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First-principles theory and calculation of flexoelectricity
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We develop a general and unified first-principles theory of piezoelectric and flexoelectric tensor,
formulated in such a way that the tensor elements can be computed directly in the context of
density-functional calculations, including electronic and lattice contributions. We introduce a prac-
tical supercell-based methods for calculating the flexoelectric coefficients from first principles, and
demonstrate them by computing the coefficients for a variety of cubic insulating materials, like C,
Si, MgO, NaCl, CsCl, BaZrO3, BaTiO3, PbTiO3 and SrTiO3.

PACS numbers: 77.65.-j,77.90.+k,77.22.Ej

I. INTRODUCTION

Flexoelectricity (FxE) describes the linear coupling be-
tween electric polarization and a strain gradient, and is
always symmetry-allowed because a strain gradient au-
tomatically breaks the inversion symmetry. This is un-
like the case of piezoelectricity (coupling of polarization
to strain), which arises only in noncentrosymmetric ma-
terials. FxE was theoretically proposed about 50 years
ago,1 and was discovered experimentally four years later
by Scott2 and Bursian et al.3 The FxE effect received
very little attention for decades because of its relatively
weak effects. Recently it has attracted increasing at-
tention, however, largely stimulated by the work of Ma
and Cross4–10 in which they found that the flexoelec-
tric coefficient (FEC) could have an order of magnitude
of µC/m, three orders larger than previous theoretical
estimations.1

A second reason for the revival of interest in FxE is
that strain gradients are typically much larger at the
nanoscale than at macroscopic scales. For example, a
1% strain that relaxes in 1 nm in a nanowire or nan-
odot has a strain gradient 103 higher than for a similar
geometry in which a 1% strain relaxes to zero at the
micron scale. Thus, FxE can have a significant effect
on the properties of nanostructures. For example, a de-
crease in dielectric constant11,12 and an increase in criti-
cal thickness13 in thin films was attributed to flexoelectric
effects, and the transition temperature and distribution
of polarization can also be significantly influenced.14 A
giant enhancement of piezoelectric response15 and energy
harvesting ability16 were predicted in thin beams. FxE
was also shown to affect the properties of superlattices17

and domains walls.18–20 For example, domain configura-
tions and polarization hysteresis curves were shown to
be strongly affected by FxE because of giant strain gra-
dients present in epitaxial films.21 A FxE-induced rota-
tion of polarization in certain domain walls in PbTiO3

was found,22 and purely mechanical writing of domains
in thin BaTiO3 films was demonstrated.23 Some piezo-
electric devices based on the FxE effect have been pro-
posed and their effective piezoelectric response has been
measured in Cross’s group.24–26 Recently, it was found
that a strain gradient can generate a “flexoelectric diode

effect”27 based on a very different principle from that
of conventional diodes, such as p− n junctions or Schot-
tky barriers at metal-semiconductor interfaces, which de-
pend on the asymmetry of the system. The continuum
theory considering the FxE effect was also developed re-
cently for the nano-dielectrics28 and heterogeneous mem-
branes.29,30

In order to understand the FxE response and to apply
the FxE effect in the design of functional devices, it is
necessary to measure the FECs for different materials.
Clearly it is desirable to look for materials with large
FECs, for direct applications of the FxE effect. For other
nanoscale devices, on the other hand, it may actually be
desirable to identify materials where FxE is weak, so that
unwanted side effects of strain gradients are avoided.

Originally, FECs were estimated to be on the or-
der of nC/m and to scale linearly with static dielec-
tric constant.1 Forty years later, Ma and Cross found
that the FECs, as measured by beam bending experi-
ments (see Sec. IVC), could be three orders of magni-
tude larger than this in some high-K materials.4–10 This
work set off a wave of related work by other groups us-
ing a wide variety of approaches. Using the same tech-
nique as Ma and Cross, Zubko et al.31,32 measured the
FECs for single-crystal SrTiO3 along different crystal-
lographic orientations in an attempt to obtain the full
FEC tensor. They report FECs for SrTiO3 that are on
the order of nC/m, much smaller than in previous ex-
perimental work. They also found that it is impossible
to obtain the full FEC tensor through bending measure-
ments alone, and that it is even difficult to determine the
sign of the effect. Another technique to measure FECs
is to apply uniaxial compression to a sample prepared
in a truncated-pyramid geometry, thus inducing a strain
gradient in the pyramid.10 This also measures some kind
of effective FEC, but does not easily allow for extracting
individual longitudinal components, due to the compli-
cated inhomogeneous strain gradient distribution. How-
ever, based on this idea but using an inverse FxE effect,
Fu et al.25 measured the FEC for Ba0.67Sr0.33TiO3 and
obtained the same results as those from the direct FxE
effect. Hana et al. also used the inverse FxE effect to
measure the FEC for ceramic PMN-PT (a solid solution
of lead magnesium niobate and lead titanate).33,34 By us-
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ing a nanoindentation method, Gharbi et al.35 obtained
the same order of FEC for BaTiO3 as in the work of Ma
and Cross.9 Finally, Zhou et al.36 proposed a method to
measure the flexocoupling coefficient by applying a ho-
mogeneous electric field. They found that the hysteresis
loop shifts due to FxE effect, and that it can be restored
by applying a homogeneous electric field. The size of the
required electric field was shown to be related to the flex-
ocoupling coefficient, and thus could be used to measure
the FEC. This method avoids the need to apply a dy-
namic mechanical load and may increase the accuracy of
measurement.

On the theoretical side, efforts to understand the FxE
effect and to extract FECs from theory began with the
pioneering work of Kogan, who first estimated FECs for
simple dielectrics to be on the order of nC/m and to scale
linearly with static dielectric constant.1 Twenty years
later, Tagantsev developed a model for FxE that was
based on classical point-charge models.37,38 The FxE re-
sponse was divided into four contributions denoted as
“static bulk,” “dynamic bulk,” “surface FxE” and “sur-
face piezoelectricity.” The first-principles electronic re-
sponse was not accounted for in this theory, which fo-
cused more on the lattice effects. The calculation of static
bulk FxE was later implemented by Maranganti et al.,39

and FECs for several different materials were obtained.
The FxE response of two-dimensional systems were also
investigated by Kalinin et al.40 and Naumov et al.41

The first attempt at a first-principles calculation of
FECs for bulk materials was carried out for BaTiO3 and
SrTiO3 by Hong et al.,42 who performed calculations on
supercells in which a longitudinal strain variation of co-
sine form was imposed. This gives access to the longitu-
dinal FEC µ1111, and implicitly corresponds to fixed-D
(electric displacement field) electric boundary conditions.
In this work, the positions of the Ba or Sr atoms were
fixed and other atoms were allowed to relax. Their calcu-
lations include both electronic and lattice contributions
to the FECs, and their results show that FECs all take on
negative values. This method is limited to the longitudi-
nal contribution to the FEC tensor at fixed-D boundary
conditions.

Inspired by Martin’s classical piezoelectric theory,43

Resta44 developed a first-principles theory of FxE, but
it was limited to the longitudinal electronic contribution
to the FEC response of elemental materials, and was not
implemented in practice. Shortly afterwards, Hong and
Vanderbilt45 extended this theory to general insulators
and implemented it to calculate FECs for a variety of ma-
terials, from elementary insulators to perovskites. This
theory was still limited to the electronic response, and
only the longitudinal µ1111 components were computed
in practice. The calculations were at fixed-D boundary
conditions, and several practical and convenient meth-
ods for achieving this were proposed. The results indi-
cated that the electronic FECs are all negative in sign
and that they do not vary very much between different
materials classes. This work also raised several important

issues, such as the dependence of the results on choice of
pseudopotential, the presence of surface contributions re-
lated to the strain derivative of the surface work function,
and the need to introduce a current-density formulation,
instead of a charge-density one, to treat the transverse
components of the FEC tensor.

More recently, Ponomareva et al.46 have developed
an approximate effective-Hamiltonian technique to study
FxE in (Ba0.5Sr0.5)TiO3 thin films in the paraelectric
state at finite temperature. Parameters in the model
are fit to first-principles calculations on a small super-
cell in which an artificial periodic strain gradient has
been introduced. The authors computed both the flexo-
coupling coefficients (FCCs, see Sec. II H) and FECs for
(Ba0.5Sr0.5)TiO3 films for different thicknesses above the
ferroelectric transition temperatures. Unlike some of the
previous theories, they found all of the FEC tensor com-
ponents to be positive. They provided evidence that the
dependence of the FEC tensor on thickness and temper-
ature basically tracked with the dielectric susceptibility,
suggesting a strategy in which FCCs are computed as a
“ground state bulk property” and the FECs scale with
susceptibility. However, since FEC calculations tend to
be very sensitive to the size of the supercell,42 their small
supercell size may introduce a significant approximation.
They also did not attempt to calculate the electronic con-
tribution separately, and the role of fixed-E vs. fixed-D
electric boundary conditions was not discussed.

In this manuscript, we present a complete first-
principles theory of flexoelectricity, based on a long-wave
analysis of induced dipoles, quadrupoles, and octupoles
in the spirit of the work of Martin43 and Resta,44 together
with an implementation via supercell calculations and a
presentation of computed values for a series of materials.
We find that the flexoelectric response can be divided
into “longitudinal” and “transverse” components, and
that the treatment of the latter requires that one go be-
yond a charge-response treatment to a current-response
one. The formalism for this is presented in detail in Ap-
pendix A, but its implementation is left for future work.
Therefore, we present the longitudinal FEC tensor coeffi-
cients in their full generality for our materials of interest,
and in addition we present some preliminary information
about the transverse components.

During the preparation of this manuscript, we learned
that M. Stengel has also developed a first-principles the-
ory of flexoelectricity47 that bears many similarities to
the work presented here, although the point of view is dif-
ferent in several respects. Ref. 47 does not describe an ac-
tual implementation of the method in the first-principles
context or present any numerical results. Nevertheless,
the two theories seem to be in agreement on fundamen-
tal points, and we hope that they will strengthen one
another.

In the remainder of this Introduction, we emphasize
five points that should be kept in mind when compar-
ing calculated and/or measured values of FECs. Be-
fore proceeding, we refer the reader to several useful re-
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view articles that have appeared recently covering both
experimental and theoretical aspects of the study of
flexoelectricity.10,38,48–50

First, as indicated above, there are two contributions
to the FECs: a purely electronic (or “frozen-ion”) con-
tribution associated with a naive set of atomic displace-
ments that are simply quadratic functions of their unper-
turbed positions, and a lattice (or “relaxed-ion”) contri-
bution arising from additional internal atomic displace-
ments induced by the strain gradient. Some of the previ-
ous theoretical work focused on the electronic part,44,45

while others focused on the lattice part,37–39, and still
others considered both implicitly but did not separate
them.42,46 In the present work, we have developed a first-
principles theory which includes these two contributions
explicitly, and we have proposed a method to calculate
them efficiently.

