms.30 The Born
effective charge tensor and the Γ-point force-constant ma-
trix are obtained by linear-response methods. The dy-
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TABLE I. Structural parameters of Cr2O3 from first-
principles calculation and experiments: rhombohedral lattice
constant a, lattice angle α, and Wyckoff positions for Cr (4c)
and O (6e).

Wyckoff position
a (Å) α (deg) Cr O

This work 5.386 54.3 0.1546 0.0617
Expt. (Ref. 33) 5.358 55.0 0.1528 0.0566

namical magnetic charges are computed by applying an
uniform Zeeman field in the crystal and computing the
resulting forces.12 A 4 × 4 × 4 Monkhorst-Pack k-point
mesh is used in the calculations.

III. RESULTS

A. Cr2O3

The Cr2O3 ground-state structural parameters pre-
dicted by our first-principles calculations are in good
agreement with experiment, as shown in Table I. A
group-theory analysis of the long-wavelength phonons
shows that the infrared (IR) active phonon modes, which
couple to the electromagnetic excitations, are the longitu-
dinal A2u modes and the transverse doubly-degenerated
Eu modes,

ΓIR = 2A2u + 4Eu , (16)

where the acoustic modes have been excluded. The IR-
active mode frequencies shown in Table II are computed
using linear-response methods, and the results are in
good agreement with experiment.

The main results for the magnetic charge tensors of
Cr2O3 are reported both in the atomic basis and in the
IR-active mode basis in Tables III and IV. The spin
contributions are dominant in the transverse direction,
but much weaker in the longitudinal direction. This is
to be expected from the nearly collinear spin order of
Cr2O3, considering that the magnitudes of the magnetic
moments are quite stiff while their orientations are rela-
tively free to rotate. The main effect in the longitudinal
direction is from the orbital-magnetization contribution.

TABLE II. Frequencies (cm−1) of zone-center IR-active
phonon modes of Cr2O3 from first-principles calculations and
experiments. The two A2u modes are longitudinal; the four
Eu modes are transverse (doubly degenerate).

A2u modes Eu modes
This work 388 522 297 427 510 610
Expt. (Ref. 31) 402 533 305 440 538 609

TABLE III. Magnetic charges Zm (10−2µB/Å) for Cr2O3 in
the atomic basis. The magnetic charge tensors for Cr and O
atoms take the forms shown in Figs. 3(a-b).

spin orbital spin orbital
Zm

xx(Cr) 5.88 0.25 Zm
yy(O) −1.95 −0.38

Zm
xy(Cr) −5.69 0.02 Zm

yz(O) 0.00 1.12
Zm

zz(Cr) 0.02 0.23 Zm
zy(O) −1.10 −0.72

Zm
xx(O) −5.92 0.06 Zm

zz(O) −0.02 −0.15

Incidentally, we also find that the longitudinal compo-
nents of the magnetic charge for Cr atoms are very sensi-
tive to the lattice constant of Cr2O3, especially the Cr-O
distance in the longitudinal direction. Thus, it is essen-
tial to choose a proper exchange-correlation functional to
mimic the experimental ground state structure.

The Born charge tensors for Cr and O are computed
to be

Ze(Cr) =

3.02 −0.30 0
0.30 3.02 0

0 0 3.18

 e ,

Ze(O) =

−2.36 0 0
0 −1.66 −1.00
0 −0.88 −2.12

 e .

While the symmetry constraints on the non-zero elements
are the same as for Zm, the pattern is quite different. For
example, the diagonal elements are of similar magnitude
for Ze but not for Zm.

The lattice-mediated magnetic and electric responses
for Cr2O3 computed from Eqs. (9-14) are summarized
in the bottom panel of Table IV. Our computational re-
sults are in reasonable agreement with the experimental
room-temperature lattice-mediated χe

‖ = 4.96 and χe
⊥ =

3.60 obtained from IR reflectance measurements.31 In

TABLE IV. Top: Mode decomposition of the Born charges
Ze, and of the spin and orbital contributions to the magnetic
charges Zm, in Cr2O3. Cn are the eigenvalues of the force-
constant matrix. Bottom: Total A2u-mode (longitudinal) and
Eu-mode (transverse) elements of the lattice-mediated elec-
tric susceptibility χe, magnetic susceptibility χm, and the spin
and orbital pars of the ME constant α.

A2u modes Eu modes

Cn (eV/Å
2
) 10.5 22.9 10.2 16.0 20.2 30.9

Ze (|e|) 1.15 8.50 0.55 0.39 3.71 7.07
Zm

spin (10−2µB/Å) 0.02 0.05 −0.76 −3.97 16.14 10.55
Zm

orb (10−2µB/Å) 2.74 −0.59 0.66 −0.80 −0.29 1.06
Latt. χe 6.2 4.37
Latt. χm 0.05× 10−8 1.28× 10−8

αspin (ps/m) 0.0024 0.633
αorb (ps/m) 0.0097 0.025
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TABLE V. Magnetic charges Zm (10−2µB/Å) for CaAlMn3O7

(KITPite) in the atomic basis (spin only). The magnetic
charge tensors for Ca, Al and O1 are of the form of Fig. 3(c);
those for Mn and O3 are of the form of Fig. 3 (d); and that
for O2 is of the form of Fig. 3(b).