Second, the question of what, precisely, is meant
by “relaxed-ion” is subtle for FxE and is discussed in
Sec. II F and Appendix B. We find that the calcula-
tion of the lattice contribution to the FECs depends on
a choice of “force pattern” applied to the atoms in the
unit cell in order to preserve the strain gradient, even af-
ter the induced internal displacements have taken place.
It it possible to make different choices for this force pat-
tern. A mass-weighted choice appears to be implicit in
some previous work, and is also appropriate to the anal-
ysis of dynamical long-wavelength phonons. However,
other choices are possible, e.g., restricting the forces to
the A atoms of ABO3 perovskites.42 We caution that it
is not meaningful to compare FECs computed using dif-
ferent force patterns. However, for an inhomogeneously
strained system in static equilibrium, the stress gradient
∇ · σ must vanish, where σ is the local stress tensor. In
such a case, the total FxE response is not dependent on
the choice of force pattern, since there is no ambiguity
about the meaning of relaxed atomic positions in this
case. This independence is confirmed by our numerical
calculations.

Third, it is important to obtain all symmetry-
independent elements of the FEC tensor in order to un-
derstand the FxE response in the case of an arbitrary
strain distribution and to aid in the design of func-
tional FxE devices. However, it is challenging to ob-
tain the full FEC tensor for general materials, which
have 54 independent components.51 Even for cubic ma-
terials, which have only three independent components,
there is still no straightforward way to measure the full
FEC tensor. Most first-principles calculations have been
limited to reporting the longitudinal component in cu-
bic materials,42,45 although lattice (but not electronic)
transverse components have also been reported in some
works.39 Here we develop a first-principles theory for the
full FEC tensor. However, our current implementation
is still limited to longitudinal components and to certain
combinations of transverse components. A formalism ad-
dressing the full set of transverse components is presented
in Appendix A, but the implementation of such an ap-

proach is left to future work.

Fourth, the reader should be aware that there are many
different definitions of FECs in the literature. For exam-
ple, the FECs can be defined in terms of unsymmetrized
strain, which tends to be more convenient for the deriva-
tion of the formalism, or in terms of symmetrized strain,
which is more convenient in connecting to experimen-
tal measurements. A third object is the flexocoupling
coefficient (FCC), which appears directly in a Landau
free-energy expansion. Aside from the confusion caused
by the physical distinction between these objects, there is
also the practical problem that different symbols and dif-
ferent subscript orderings are used for the same quantity
in different papers, making it very confusing when refer-
ring to the FECs appearing in different contributions to
the literature. To help clarify this issue, we define the
various kinds of FECs (based unsymmetrized vs. sym-
metrized strain) and the FCC, deriving the transforma-
tions that can be used to convert between them.

Fifth, there is a well-know issue for FxE, namely the
roughly three-orders-of-magnitude discrepancy between
most theoretical estimates and experimental measure-
ments of the FECs. Our work suggests that this gap
can largely be closed by paying close attention to the dif-
ference between FECs computed at fixed E vs. at fixed
D. This is important mainly for materials like BaTiO3

that have a large and strongly temperature-dependent
static dielectric constant ǫ0. The basic idea is to look
for quantities that scale only weakly with temperature,
calculate these from first principles, and then use the
experimentally known temperature dependence of ǫ0 to
predict the FxE response at elevated temperature. In-
deed, previous theory and calculations predict that the
FECs should scale linearly with dielectric constant,1,37,46

and experiments have also verified this.31 Previous work
has identified the FCC as an object with weak tempera-
ture dependence that can be used in this way; as derived
from LGD theory,49,50 the FCC is roughly the ratio be-
tween the FEC and ǫ0. Indeed, Ponomareva et al.46 ar-
gue that the FCC is “ground-state bulk property” that
is independent of the temperature and size of system. In
the present work, we point out that the FECs computed
at fixed-D boundary conditions are also suitable for this
purpose. They are, in fact, closely related to the FCCs,
as we shall see in Sec. II H, but they are more easily and
directly computed from first principles. Furthermore, we
show formally in Sec. IIG that the ratio of the fixed-E to
the fixed-D FEC is just equal to ǫ0. Therefore, the strat-
egy adopted here is to compute the fixed-D FECs at zero
temperature and to use the known temperature depen-
dence of ǫ0 to make room-temperature predictions. Using
this method, we find that the FECs computed from our
theory are much closer to the experimental values, falling
short by perhaps one order of magnitude instead of three.

The paper is organized as follows. In Sec. II we de-
rive the charge-response formalism for the first-principles
theory of piezoelectricity and FxE, including electronic
and lattice contributions, based on the density of local
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dipoles, quadrupoles and octupoles induced by a long-
wave deformation. Careful attention is paid to the lattice
contributions, the choice of fixed-D and fixed-E electric
boundary conditions, and the form of the flexocoupling
tensor and FxE tensor in the case of cubic symmetry. In
Sec. III we propose a supercell approach for calculating
the FEC tensor for cubic materials based on the charge-
response formalism. Using two supercells, one extended
along a Cartesian direction and one rotated 45◦, we ob-
tain all of the longitudinal components of the response.
In Sec. IV, we report the longitudinal FECs for differ-
ent cubic materials at fixed D from our first-principles
calculations. The room temperature FECs at fixed E
are also obtained by using experimental static dielectric
constants. The full FEC tensor is also reported after
introducing some assumptions. We then compare our
computed FECs with available experiment and theoreti-
cal results. In Sec. V we give a summary and conclusions.
Finally, in the Appendices, we provide details about three
issues: the current-response formalism for full FEC ten-
sors (including longitudinal and transverse ones), the def-
inition and construction of the pseudo-inverse of force-
constant matrix, and the treatment of O atoms in the
cubic perovskite structures.

II. FORMALISM

In 1972, Martin43 introduced a theory of piezoelectric-
ity based on the density of local dipoles and quadrupoles
induced by a long-wave deformation (frozen acoustic
phonon). In recent years, Martin’s theory of piezoelec-
tricity has essentially been superseded by linear-response
and Berry-phase methods in the computational electronic
structure community. These approaches only require
consideration of a single unit cell, and are therefore much
more direct and efficient. However, they are derived from
Bloch’s theorem, so that while they do apply to the case
of a uniformly strained crystal, they do not apply in the
presence of a strain gradient.
To treat the problem of FxE, therefore, we follow

Resta44 in returning to the long-wave method pioneered
by Martin.43 For flexoelectricity, this requires an analy-
sis not only of induced dipoles and quadrupoles, but also
of induced octupoles. While parts of our derivations are
built upon previous work,37,38,43–45,50 we attempt here to
present a comprehensive and self-contained derivation.

A. General theory of charge-density response

We define

fIτ (r−RlI) =
∂ρ(r)

∂ulIτ

(1)

to be the change of charge density induced by the dis-
placement of atom I in cell l, initially at RlI , by a
distance ulIτ along direction τ , keeping all other atoms

fixed. We also define the moments of the induced charge
redistribution via

Q
(1)
Iατ =

∫
dr rα fIτ (r) , (2)

Q
(2)
Iατβ =

∫
dr rα fIτ (r) rβ , (3)

Q
(3)
Iατβγ =

∫
dr rα fIτ (r) rβ rγ . (4)

Note that Q(2) and Q(3) are symmetric under interchange
of αβ or αβγ respectively.
It is worth briefly discussing the electric boundary con-

ditions here. For the displacement of a single atom, we
do not have to specify fixed E or D boundary conditions;
we just choose boundary conditions such that the macro-
scopic potential and E-field vanish as r−2 and r−3 respec-
tively. Since the induced charge density is screened, Q(1)

corresponds to the Callen dynamical charge, not the Born
one. If instead of moving one atom we were to move an
entire sublattice, the Callen and Born charges would cor-
respond to the application of fixed-D and fixed-E bound-
ary conditions respectively, In this sense, we can regard
the moment tensors Q(1), Q(2) and Q(3) as being fixed-D
quantities.
We now introduce the unsymmetrized strain and strain

gradient tensors, defined as

ηαβ =
∂uα

∂rβ
, (5)

ναβγ =
∂ηαβ
∂rγ

=
∂2uα

∂rβ∂rγ
(6)

(here we think of r as a spatial coordinate in the con-
tinuum elasticity sense). Note that ηαβ is not generally
symmetric (ηαβ 6= ηβα), while ναβγ is only symmetric in
its last two indices (ναβγ = ναγβ).
We now consider a long-wavelength displacement wave

(“frozen acoustic phonon”) of wavevector k in the crystal,
so that the strain and strain gradient are given by

u
(0)(r) = u0e

ik·r, (7)

the displacement u, strain η, and strain gradient ν are

uα(r) = u0α eik·r , (8)

ηαβ(r) = iu0αkβ e
ik·r , (9)

ναβγ(r) = −u0αkβkγ e
ik·r . (10)

To a first approximation the atom displacements will fol-
low the nominal pattern of Eq. (7), but the presence of
the strain and strain gradient may induce additional “in-
ternal” displacements such that the the total displace-
ment of atom I in cell l is43

ulI = (u(0) + u
(1)
I + u

(2)
I ) eik·RlI . (11)

Here u
(0) is the “acoustic” displacement of the cell as

a whole (independent of atom index I), u
(1)
I is the ad-

ditional displacement induced by strain η, and u
(2)
I is
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the additional displacement induced by strain gradient
ν. That is,

u
(1)
Iτ = ΓIτβγ ηβγ , (12)

u
(2)
Iτ = NIτβγδ νβγδ , (13)

where ΓIτβγ is the internal-strain tensor describing the
additional atomic displacements induced by a strain, and
NIτβγδ is the corresponding tensor describing the re-
sponse to a strain gradient. Note that we adopt an im-
plicit sum notation for Greek indices representing Carte-
sian components of polarization, field, or wavevector,
such as βγδ above, although we will always write sums
over the atomic displacement direction τ explicitly.
We shall see in Sec. II F how ΓIτβγ and NIτβγδ can be

related, via the force-constant matrix, to force-response
tensors ΛIτβγ and TIτβγδ describing the force FIτ in-
duced respectively by a strain or strain gradient. This
is straightforward for Λ, but we shall see there that an

ambiguity arises for N . Deferring this issue for now, we
substitute Eqs. (9-10) into Eqs. (12-13) to find

u
(0)
Iτ = u0τ e

ik·RlI , (14)

u
(1)
Iτ = iΓIτβγ u0βkγ e

ik·RlI , (15)

u
(2)
Iτ = −NIτβγδ u0βkγkδ e

ik·RlI . (16)

Defining

WIτβ(k) = δτβ + iΓIτβγ kγ −NIτβγδ kγkδ , (17)

Eq. (11) can be written as

ulIτ = WIτβ u0β e
ik·RlI . (18)

Then we can write down the induced charge density at r
as

ρ(r) =
∑

lIτ

fIτ (r−RlI)ulI,τ =
∑

lIτ

fIτ (r−RlI)WIτβ u0β e
ik·RlI , (19)

and compute its Fourier transform as

ρ(k) = V −1

∫
dr ρ(r) e−ik·r

= V −1
c

∑

Iτ

WIτβ(k)

(
1

N

∑

l

∫
dr fIτ (r−RlI)e

−ik·(r−RlI)

)
u0β

= V −1
c

∑

Iτ

WIτβ(k)

(∫
dr′ fIτ (r

′)e−ik·r′
)
u0β . (20)

(In going from the second to the third line above we change the integration variable to r
′ = r−RlI , notice that the

result is independent of l, and cancel
∑

l against N , where N is the number of cells of volume Vc in the total system
of volume V .52) Thus we have

ρ(k) = V −1
c

∑

Iτ

WIτβ(k) fIτ (k)u0β , (21)

where the Fourier transform of fIτ (r) is

fIτ (k) =

∫
dr fIτ (r) e

−ik·r

=

∫
dr fIτ (r)

(
1− ikµrµ − 1

2
kµkνrµrν +

1

6
i kµkνkσrµrνrσ + . . .

)
. (22)

Keeping terms up to third order in k, we get

fIτ (k) = −i kµQ
(1)
Iµτ − 1

2
kµkν Q

(2)
Iµτν +

1

6
i kµkνkσ Q

(3)
Iµτνσ , (23)

where the neutrality of the induced charge fIτ (r) has been used to eliminate the zero-order term.
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Plugging Eqs. (17) and (23) into Eq. (21), we obtain an overall expansion of ρ(k) in powers of wavevector k. The

linear-in-k term vanishes by the acoustic sum rule in the form
∑

I Q
(1)
Iτµ = 0, so we get

ρ(k) = V −1
c

∑

I

[
∑

τ

Q
(1)
IµτΓIτβγ kµkγ − 1

2
Q

(2)
Iµβνkµkν

]
u0β

+V −1
c

∑

I

[
i
∑

τ

Q
(1)
IµτNIτβγδ kµkγkδ −

1

2
i
∑

τ

Q
(2)
IµτνΓIτβγkµkνkγ +

1

6
iQ

(3)
Iµβνσkµkνkσ

]
u0β

+ . . . (24)

We now want to relate this to the polarizationP, in terms
of which we can define the (unsymmetrized) piezoelectric
and flexoelectric tensors as

eαβγ =
∂Pα

∂ηβγ
(25)

and

µαβγδ =
∂Pα

∂νβγδ
(26)

so that

Pα = eαβγ ηβγ + µαβγδ νβγδ + . . . (27)

Note that νβγδ is symmetric in its last two indices γδ, so
that µαβγδ is not uniquely specified by Eq. (27); to make

it so, we adopt the convention that µαβγδ is symmetric
in γδ as well. For the wave in question we find, using
Eqs. (9-10),

Pα(k) = eαβγ i u0β kγ + µαβγδ (−u0β) kγkδ + . . . (28)

Using Poisson’s equation in the form ρ(k) = −ikαPα(k),
we obtain

ρ(k) = eαβγ kαkγ u0β + i µαβγδ kαkγkδ u0β + . . . (29)

Now, the strategy is to compare Eqs. (24) and (29)
term-by-term in powers of k. Since the equation must be
true for all u0 vectors for a given k, equating the second-
order-in-k terms gives

eαβγ kαkγ = V −1
c

∑

I

[
∑

τ

Q
(1)
IµτΓIτβγ kµkγ − 1

2
Q

(2)
Iµβνkµkν

]
, (30)

and similarly at the next order,

µαβγδ kαkγkδ = V −1
c

∑

I

[
∑

τ

Q
(1)
IµτNIτβγδ kµkγkδ −

1

2

∑

τ

Q
(2)
IµτνΓIτβγkµkνkγ +

1

6
Q

(3)
Iµβνσkµkνkσ

]
. (31)

These equations describe the piezoelectric and flexoelectric responses respectively.

B. Piezoelectric response

We begin with the piezoelectric case. From Eq. (30) it follows that

eαβγ = V −1
c

∑

Iτ

Q
(1)
IατΓIτβγ − 1

2
V −1
c

∑

I

Q
(2)
Iαβγ +Aαβγ , (32)

where Aαβγ is antisymmetric in the first and third indices
but otherwise arbitrary. The first two terms represent the
lattice and electronic responses respectively. The third

vanishes under the symmetric sum over αγ on the left
side of Eq. (30), and serves as a reminder that the forms
given in the first two terms may not be fully determined.
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There is little danger of this regarding the first term,
which has a transparent interpretation in terms of dipoles
associated with strain-induced internal displacements of
the atomic coordinates. Thus, we can write

eαβγ = eldαβγ + eelαβγ , (33)

where the lattice contribution

eldαβγ = V −1
c

∑

Iτ

Q
(1)
IατΓIτβγ , (34)

is denoted ‘ld’ for ‘lattice dipole.’ The absence of a cor-
rection term in Eq. (34) is demonstrated in Appendix A.
In the electronic term eelαβγ , however, a correction having
the form of Aαβγ cannot be discounted; relabeling A as
eel,T, we obtain

eelαβγ = −1

2
V −1
c

∑

I

Q
(2)
I, αβγ + eel,Tαβγ . (35)

An explicit expression for eel,Tαβγ is given in Appendix A.

We denote the first (symmetric in αγ) and second (an-
tisymmetric in αγ) terms of Eq. (35) as the “longitu-
dinal” (L) and “transverse” (T) parts respectively. To
clarify this terminology, note that a given deformation of
the medium will generate a polarization field P(r) whose
longitudinal and transverse parts are defined as the curl-
free and divergence-free portions respectively, so that
any piezoelectrically-induced charge density ρ = −∇ ·P
comes only from the longitudinal part. But a simple cal-
culation shows that

∂αPα(r) = ∂α(eαβγ ηβγ)

= eαβγ νβαγ

= eSαβγ νβαγ , (36)

where the symmetry of νβαγ under αγ is used in the last
step. This shows that the “symmetric” and “antisym-
metric” parts of eαβγ are indeed just the longitudinal
and transverse contributions, respectively.
Recall that this is the piezoelectric response to the un-

symmetrized strain tensor of Eq. (5), and so contains
responses to the rotation of the medium as well as to a
symmetric strain. Defining the symmetric and antisym-
metric parts as

ǫαβ = (ηαβ + ηβα)/2 , (37)

ωαβ = (ηαβ − ηβα)/2 , (38)

and considering the general case eαβγ = eSαβγ+eAαβγ (with

eS and eA respectively symmetric and antisymmetric un-
der indices αγ), one finds that

Pα = eSαβγ ǫβγ + eAαβγ ωβγ . (39)

Here the antisymmetric part corresponds to the change
of polarization resulting from rotation of the crys-
tal, and thus contributes to the “improper” piezoelec-
tric response.53 However, the improper response also
includes symmetric contributions (e.g., from volume-
nonconserving symmetric strains), so the “proper” piezo-
electric tensor cannot simply be equated with eSαβγ . After
a careful analysis that made use of sum rules associated
with uniform translations and rotations of the lattice,
Martin43 was able to show that the proper piezoelectric
response is given by Eqs. (33) and (34) with Eq. (35)
replaced by

eel,propαβγ = −1

2
V −1
c

∑

I

[
Q

(2)
Iαβγ −Q

(2)
Iγαβ +Q

(2)
Iβγα

]
. (40)

Thus, while it is far from obvious, it turns out that the
proper piezoelectric tensor depends only on the symmet-
ric parts of the response. This is consistent with simple
counting arguments: the tensor describing the polariza-
tion response to a symmetric strain has 18 independent

elements, as does Q
(2)
Iαβγ.

Interestingly, the distinction between proper and im-
proper responses does not arise for flexoelectricity, which
is defined in terms of the polarization at a point in the
material at which ηαβ is zero (although the strain gra-
dient is not). Also, while the symmetrized strain tensor
contains less information than the unsymmetrized ηαβ
(six elements vs. nine), this is not true of strain gradients.
Instead, the symmetrized and unsymmetrized strain gra-
dients contain the same information (18 unique elements)
and are related by54

νβγδ =
∂2uβ

∂rγ∂rδ
=

∂ǫβγ
∂rδ

+
∂ǫβδ
∂rγ

− ∂ǫγδ
∂rβ

. (41)

In this one respect, the treatment of the flexoelectric re-
sponse is actually simpler than for the piezoelectric one.

C. Flexoelectric response

We turn now to the flexoelectric response. The general
solution of Eq. (31) is
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µαβγδ = V −1
c

∑

Iτ

Q
(1)
IατNIτβγδ − 1

4
V −1
c

∑

Iτ

(
Q

(2)
IατδΓIτβγ +Q

(2)
IατγΓIτβδ

)
+

1

6
V −1
c

∑

I

Q
(3)
Iαβγδ +Bαβγδ , (42)

where the Q(2) term has been symmetrized to obey the
requirement that µαβγδ be symmetric in γδ, and Bαβγδ

is an extra “antisymmetric” piece. For our purposes we
define the “symmetric part” of Xαβγδ (that is symmetric
in its last two indices) to be

XS
αβγδ =

1

3
(Xαβγδ +Xγβδα +Xδβαγ) (43)

and the antisymmetric part to be XA = X −XS. So, we
are allowed to add an extra antisymmetric term B = BA

to Eq. (42) because it will vanish under the sum over αγδ
in Eq. (31).
Clearly Eq. (42) contains three terms, two of which

involve lattice responses. We write

µαβγδ = µld
αβγδ + µlq

αβγδ + µel
αβγδ , (44)

where the terms on the right side are the lattice dipole,
lattice quadrupole, and electronic terms, respectively.
Writing these explicitly,

µld
αβγδ = V −1

c

∑

Iτ

Q
(1)
IατNIτβγδ , (45)

µlq
αβγδ = −1

4
V −1
c

∑

Iτ

(
Q

(2)
IατδΓIτβγ

+Q
(2)
IατγΓIτβδ

)
+ µlq,J

αβγδ , (46)

µel
αβγδ =

1

6
V −1
c

∑

I

Q
(3)
Iαβγδ + µel,J

αβγδ . (47)

where the last terms in Eqs. (46) and (47) are extra anti-
symmetric contributions and µlq,J + µel,J corresponds to
the B term in Eq. (42). The label “J” indicates that these
terms arise from the current-response formulation given
in Appendix A; explicit expressions for these corrections,
and a demonstration that no correction is needed for µld,
are given there.
Let us emphasize again the physics of these corrections.