Zm (10−2µB/Å)
Zm

xx(Ca) −43.46 Zm
xx(O2) −39.15

Zm
xx(Al) −24.63 Zm

yy(O2) 1.23
Zm

xx(Mn) 341.53 Zm
zy(O2) −37.62

Zm
yy(Mn) −171.46 Zm

xx(O3) −56.09
Zm

xx(O1) 66.98 Zm
yy(O3) −75.23

contrast, the experimentally measured longitudinal and
transverse magnetic susceptibility at low temperature32

are on the order of ∼ 10−3, which is about five orders of
magnitude larger than the results obtained from Eq. (10).
This difference undoubtedly arises from the fact that
the experimental χm is dominated by the electronic (i.e.,
frozen-ion) contribution χ̄m that is not included in Ta-
ble IV. The magnetoelectric response α‖ and α⊥ both
agree closely with previous theory, which is in reasonable
agreement with experiment.11,13

B. KITPite

When we relax KITPite CaAlMn3O7 in the assumed
63/m

′m′c′ structure, the unit cell has a volume of

311.05 Å
3

with a c/a ratio of 0.998. The Wyckoff co-
ordinates for the Mn atoms (6h) and O3 atoms (6g) are
0.5216 and 0.1871. Other atoms are in high-symmetry
Wyckoff positions. The IR-active modes are

ΓIR = 6A2u + 9E1u (17)

excluding the acoustic modes. The longitudinal A2u

modes do not contribute to the magnetic response when
spin-orbit interaction is absent in CaAlMn3O7, because
the longitudinal components of the magnetic charges Zm

are zero.
The results for the magnetic charge tensors are re-

ported in the atomic basis and the IR-active mode basis
in Tables V and VI respectively. The calculated force-
constant eigenvalues and Born charges Ze are also listed
in Table VI. The Born charges in KITPite and Cr2O3

are all close to the atomic valence charge values. As the
KITPite structure is fictitious and two E1u modes are
unstable in the high-symmetry structure, we will focus
on the results for the magnetic charges and omit any dis-
cussion of the the magnetic and dielectric responses.

The magnetic charges in the KITPite structure are
found to be much larger than for Cr2O3. For the
transition-metal ion, the magnetic charge of Mn in KITP-
ite is ∼50 times larger than for Cr in Cr2O3. The mag-
netic charges in Cr2O3 are driven by SOC, which acts
as an antisymmetric exchange field. Thus, the weakness

TABLE VI. The Born charges Ze and the magnetic charges
Zm for the IR-active A2u modes in CaAlMn3O7. Cn are the
eigenvalues of the force-constant matrix.

Cn (eV/Å
2
) Ze (|e|) Zm

spin (10−2µB/Å)
−2.4 3.7 539.7
−1.1 4.7 17.2

2.8 4.3 −0.6
7.1 2.4 266.4

11.6 5.1 −107.8
12.0 2.4 −74.5
35.3 7.9 −15.9
46.7 2.2 34.8
55.1 4.6 −325.7

of the SOC on the Cr atoms implies that the magnetic
charges and magnetic responses are small in Cr2O3. In
the KITPite structure, we deliberately exclude spin-orbit
interaction, so the magnetic charges are purely induced
by the spin frustration and the super-exchange between
Mn-O-Mn atoms. This exchange striction mechanism
causes the magnetic charges in CaAlMn3O7 to be dozens
of times larger than the SOC-driven responses in Cr2O3.

Since the orbital magnetization is strongly quenched in
most 3d transition metals, we expect the orbital contri-
bution to the Zm tensors in CaAlMn3O7 to be compara-
ble with those in Cr2O3, i.e., on the order of 10−2 µB/Å.
Since this is ∼2 orders of magnitude smaller than the
typical spin contribution in CaAlMn3O7, we have not in-
cluded it in our calculation. The main point of our study
of KITPite CaAlMn3O7 has been to demonstrate that
exchange-striction effects can give rise to large Zm val-
ues based on a mechanism that does not involve SOC at
all.

IV. SUMMARY

In summary, we have begun by presenting a systematic
formulation of the role played by the dynamic magnetic
charge tensor Zm in the lattice magnetic, magnetoelec-
tric, and piezomagnetic responses of crystalline solids.
We have then used first-principles density-functional
methods to compute the atomic Zm tensors for two proto-
typical materials, namely Cr2O3, a well-studied magneto-
electric material, and fictitious KITPite, which displays
a very large lattice ME effect. We find that the physics is
quite different in the two cases, with mechanisms based
on SOC giving only small Zm values in the collinear an-
tiferromagnet Cr2O3, while exchange-striction effects in-
duce very large Zm’s in noncollinear KITPite.

Our calculations are part of a broader effort to identify
mechanisms that could induce large magnetic charge val-
ues. They help to reinforce a picture in which SOC effects
give only weak contributions, at least in 3d transition-
metal compounds, whereas exchange striction can in-
duce much larger effects in materials in which spin frus-



7

tration gives rise to a noncollinear spin structure. In
this respect, the conclusions parallel those that have
emerged with respect to the polarization in multiferroics
and magnetically-induced improper ferroelectrics, where
exchange striction, when present, typically produce much
larger effects than SOC.34

Our work points to some possible future directions for
exploration. One obvious direction is to identify exper-
imentally known materials in which exchange striction
gives rise to large Zm values. In such systems, lattice-
mediated effects might even contribute significantly to
the magnetic susceptibility; while such contributions are
normally neglected for χm, we note that Zm appears to
the second power in Eq. (10), so this contribution might

be significant, especially in soft-mode systems. It might
also be interesting to explore the role of these magnetic
charges in the phenomenology of electromagnons.35 Fi-
nally, we point out that, unlike Ze, Zm remains well-
defined even in metals; while magnetoelectric effects do
not exist in this case, it would still be interesting to ex-
plore the consequences of large Zm values in such sys-
tems.
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