First, we can straightforwardly extend the discussion at
the end of the last subsection to the case of flexoelectric-
ity. In place of Eq. (36) we find

∂αPα(r) = ∂α(µαβγδ νβγδ)

= µαβγδ hβαγδ

= µS
αβγδ hβαγδ (48)

where

hβαγδ =
∂ηβγδ
∂rα

=
∂3uβ

∂rα∂rγ∂rδ
(49)

is fully symmetric in the last three indices αγδ. It
again follows that “symmetric” and “antisymmetric” cor-
respond to “longitudinal” (L) and “transverse” (T) re-
spectively.

Now the essential problem is that the charge density
appearing in Eq. (19), used as the starting point of the
derivation given above, is only sensitive to the longitu-
dinal response, since it only depends on the divergence
of P(r). Thus, the expression given for the FEC ten-
sor in Eq. (42), excluding the final antisymmetric Bαβγδ

term, must contain all of the longitudinal response, but
may contain only part of, or may omit altogether, the
transverse response. A simple calculation shows that the
Q(1)N and Q(2) Γ terms in Eqs. (45) and (46) do con-
tain transverse parts, while the Q(3) term in Eq. (47)
does not. The last terms in Eqs. (46) and (47) are con-
tributions to the transverse parts µlq,T and µel,T of the
lattice-quadrupole and electronic responses.

While the transverse parts µlq,T and µel,T make no con-
tribution to the induced internal charge density ρ(r), this
does not mean that the transverse terms have no physi-
cal consequence. Polarization-related bound charges also
arise at surfaces and interfaces of the sample, and these
can depend on the transverse as well as the longitudinal
part of the flexoelectric response, as occurs for example
for beam-bending geometries as discussed in Sec. IVC.
Thus, a full theory of flexoelectricity should contain both
contributions, as derived in Appendix A. In the remain-
der of this manuscript, however, we concentrate on com-
puting the longitudinal contributions alone.

Finally, we note that the need for transverse correc-
tions is also evident from counting arguments. For ex-
ample, looking at the electronic contribution of Eq. (47),
we can see that µel

αβγδ has 54 independent tensor elements

(3×3×6 since it is symmetric under γδ) while Q
(3)
Iαβγδ has

only 30 (3×10 since it is symmetric under αγδ). Thus,
the Qmoment tensors do not contain enough information
to fully specify the flexoelectric response. On the other
hand, the symmetric (i.e., longitudinal) part of µel has
only 30 independent elements and can thus be captured

by Q
(3)
Iαβγδ.

D. Crystals with cubic symmetry

For crystals with cubic symmetry, the piezoelectric
tensor vanishes by symmetry and the flexoelectric ten-
sor µαβγδ has only three independent elements,51 namely
µ1111, µ1221, and µ1122. Others related by interchange or
cycling of Cartesian indices are equal (e.g., µ1221 = µ3113)
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and those with any Cartesian index appearing an odd
number of times (e.g, µ1223) vanish.
Using these relations and Eq. (49) we can explicitly

write −ρ(r) = Aµ1111 + B µ1122 + C µ1221 with A =
h1111+h2222+h3333, B = h1122+h2211+h1133+h3311+
h2233 + h3322, and C = 2B. The internal bound charge
resulting from the flexoelectric response to the deforma-
tion is then proportional to Aµ1111 +B (µ1122 +2µ1221).
This motivates us to define a new set of three coefficients
as

µL1 = µ1111 , (50)

µL2 = µ1122 + 2µ1221 , (51)

µT = µ1122 − µ1221 . (52)

Here ‘L1’ and ‘L2’ indicate “longitudinal” terms which
contribute to the internal bound charges in proportion
to combinations A and B respectively, while ‘T’ indi-
cates a “transverse” term. Thus, we see that a general
cubic material is characterized by two longitudinal and
one transverse flexoelectric coefficient. For a material
such as glass that has isotropic symmetry, one finds that
µ1111 = µ1122 + 2µ1221, i.e., µL1 = µL2, in which case
there is only one longitudinal coefficient. Thus, we can
think of ∆ = µL2 − µL1 as a measure of the anisotropy
of the cubic medium, which shows up only in the longi-
tudinal response.
In general, the flexoelectric response of a cubic crystal

can have contributions from all three terms in Eq. (44).
However, as we shall see in Sec. II F 1, the lattice
quadrupole term of Eq. (46) vanishes in simple cubic
materials including those found in rocksalt, cesium chlo-
ride, and perovskite crystal structures. This term can
be non-zero in more complex cubic materials, such as
spinels and pyrochlores; the technical requirement is the
presence of zone-center Raman-active phonon modes, or
equivalently, the existence of free Wyckoff parameters.
This will be discussed further in Sec. II F 1.

E. Definitions in terms of symmetrized strains

There are many different definitions of FECs in the
literature. Up until now we have been working with the
unsymmetrized strain tensor ηαβ = ∂uα/∂rβ and its gra-
dient ναβγ = ∂ηαβ/∂rγ defined in Eqs. (5-6); this form
is convenient for formal derivations and for practical cal-
culations, and corresponds to the µ in Refs. [39,45,55]
and the f in Ref. [38]. On the other hand, the FEC re-
lated to symmetrized strain is convenient for experimen-
tal measurements; see, e.g., g in Ref. [54], f in Refs. [21–
23,31,42,56], µ in Refs. [4–10,25,26,35,44,46,57,58], F in
Ref. [51], and γ in Ref. [59]. Researchers sometimes use
different definitions without emphasizing their relations.
Complicating matters further is the fact that different
conventions are frequently used in the literature for the
order of the four subscript indexes of the FEC tensor,
both for unsymmetrized and symmetrized strain cases,

which can cause confusion especially for the transverse
components. In this section, therefore, we clarify the
relations between the unsymmetrized and symmetrized
formulations following the analysis in P. Zubko’s thesis.54

Throughout our paper, we use the notation µ and g for
the FECs defined in terms of unsymmetrized and sym-
metrized strains respectively.
We define the gradient of the symmetrized strain as

νsβγδ =
∂ǫβγ
∂rδ

=
1

2
(νβγδ + νγβδ) . (53)

Note that νsβγδ is symmetric in the first two indices βγ,
while instead νβγδ is symmetric in the last two indices
γδ. The inverse relation to the above equation is

νβγδ =
∂2uβ

∂rγ∂rδ
= νsβγδ + νsβδγ − νsγδβ , (54)

which appeared earlier as Eq. (41). In the context of
symmetrized strains, we then define the flexoelectric co-
efficient g̃αβγδ to obey (note the order of indices)

Pα = g̃αδβγ ν
s
βγδ . (55)

Comparing this with

Pα = µαβγδ νβγδ , (56)

it follows that

g̃αδβγ = µαβγδ + µαβδγ − µαδβγ . (57)

Recall that we defined µαβγδ to be symmetric in γδ by
convention. Then g̃αδβγ as given by Eq. (57) is not gener-
ally symmetric in its own last indices βγ.54 Alternatively,
we may define

gαδβγ =
1

2
(g̃αδβγ + g̃αδγβ)

= µαβγδ + µαγβδ − µαδβγ . (58)

This is symmetric in βγ, making it a more natural defi-
nition in the symmetrized-strain context, where also νsβγδ
is symmetric in βγ. In this case, however, the µ̃αβγδ that
is related to gαδβγ by the analog of Eq. (57) is no longer
symmetric in its own last indices γδ. By convention,
µ and g are usually used in the unsymmetrized-strain
and symmetrized strain contexts respectively, so Eq. (58)
should be used to do the conversion instead of Eq. (57).
For a cubic system we have

g1111 = µ1111 , (59)

g1122 = 2µ1221 − µ1122 , (60)

g1221 = µ1122 , (61)

and the flexoelectric coefficients defined in Eqs. (50-52)
can be written as

µL1 = g1111 , (62)

µL2 = g1122 + 2g1221 , (63)

µT = −1

2
(g1122 − g1221) . (64)
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F. Lattice contributions

We return now to the lattice (or “relaxed-ion”) contri-
butions to the flexoelectric response, given by Eqs. (45)
and (46), neglecting now the current-response contribu-
tion to the latter. In Sec. II A we defined

ΓIτβγ =
∂u

(1)
Iτ

∂ηβγ
, (65)

NIτβγδ =
∂u

(2)
Iτ

∂νβγδ
, (66)

which are the “internal-strain” tensors describing the dis-
placements of the atoms in response to a strain or strain
gradient respectively. Correspondingly, we define

ΛIτβγ =
∂FIτ

∂ηβγ
, (67)

TIτβγδ =
∂FIτ

∂νβγδ
, (68)

representing the forces appearing on the atoms due to a
homogeneous strain or strain gradient.
For the strain-induced case we assume that the atoms

adjust to their equilibrium positions as the strain is ap-
plied. The force balance equations then take the form
0 = dFIτ/dηβγ , or

0 =
∂FIτ

∂ηβγ
+
∑

Jτ ′

∂FIτ

∂u
(1)
Jτ ′

∂u
(1)
Jτ ′

∂ηβγ

= ΛIτβγ −
∑

Jτ ′

KIτ,Jτ ′ ΓJτ ′βγ , (69)

where

KIτ,Jτ ′ = −∂FJτ ′

∂uIτ

, (70)

is the zone-center force-constant matrix. It follows that

ΓIτβγ =
∑

Jτ ′

(K−1)Iτ,Jτ ′ ΛJτ ′βγ , (71)

where (K−1) is the pseudo-inverse of K (see Sec. II F 2).
When inserted in Eq. (34), this gives the standard result
for the lattice piezoelectric response,

eldαβγ = V −1
c

∑

Iτ,Jτ ′

Q
(1)
Iατ (K

−1)Iτ,Jτ ′ ΛJτ ′βγ , (72)

and a similar substitution can be made in Eq. (46) for
the lattice-quadrupole flexoelectric response to get

µlq
αβγδ = −V −1

c

4

∑

Iτ,Jτ ′

Q
(2)
Iατδ (K

−1)Iτ,Jτ ′ ΛJτ ′βγ + . . .

(73)
where the ‘. . .’ refers to the term with (γ, δ) interchanged.

For the lattice-dipole flexoelectric response of Eq. (45),
we would similarly like to write the force-balance equa-
tions

0 =
∂FIτ

∂νβγδ
+
∑

Jτ ′

∂FIτ

∂u
(2)
Jτ ′

∂u
(2)
Jτ ′

∂νβγδ

= TIτβγ −
∑

Jτ ′

KIτ,Jτ ′ NJτ ′βγ , (74)

which would lead to

NIτβγδ =
∑

Jτ ′

(K−1)Iτ,Jτ ′ TJτ ′βγδ , (75)

so that Eq. (45) becomes

µld
αβγδ = V −1

c

∑

Iτ,Jτ ′

Q
(1)
Iατ (K

−1)Iτ,Jτ ′ TJτ ′βγδ . (76)

This is how we calculate lattice flexoelectric response in
this work; we first compute Q(1), K and T from our
first-principles calculations, and then combine them via
Eq. (76).
Strictly speaking, however, Eq. (74) has no solution,

for the simple reason that a true force balance is not pos-
sible: relaxing the atoms to their equilibrium positions
would erase the strain gradient. Formally, the problem is
that when summed over the atom index I, the first term
of Eq. (74) is generally non-zero, while the second van-
ishes by the acoustic sum rule. Physically, the problem is
that a strain gradient is always accompanied by a stress
gradient, which in general gives rise to a force density.
Thus, external forces, not accounted for in Eq. (74), need
to be applied to the atoms in each unit cell in order to op-
pose this force density. As will be discussed in Sec. II F 2,
we can still use Eq. (75) as long as K−1 is replaced by
an appropriately chosen pseudo-inverse. There is some
freedom in the choice of this pseudo-inverse, but physical
results for static deformations, such as the beam-bending
configurations discussed in Sec. IVC, will ultimately be
independent of this choice.

Finally, following Tagantsev,37 we note that the zone-
center force-constant matrix KI′τ,Jτ ′ and the force-
response tensors ΛIτβγ and TIτβγδ can themselves be
written in a manner somewhat parallel to Eqs. (2-4), but
this time as moments of the full force-constant matrix

ΦlIJ
ττ ′ = − ∂F0Iτ

∂ulJτ ′

. (77)

Using

ΛIτβγ =
∂F0Iτ

∂ηβγ
=
∑

lJτ ′

∂F0Iτ

∂u
(0)
lJτ ′

∂u
(0)
lJτ ′

∂ηβγ
, (78)

TIτβγδ =
∂F0Iτ

∂νβγδ
=
∑

lJτ ′

∂F0Iτ

∂u
(0)
lJτ ′

∂u
(0)
lJτ ′

∂νβγδ
, (79)
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it follows that

KIτ,Jτ ′ =
∑

l

ΦlIJ
ττ ′ , (80)

ΛIτβγ = −
∑

lJ

ΦlIJ
τβ ∆RlIJ

γ , (81)

TIτβγδ = −1

2

∑

lJ

ΦlIJ
τβ ∆RlIJ

γ ∆RlIJ
δ , (82)

where ∆RlIJ
β = (RlJ −R0I)β . As a reminder, ll′ are unit

cell labels while IJ and ττ ′ are atom and displacement-
direction labels respectively. The practical calculation
of the elements of the T tensor will be described in
Sec. III A, where Eq. (82) takes the form of Eq. (114)
after being adapted to the supercell context.

1. Transformation to mode variables

In simple binary crystals such as NaCl or CsCl, the
above formulas can be used directly. For more compli-
cated crystals such as perovskites, however, it is useful
to carry out a transformation to symmetry-mode vari-
ables. Here we briefly sketch the transformation to an
arbitrary set of mode variables, and then discuss in par-
ticular the case of symmetry modes chosen according to
the irreducible representations (irreps) of the zone-center
force-constant matrix.

Let ξj (j = 1, ..., 3N) be a set of mode variables that
are related to the 3N atomic displacements according to

ξj =
∑

Iτ

Aj,Iτ uIτ , (83)

with Aj,Iτ expressing the linear transformation from one
basis to the other. The inverse relation is

uIτ =
∑

j

(A−1)Iτ,j ξj . (84)

Then using a tilde to indicate quantities expressed in the
mode representation, the various quantities of interest
transform as

Q̃
(1)
jα =

∑

Iτ

(A−1)Iτ,j Q
(1)
Iατ , (85)

Q̃
(2)
jαβ =

∑

Iτ

(A−1)Iτ,j Q
(2)
Iατβ , (86)

K̃ij =
∑

IJττ ′

(A−1)Iτ,i (A
−1)Jτ ′,j KIτ,Jτ ′ , (87)

Λ̃jβγ =
∑

Iτ

(A−1)Iτ,j ΛIτβγ , (88)

T̃jβγδ =
∑

Iτ

(A−1)Iτ,j TIτβγδ . (89)

Then Eqs. (34), (45), and (46) become

eldαβγ = V −1
c

∑

j

Q̃
(1)
jα Γ̃jβγ , (90)

µld
αβγδ = V −1

c

∑

j

Q̃
(1)
jα Ñjβγδ , (91)

µlq
αβγδ = −1

4
V −1
c

∑

j

(
Q̃

(2)
jαδ Γ̃jβγ

+Q̃
(2)
jαγ Γ̃jβδ

)
, (92)

where Eqs. (71) and (75) have been replaced by

Γ̃iβγ =
∑

j

(K̃−1)ij Λ̃jβγ , (93)

Ñiβγδ =
∑

j

(K̃−1)ij T̃jβγδ . (94)

Note that the µlq,J term of Eq. (46) has been omitted in
Eq. (92) above, but can easily be restored by converting

J
(1,T)
I, αβγ of Eq. (A25) into the mode representation in a

manner analogous to Eq. (86).
This formulation becomes especially advantageous if

the mode variables are chosen to be symmetry-adapted.
Let us relabel the modes as j → {sσa}, where s is the
irrep label, σ labels the copy of the irrep if there is more
than one, and a = 1 . . .ms (ms is the dimension of irrep
s) labels the basis vectors. Then the zone-center force-
constant matrix K is diagonal in s and a,

K̃sσa,s′σ′a′ = δss′ δaa′ k̃sσσ′ , (95)

and its pseudo-inverse can be written similarly but using
k̃−1
s which is the ms ×ms pseudo-inverse of k̃s. In this

notation we have

eldαβγ = V −1
c

∑

sσσ′a

Q̃(1)
sσa,α k̃−1

s,σσ′ Λ̃sσ′a,βγ , (96)

µld
αβγδ = V −1

c

∑

sσσ′a

Q̃(1)
sσa,α k̃−1

s,σσ′ T̃sσ′a,βγδ , (97)

µlq
αβγδ = −1

4
V −1
c

∑

sσσ′a

(
Q̃

(2)
sσa,αδ k̃

−1
s,σσ′ Λ̃sσ′a,βγ

+Q̃(2)
sσa,αγ k̃

−1
s,σσ′ Λ̃sσ′a,βδ

)
. (98)

It is clear that Q̃(1), which describes the electric dipole
appearing in response to a mode displacement, behaves
like a Cartesian vector, and so will only be nonzero for
vector irreps. Thus the sums over s in Eqs. (96) and (97)

can be restricted to irreps of vector character, and Λ̃

and T̃ need only be evaluated for these, i.e., for infrared-
active modes. For cubic materials there is just one such
irrep, namely T−

1 (also known as Γ−
15). It is well-known

for piezoelectricity that only infrared-active modes con-
tribute, but the above makes it clear that the same is
true for the lattice-dipole flexoelectric response.
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As for the lattice-quadrupole contribution in Eq. (98),

Q̃(2) describes the electric quadrupole response, which
has the character of a symmetric second-rank tensor and
thus only couples to quadrupolar or fully symmetric ir-
reps. These are precisely the ones displaying Raman ac-
tivity, so we can restrict our attention just to Raman-
active modes when computing µlq.
In this manuscript we consider three types of cubic

crystals. First, for C and Si in the diamond struc-
ture, the dynamical charges vanish so that eld and µld

vanish. Of course eel also vanishes and the crystal is
not piezoelectric. However, µlq does not vanish, be-
cause the zone-center optic mode has T+

2 (Γ+
25) symme-

try and is Raman-active. The symmetry is such that

Γ1αβγ = −Γ2αβγ = γ εαβγ , Q
(2)
1αβγ = −Q

(2)
2αβγ = q εαβγ

(where ε is the fully antisymmetric tensor and “1” and
“2” label the two atoms in the primitive cell). It is a short
exercise to show that µL1 = µL2 = 0 and µT = −3γq/2Vc.
In these materials, therefore, µL1 and µL2 have only elec-
tronic contributions, while µT has both electronic and
lattice-quadrupole contributions.
Second, we consider binary materials in the rocksalt or

cesium chloride structure. The zone-center modes consist
of two copies of the T−

1 (Γ−
15) irrep, which is not Raman-

active. In this case, µL1, µL2 and µT all have contribu-
tions from electronic and lattice-dipole terms only.
Third, we consider perovskite ABO3 compounds. Here

the zone-center modes comprise four copies of the IR-
active T−

1 (Γ−
15) irrep, plus one T−

2 (Γ−
25) irrep that is

neither IR nor Raman active. The situation is there-
fore similar to the binary-compound case, with µL1, µL2

and µT having electronic and lattice-dipole contributions
only. Two of the T−

1 irreps correspond simply to dis-
placements of the A or B atom, while the other two cor-
respond to particular linear combinations of oxygen dis-
placements. The symmetry-mode treatment of the oxy-
gen displacements in the perovskite structure is detailed
in Appendix C.
Note that more complex cubic crystals, such as spinels

and pyrochlores, may have both IR-active and Raman-
active zone-center modes. In particular, any cubic crystal
having one or more free Wyckoff coordinates has Raman-
active A+

1 (Γ+
1 ) modes. For such materials, µL1, µL2 and

µT may all have contributions from all three terms in the
flexoelectric response.

2. Pseudo-inverse of force-constant matrix and

force-pattern dependence

Recall that the force-response tensors Γ and T
of Eqs. (67) and (68) need to be converted into
displacement-response tensors Λ and N of Eqs. (65) and
(66) via the application of a pseudo-inverse as in Eqs. (71)
and (75) respectively. For the piezoelectric response this
is straightforward, because Λ obeys the acoustic sum rule,
i.e.,

∑
I ΛIτβγ = 0. This reflects the fact that a uniform

strain induces no net force on an entire unit cell. Unfor-

tunately this is not true in general for T , which describes
the force response to a uniform strain gradient. In gen-
eral such a strain gradient is accompanied by a stress
gradient, i.e., a force density proportional to ∇ ·σ. This
means that

∑
I TIτβγδ 6= 0 in general, and the definition

and application of the pseudo-inverse in Eq. (75) is more
subtle.
For the present purposes we can regard the force TIτβγδ

induced by a strain gradient νβγδ as an “external” force
f ext
Iτ , and we have in general that bτ ≡∑I f

ext
Iτ 6= 0. We

would like to find a set of displacements uIτ obeying

f ext
Iτ −

∑

Jτ ′

KIτ,Jτ ′ uJτ ′ = 0 . (99)

We know this is not possible, however, since K obeys the
ASR

∑
I KIτ,Jτ ′ = 0, so applying

∑
I on the left-hand

side yields bτ . Therefore, the best we can hope to do is
to find a solution to

f ext
Iτ −

∑

Jτ ′

KIτ,Jτ ′ uJτ ′ = bτ wI (100)

instead, where the wI are a set of weights obeying∑
I wI = 1. These weights describe the residual force

pattern that is left after the displacements uIτ are ap-
plied, and we have freedom to choose these as we wish.
For example, setting wI = 0 except for w1 = 1 would es-
tablish that we seek a displacement pattern that makes
the force vanish on all atoms in the cell except atom 1.
A more natural choice is the “evenly weighted” one given
by wI = 1/N for all I, which asks for displacements that
leave an equal residual force on every atom. A third pos-
sibility is the mass-weighted choice wI = MI/Mtot where
Mtot =

∑
I Mi is the total mass per cell. This choice

does affect the computation of the individual FEC ten-
sor components, because the dynamical charges Q(1) ap-
pearing in Eq. (76) depend on atom I, thus yielding a
different response to different displacements. In Sec. IV
we normally present our results for the second and third
of the choices discussed above (evenly weighted or mass-
weighted), which appear to be the most natural ones.
In Appendix B we explain how to define and compute

a pseudo-inverse J
[w]
Iτ,Jτ ′ to KIτ,Jτ ′ having the desired

property that

uIτ =
∑

Jτ ′

J
[w]
Iτ,Jτ ′ f

ext
Jτ ′ (101)

solves Eq. (100). The superscript [w] appears on the
pseudo-inverse to emphasize that it is not unique, but
depends on the choice of force pattern embodied in the
weights wI . We then use this pseudo-inverse J [w] in place
of (K−1) in Eq. (75) or (76).
The freedom in the choice of the force-pattern weights

wI seems disconcerting at first sight, but we emphasize
that any physical prediction of our theory is either inde-
pendent of this choice, or else determines it in an obvi-
ous way. For example, consider a static deformation u(r)
such as that occurring in the beam-bending configuration
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discussed in Sec. IVC. In this case, a combination of dif-
ferent strain-gradient components νβγδ is present, and
while the net force per unit cell arising from just one of
these components may be non-zero, it must be canceled
by those associated with the other components. Thus, in-
dividual FECs such as g1111 and g1122 in Eq. (123) may
be force-pattern dependent, but the effective coupling geff

will not be.
Alternatively, consider the case of a crystal that is in

static equilibrium under the force of gravity, as for a
sample sitting on a tabletop. A uniform strain gradi-
ent ν333 is present because the force of gravity provides
a downward external force f ext along the vertical direc-
tion, compressing the bottom of the sample more than
the top. The polarization induced by this strain gradient
is admittedly small, but so is the strain gradient itself,
and the ratio between these defines a FEC. Clearly this
FEC should be computed using the mass-weighted choice
of force pattern, since gravity applies forces in proportion
to masses. The mass-weighted choice is also appropriate
to the study of the dynamics of long-wavelength acoustic
phonons, since the force needed to accelerate an atom
during its acoustic oscillation is again proportional to its
mass.

G. FEC under different electric boundary

conditions

Up to now we have not been careful to distinguish
quantities defined at fixed electric field E from those de-
fined at fixed electric displacement field D. Most of our
calculations are performed under fixed-D boundary con-
ditions, but experimental results are typically reported in
terms of fixed-E coefficients. In this section we give the
relationships between the two kinds of quantities, which
will be denoted with superscripts “D” and “E” to spec-
ify the type of electric boundary conditions under which
they are defined.
The relationship between the fixed-E and fixed-D

FECs follows from

µD
αβγδ =

dPα

dνβγδ

∣∣∣∣∣
D=0

=
∂Pα

∂νβγδ

∣∣∣∣∣
E=0

+
∂Pα

∂Eλ
∂Eλ
∂νβγδ

∣∣∣∣∣
D=0

= µE
αβγδ − 4π χαλ

∂Pλ

∂νβγδ

∣∣∣∣∣
D=0

= µE
αβγδ − 4π χαλ µ

D
λβγδ . (102)

In the third line above we introduce the (full lattice plus
electronic) dielectric susceptibility χαλ = ∂Pα/∂Eλ and
use D = E + 4πP . Moving the 4πχµD term to the left-
hand side, this becomes

ǫ0αλ µ
D
λβγδ = µE

αβγδ (103)

where ǫ0αλ = δαλ+4πχαλ is the static dielectric constant.
In the above derivation we assumed that the atoms

could relax in response to the applied strain gradient,
arriving at Eq. (103). The entire argument can be re-
peated for the frozen-ion FECs, in which case χ and ǫ0

are replaced by χel and ǫ∞ respectively, leading to

ǫ∞αλ µ
el,D
λβγδ = µel,E

αβγδ . (104)

Using similar arguments we can derive the relationship
between the zone-center force-constant matrices to be

KD
Iα,Jβ = KE

Iα,Jβ +
4π

Vc
ZE
Iα,λ Q

(1)
λ,Jβ (105)

where Q(1) (recall this corresponds to Q(1,D)) is the
Callen dynamical effective charge, ZE ≡ Q(1,E) is the
Born effective charge, and the force-response internal
strain-gradient tensors are related by

TD
I,αβγδ = T E

I,αβγδ − 4π ZE
I,αλ µ

el,D
λβγδ . (106)

H. Flexocoupling tensor

Like for the FECs, there are many different notations
for the FCCs (flexocoupling coefficients) in the literature,
e.g., 2(γ + η) in Refs. [11–14], h in Ref. [39], and even
f in Ref. [60] related to unsymmetrized strain. Here we
follow Refs. [46,49,50] in defining the FCC fαδβγ as the
coefficient in the flexoelectric contribution

− 1

2
fαδβγ

(
Pα

∂ǫβγ
∂rδ

− ǫβγ
∂Pα

∂rδ

)
(107)

to the thermodynamic potential density. Minimizing this
energy functional leads to

gEαδβγ = χαλ fλδβγ . (108)

Eqs. (58) and (103) imply that

gEαδβγ = ǫ0αλ g
D
λδβγ . (109)

We can also relate fαδβγ to the FEC under fixed-D
boundary condition via

gDαδβγ =
1

4π
(δαλ − ǫ0 −1

αλ ) fλδβγ . (110)

For high-K materials it is reasonable to make the ap-
proximation that fαδβγ ≃ 4π gDαδβγ . (Note that while
Gaussian units have been used in the derivations here,
the results for FECs and FCCs in Sec. IV are converted
to SI units for easier comparison with experimental and
previous theoretical results.) In some previous works
the FCCs have been obtained either by deriving them
from incomplete experimental results49,50 or indirectly
from first-principles calculations on small supercells.46

Once the FCCs have been obtained, they can be used
to obtain reasonable estimates for the room-temperature
FECs gEαδβγ via Eqs. (109) and (110).
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(a)

(b)

FIG. 1: (Color online) Original (a) and 45◦-rotated (b) super-
cells used for calculations on ABO3 perovskites. Arrows (red)
denote the displacement of A atoms consistent with fixed-D
boundary conditions. Large ball is A atom, medium is B
atom, and small is O atom.

III. FIRST-PRINCIPLES CALCULATIONS

Although we have laid out the formalism for the theory
of flexoelectricity above, expressing the FEC tensor in
terms of more elementary objects, it is still a challenge
to calculate this tensor from first principles.
In our previous work45 we described how to calculate

the longitudinal frozen-ion component µel,D
L1 = µel,D

1111 un-
der fixed-D boundary conditions61 from first-principles.
Here we first review supercell cell calculations and dis-
cuss how to extend them to obtain the T tensor ele-
ments needed for the lattice flexoelectric response. We
also show how to carry out similar supercell calculations,
but in a rotated frame, to obtain the corresponding µL2

components. We then provide the details of the first-
principles calculations, and briefly present some com-
puted information about the atomic cores and about the
ground-state properties of the crystals that will be needed
later.

A. Supercell calculations in original Cartesian

frame

Fig. 1(a) illustrates the supercell that we introduced
in Ref. 45 in order to compute µel

1111. For each type of
atom, we move two planes of these atoms, located ap-
proximately 1/4 and 3/4 along the supercell long dimen-
sion, by equal and opposite amounts, as illustrated in
the figure. We do this in order that the electric field be-
tween these displaced planes should vanish; since the po-
larization also vanishes there, this corresponds to fixed-D
boundary conditions. As a result, we obtain a very rapid
spatial convergence (locality) of the induced charge dis-
tribution flτ (r) of Eq. (1), and of the induced forces re-
flected in the force-constant elements ΦlIJ

ττ ′ of Eq. (77),
as illustrated in Fig. 2. (For details of these calculations,
see Sec. III C.) Displacing only a single plane of atoms
with E = 0 boundary conditions on the entire supercell
would set up a macroscopic local E-field even far from the
displaced plane leading to oscillations in flτ (r) and the
corresponding forces, making it difficult or impossible to
calculate the needed spatial moments of flτ (r) and of the
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FIG. 2: (Color online) Change of charge density distribution
(a) and force distribution (b) in SrTiO3 supercell (original
frame) at fixed D.

induced forces.

From finite differences of the computed charge densi-
ties with small positive and negative displacements, re-

peated for each type of atom I, we calculate Q
(1)
I11 and

Q
(3)
I1111 via Eqs. (2) and (4) respectively. We emphasize

again that these are fixed-D quantities by definition, and
so are given correctly by the configuration of Fig. 1.

At the same time, we compute the forces on all the
atoms in the supercell as illustrated in Fig. 2(b), and use
these to construct the force-constant elements needed for
computing TD

I1111 from Eq. (82). In practice this works as
follows. Let i denote the atom in the supercell for which
we want to compute T1111, and let j run over other atoms
in the supercell. Imagine that there is a uniform strain
gradient causing displacements

ujx =
1

2
νxxx (∆xij)

2 (111)

in the vicinity of atom i, where ∆xij = xj−xi. The total
force on atom i would then be

fix =
∑

j

F
(jx)
ix ujx (112)

where F
(jβ)
iα is the force induced on atom i in direction

α by a displacement of atom j in direction β. Using
the definition that Ti,xxxx = fix/νxxx and substituting
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Eq. (111) into (112), we get

TD
i,xxxx =

1

2

∑

j

F
(jx)
ix (∆xij)

2 . (113)

Note, however, that F
(jβ)
iα is just minus the zone-center

force-constant matrix of the supercell, which is symmet-
ric under interchange of indices, so the above can be
rewritten as

TD
i,xxxx =

1

2

∑

j

F
(ix)
jx (∆xij)

2 . (114)

Eq. (114) is the formula that we use to calculate TD
I1111

in practice. That is, rather than displace other atoms
and compute the force on atom i, we displace atom i and
compute the forces on other atoms, then calculate the
the second moment of these forces from Eq. (114). The
sum is truncated when the distance |∆xij | approaches
half the distance to the next plane of displaced atoms
(i.e., ∼1/4 of the supercell long dimension). For large
enough supercells, this is already in the region in which

the F
(ix)
jx have essentially vanished (i.e., see Fig. 2(b)),

so that the sum is well converged. Note that Eq. (114) is
essentially the same as Eq. (82), but adapted to practical
supercell calculations.
We also carry out calculations in which the plane of

atoms is displaced in the transverse y direction, i.e., ver-
tically in Fig. 1, and compute the y forces on the other
atoms in the cell. This is not useful for computing mo-
ments of the Q tensors, but it allows us to compute the
T E
I2211 (later presented as T E

I1122) which are eventually
needed to compute µld

T , in a manner entirely analogous
to the TD

I1111 calculation. Note, however, that the calcu-
lation is carried out at fixed (vanishing) Ey in this case,
so the resulting quantity is to be interpreted as a fixed-E
one, as indicated by the superscript on T E

I2211.
For the case of oxygen atoms in the perovskite struc-

ture, TD
I1111 and T E

I2211 are computed as above for I = O1,
O2 and O3, and then converted into the symmetry-mode
representation (ξ=3,4) as described in Appendix C.

B. Supercell calculations in rotated frame

The calculations described above are sufficient to com-
pute the QI1111 and TD

I1111 tensor components needed
to compute the electronic and lattice parts of µL1 of
Eq. (50), but not µL2 of Eq. (51). In order to calcu-
late the latter, we introduce the rotated frame shown in
the Fig. 1(b) and calculate the longitudinal FEC in this
rotated frame.
We label the FEC in the original frame as µαβγδ and

in rotated frame as µ′
αβγδ. These are related by applying

the rotation matrix

R(θ) =



cos θ −sin θ 0
sin θ cos θ 0
0 0 1


 (115)

with θ=45◦ four times,

µ′
α′β′γ′δ′ =

∑

αβγδ

Rα′α Rβ′β Rγ′γ Rδ′δ µαβγδ , (116)

giving

µ′
1111 =

1

2
(µ1111 + µ1122) + µ1221 , (117)

µ′
1122 =

1

2
(µ1111 + µ1122)− µ1221 , (118)

µ′
1221 =

1

2
(µ1111 − µ1122) . (119)

Referring to Eqs. (50-52), note that µ′
1111 − µ1111 =

(µL2 − µL1)/2, confirming that ∆ = µL2 − µL1 is a mea-
sure of anisotropy as was discussed there. From Eq. (117)
it follows that

µL2 = 2µ′
1111 − µ1111 . (120)

It is therefore straightforward to obtain the missing FEC
component µL2 once µ′

1111 has been calculated.

To obtain µ′ el
1111, we compute Q′(3)

I1111 = Q
(3)
I,x′x′x′x′ for

each atom I in the rotated supercell just as we did for

Q
(3)
I1111 = Q

(3)
I,xxxx in the original cell. However, as ex-

plained in Appendix C, for the oxygen atoms in per-

ovskites we have to compute Q
(3)
O1,x′y′x′x′ as well. Since

Q
(3)
O1,x′y′x′x′ = −Q

(3)
O2,x′y′x′x′ , a convenient way to do

this is to move atoms O1 and O2 by equal and oppo-
site amounts along y′, thus preserving the Ey = Dy = 0
boundary conditions as was done for other displacements.
For the lattice part, we similarly need the TD tensors
in the rotated frame. The TD

x′x′x′x′ matrix elements are
computed similarly as for the original supercell, except
that for oxygens in perovskites we also need TD

O1,y′x′x′x′

(see Appendix C). Again, this requires a displacement of
O1 along y′ (or better, equal and opposite displacements
of O1 and O2 along y′), with the x′-second-moments of
the x′-forces on the other atoms obtained in the same
way as for x′ displacements.

C. Details of the calculations

The calculations have been performed within density-
functional theory. We used the local-density approxi-
mation62 for C, Si, MgO, NaCl, CsCl and SrTiO3, and
the generalized gradient approximation63 for BaZrO3,
BaTiO3 and PbTiO3. We used SIESTA64 package for
the calculations. Supercells were built from 12 unit cells
for CsCl and perovskites in the original frame and 6 cells
in the 45◦-rotated frame (see Fig. 1). For C, Si, MgO and
NaCl, we used 8 conventional cells in in original frame
and 4 cells in the 45◦-rotated frame. Atomic displace-
ments of 0.04 Å were used in our calculations. In order
to reduce the anharmonic effect, two calculations were
performed, one with negative displacement and the other
one with positive displacement.
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For the cubic perovskite structure ABO3, atoms A and
B have the cubic symmetry, but the individual O atom
has tetragonal symmetry, not the cubic symmetry. In
our calculation, we chose to use “mode coordinate” for
perovskites in which two oxygen modes have the cubic
symmetry. Please refer to Appendix C for the details.

D. Ground-state properties of materials

In order to calculate the FEC, we need to obtain some
basic properties of our materials of interest, including
the lattice constant (a), optical dielectric constant (ǫ∞),
static dielectric constant (ǫ0), and Born effective charges.
These are summarized in Table I.
The optical dielectric constants are obtained as ǫ∞ =

ZE/Q(1), where Q(1) is the Callen charge as given in Ta-
ble III. (For C and Si, ǫ∞ = ǫ0 and we do not compute ǫ∞

explicitly.) The Born effective charges ZE are obtained
by finite differences, e.g., by displacing each atom slightly
and calculating the induced Berry-phase polarization.65

The theoretical static dielectric constant is obtained
via ǫ0 = µE/µD following Eq. (103). We also checked
that these results are exactly the same as obtained by
the usual method based on the effective-charge and force-
constant tensors (see, e.g., Ref. 66). However, we do not
attempt to compute ǫ0 for BaTiO3, PbTiO3 and SrTiO3,
because our calculations are for the reference cubic para-
electric structure, which is either unstable (BaTiO3 and
PbTiO3) or nearly unstable (SrTiO3) to the formation
of a ferroelectric ground state. For this reason, a di-
rect calculation of ǫ0 would give negative or extremely
large formal values, leading to nonphysical results for µE

and other quantities in subsequent calculations. Instead,
we have chosen to adopt room-temperature experimen-
tal values for ǫ0 for these materials, as given in Table I,
and we use these to predict meaningful values of µE at
room temperature. Our rationale for this approach was
explained in more detail at the end of Sec. I.

E. Rigid-core corrections for pseudopotentials

Our previous work45 showed that the frozen-ion FEC
µel is dependent on the choice of pseudopotential. To see
why, consider a model in which each cation or anion is
represented by a spherically symmetric charge ρi(r) that
displaces rigidly as a unit. A brief calculation shows that

Q
(3)
i =

∫
d3r x3 (−∂xρi(r)) = 4π

∫
dr r4 ρi(r) . (121)

It can be seen that Q(3) and hence µel should depend on
the treatment of of the core density and the pseudopo-
tential construction. The difference between Q(3,AE) (all-
electron) and Q(3,PS) (pseudopotential) can be corrected
by introducing a “rigid core correction” (RCC)

Q
(3,RCC)
i = 4π

∫
dr r4 [ρAE

i (r) − ρPS
i (r)] (122)

TABLE I: Lattice constant a (of conventional cell52), optical
dielectric constant ǫ∞, theoretical (zero-temperature) and ex-
perimental (room-temperature) static dielectric constant ǫ0,
and Born effective charge ZE for materials considered in this
study.

a ǫ∞ ǫ0 ǫ0 ZE

(Bohr) theo. expt.a (e)
C 6.69 – – 5.5 C 0
Si 10.22 – – 11.9 Si 0
MgO 7.82 3.0 7.8 9.8 Mg 1.89

O –1.89
NaCl 10.66 2.4 6.1 5.6 Na 1.07

Cl –1.07
CsCl 7.45 3.2 6.4 7.2 Cs 1.36

Cl –1.36
BZO 7.92 5.0 57.1 15 Ba 2.84

Zr 6.26
O1 –5.04
O3 –2.03

BTO 7.52 6.8 – 2300 Ba 2.78
Ti 7.50
O1 –6.04
O3 –2.12

PTO 7.43 8.8 – 134 Pb 3.93
Ti 7.21
O1 –6.03
O3 –2.55

STO 7.31 6.3 – 310 Sr 2.52
Ti 7.47
O1 –5.89
O3 –2.05

aRoom-temperature experimental values: MgO and NaCl,

Ref. 67; CsCl, Ref. 68; BZO, Ref. 69; BTO, Ref. 9; PTO, Ref. 70;

STO, Ref. 71.

TABLE II: Rigid core corrections (RCCs), in e bohr2. Pseu-
dopotentials O1 and O2 are used for MgO and perovskites
respectively.

RCC RCC RCC
C −0.19 Si −2.93 Cs −14.58
O1 −0.06 Cl −1.67 Ba −13.34
O2 −0.09 Ti −0.84 Pb −15.46
Na −6.64 Sr −5.41
Mg −4.85 Zr −7.72

for each atom type i by using the densities from free-
atom AE and PS calculations, and then adding these
Q(3,RCC) corrections to the Q(3,PS) values calculated in
our supercells.

In order to obtain accurate FECs, we calculate this
RCC for all elements appearing in our selected materi-
als, as shown in Table II. It can be seen that the RCC
tends to be large for large-radius atoms like Cs, Ba and
Pb, even though their semicore shells are included in the
valence in the pseudopotential construction. From these
values it is clearly essential to include the RCC for ele-
ments with large radius if one wants to compute the FxE



17

response accurately.

IV. RESULTS

In this section, we first present the basic charge-
moment tensors Q and force-response tensors T as they
are extracted from our supercell calculations. We then
combine these to obtain the longitudinal FECs at fixed
D, as well as the longitudinal flexocoupling coefficients,
for all of the materials considered. Up to this point, the
results do not depend on current-response terms µlq,J

and µel,J in Eqs. (46) and (47), but to go further we then
make the uncontrolled assumption that these two quan-
tities vanish in order to get a rough idea of the behavior
of the full FEC tensors at fixed D and E .

A. Calculated charge-moment and force-response

tensors

As described in Secs. III A and III B, we carry out cal-
culations on supercells extended along x with small x

displacements to obtain Q(1), Q
(3)
L1 , and TD

L1 (all at fixed
D). We also calculate T E

1122 by applying small y displace-
ments (at fixed-E boundary conditions) instead. Then,
we carry out similar calculations on 45◦-rotated super-

cells to obtain Q
(3)
L2 and TL2 as well. The treatment of

the oxygen displacements in perovskites require special
care as described in Sec. III B and Appendix C.
The results are presented in Table III. The RCCs from

Table II have been included in the calculation of the Q(3)

moments. From Table III, it can be seen that a modified
acoustic sum rule has to be used for the mode variables in
ABO3 perovskites, namely, Q

(1)
A +Q

(1)
B +Q

(1)
ξ3

+
√
2Q

(1)
ξ4

=

0. Almost all Q(3) values are seen to be negative, which
can be understood heuristically from the rigid-ion model
of Eq. (121), in which the positive nuclear charge at r =
0 makes no contribution so that the electronic charge
gives an unbalanced negative contribution to Q(3). The
only exceptions are for the ξ4 modes in the perovskites,
where the oxygen motion along y′ is involved so that the
sign is less intuitive. In the ABO3 perovskites, the A
atom makes a significant contribution to all Q and T
tensors. Also note that oxygen mode ξ4 contributes only
very weakly to TD

L1, while ξ3 contributes strongly.

B. Longitudinal contribution to flexoelectric

response

The longitudinal FEC constants µD
L1 and µD

L2, and
their electronic and lattice contributions, are presented
in Table IV, following the definitions in Eqs. (50) and
(51). The electronic (frozen-ion) response is obtained
from Eq. (47) (recall that µel,J does not contribute to the
longitudinal response), and is seen to be negative in all

TABLE III: QD and T tensors computed from first-principles
calculations. Units: e for Q(1); e Bohr2 for Q(3); eV for T .
The RCCs from Table II are included in the Q(3) moments.

Q(1) Q
(3)
L1 Q

(3)
L2 TD

L1 TD
L2 T E

1122

C C 0 –13.2 –25.4 0 0 0
Si Si 0 –30.9 –54.9 0 0 0
MgO Mg 0.63 –13.7 –23.3 37.5 65.4 16.3

O –0.63 –12.8 –15.8 41.5 30.4 20.1
NaCl Na 0.45 –10.1 –24.2 10.5 11.8 30.8

Cl –0.45 –27.6 –30.6 14.0 5.4 -3.0
CsCl Cs 0.43 –64.1 –72.3 11.6 10.3 16.3

Cl –0.43 –30.2 –40.1 8.1 11.6 20.1
BZO Ba 0.57 –75.5 –63.3 18.8 42.2 11.1

Zr 1.25 –30.5 –63.5 63.9 37.6 5.3
ξ3 –1.01 –34.7 –132.0 73.4 35.6 7.5
ξ4 –0.57 –11.7 67.9 1.8 10.3 7.5

BTO Ba 0.40 –79.2 –65.7 24.1 52.9 13.1
Ti 1.11 –14.9 –46.0 46.0 40.2 7.6
ξ3 –0.89 –29.2 –109.4 45.2 36.4 15.6
ξ4 –0.44 –8.4 52.4 9.2 17.9 15.6

PTO Pb 0.44 –73.7 –66.7 16.1 38.0 6.1
Ti 0.83 –23.8 –49.5 44.0 38.6 3.5
ξ3 –0.69 –24.5 –135.8 52.0 25.6 12.0
ξ4 –0.41 –12.9 69.6 4.9 20.3 12.0

STO Sr 0.39 –57.5 –43.5 17.0 35.7 8.4
Ti 1.20 –16.2 –45.0 52.3 38.9 3.0
ξ3 –0.92 –28.6 –44.0 68.7 13.1 12.0
ξ4 –0.47 –9.5 7.7 3.6 18.2 12.0

cases, as expected from the sign of the Q(3) contributions.
The lattice quadrupole contribution µlq of Eq. (46) van-
ishes for all of our compounds except for C and Si, where
it only makes a contribution to the transverse component
µT, as discussed in the next subsection. Regarding the
lattice dipole contributions µld, which vanish for C and
Si, these are computed from Eq. (76) using the informa-
tion in Table III together with the computed zone-center
force-constant matrices and their pseudo-inverses.
As emphasized in Sec. II F 2, the lattice contributions

to the FECs depend on the force pattern applied on each
atom in the unit cell. Here we chose two different force
patterns, either evenly weighted on all atoms, or else
weighted according to the atomic mass. From Table IV
we can see that the total fixed-D FECs are comparable
for all of our selected materials. The lattice contribu-
tion, and therefore the total FEC, is force-pattern depen-
dent. However, the anisotropy (∆ = µL2 − µL1)

18 shows
hardly any force-pattern dependence, and the anisotropy
is much larger in the perovskites than in the elemental
and binary materials. It can be seen that C, Si, MgO,
NaCl have a nearly isotropic behavior. From this table,
we can also see that at fixed D the lattice contribution
is much smaller than the electronic contribution. For
the even force pattern, the lattice contributions are pos-
itive, which reduces the total FEC. However, under the
mass-weighted force pattern, the lattice contributions are
negative, enhancing the total FEC. Therefore, the FECs
under the mass-weighted force pattern are larger (more
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TABLE IV: Longitudinal components of FEC tensor at fixed D. µL1 = µ1111, µL2 = µ1122 + 2µ1221 , and anisotropy ∆ =
µL2 − µL1. Units: pC/m.

Even force Mass-weighted force
µel
L1 µel

L2 µld
L1 µld

L2 µL1 µL2 ∆ µld
L1 µld

L2 µL1 µL2 ∆
C –175.4 –163.5 0 0 –175.4 –163.5 11.9 0 0 –175.4 –163.5 11.9
Si –106.0 –90.8 0 0 –106.0 –90.8 15.2 0 0 –106.0 –90.8 15.2
MgO –111.7 –164.8 –5.7 50.5 –117.4 –114.4 3.0 –29.2 22.0 –140.8 –142.8 –2.0
NaCl –62.8 –91.2 –9.0 16.3 –71.8 –74.9 –3.1 4.2 25.6 –58.6 –65.6 –7.0
CsCl –115.2 –137.4 5.8 –2.2 –109.4 –139.6 -30.2 –13.2 –23.3 –128.4 –160.6 -32.2
BZO –154.8 –194.1 29.3 34.7 –125.5 –159.3 –33.8 –35.2 –18.1 –190.0 –212.2 –22.2
BTO –155.8 –199.7 10.5 9.8 –145.3 –189.9 –44.6 –5.4 –9.4 –161.2 –209.1 –47.9
PTO –165.7 –224.1 16.5 23.1 –149.2 –201.0 –51.8 –31.4 –29.6 –197.1 –253.7 –56.6
STO –143.9 –160.9 24.8 22.3 –119.1 –138.6 –19.5 –12.1 –11.6 –156.1 –172.4 –16.3

TABLE V: Longitudinal flexocoupling coefficients. fL1 =
f1111, fL2 = f1122 + 2f1221 , and anisotropy ∆ = fL2 − fL1.
Units: V.

Even force Mass-weighted force
fL1 fL2 ∆ fL1 fL2 ∆

C –19.8 –18.5 1.3 –19.8 –18.5 1.3
Si –12.0 –10.3 1.7 –12.0 –10.3 1.7
MgO –15.2 –14.8 0.4 –18.2 –18.5 –0.3
NaCl –9.7 –10.1 –0.4 –7.9 –8.9 –1.0
CsCl –14.6 –18.7 –4.1 –17.2 –21.5 –4.3
BZO –14.4 –18.3 –3.9 –21.8 –24.4 –2.6
BTO –16.4 –21.5 –5.1 –18.2 –23.6 –5.4
PTO –17.0 –22.9 –5.9 –22.4 –28.9 –6.5
STO –13.5 –15.7 –2.2 –17.7 –19.5 –1.8

negative) than those under the evenly-weighted force pat-
tern.

We next present the results for the flexocoupling coeffi-
cients (FCCs) defined in Sec. II H, which can be regarded
as fundamental materials properties because they are not
strongly temperature-dependent.46 The FCCs can easily
be obtained from our fixed-D FECs via Eq. (110). To
evaluate this equation we use the theoretical dielectric
constants ǫ0 in Table I for MgO, NaCl, CsCl and BZO,
while using the experimental ǫ0 values for other materi-
als.

The FCCs for our various materials under the two dif-
ferent force patterns are presented in Table V. It can
be seen that |fL1| ≡ |f1111| is in the range of [10V, 20V ],
which is slightly larger than the value [1V, 10V ] in a pre-
vious theoretical estimate.50 The FCC is slightly larger
under the mass-weighted force pattern than under the
evenly-weighted one, and fL2 is also larger than fL1.
Interestingly, the FCCs are all of roughly comparable
size for all of the materials, reinforcing the picture that
they constitute fundamental materials properties that are
hardly affected by the large static dielectric constants
present in some materials. The anisotropy of the FCCs
is also nearly force-pattern independent, just like for the
FECs.

Zubko et al.49 summarized the available FEC data in

their recent review paper and converted them to FCCs
by using f ≃ 4πg/ǫ0. They found that the FCCs change
substantially (including in sign) in different materials.
The discrepancy relative to our results may result in part
because their analysis rests on experimental data for the
effective bending FECs and they also include surface ef-
fects.

Ponomareva et al.46 calculated the FCCs for
(Ba0.5Sr0.5)TiO3 from first principles by introducing pe-
riodic strain gradients in small supercells. Their results
show that the FCC is indeed a fundamental quantity that
is only weakly dependent on the temperature and thick-
ness for (Ba0.5Sr0.5)TiO3 films. However, f1111 is about
5V for (Ba0.5Sr0.5)TiO3, smaller than our value pre-
sented in Table V, and with opposite sign. One possible
reason could be that their supercells were too small; other
previous work has shown that the FEC is very sensitive
to the size of supercell when inducing a periodic strain
gradient via first-principles calculations.42 The FCC ob-
tained in the small supercell in their work, taking into
account only the interactions between the local dipoles
and strain gradient, may not reflect the full contribution
to the FCC.50

We now turn to our results for the FECs at fixed E .
According to Eqs. (103) and (104), the total FEC µE

and the electronic (frozen-ion) FEC µel,E and are given
by multiplying µD or µel,D by the the static ǫ0 or optical
ǫ∞ respectively. Because we are interested in compar-
ing with room-temperature experiments, we used room-
temperature static dielectric constants ǫ0 for all the ma-
terials as given in Table I. Our results are given in Ta-
ble VI, where µld is obtained through µld = µ − µel.
From this table we can see that the lattice contributions
are larger than the electronic ones under fixed-E bound-
ary conditions, especially for the high-dielectric-constant
materials. It is also evident that the anisotropic flex-
oelectric response for non-perovskite materials is small,
indicating that the FxE tensor of these materials is close
that of an isotropic material having only have two in-
dependent FEC components.51 However, note that the
experimental BaTiO3 and PbTiO3 materials are tetrag-
onal ferroelectrics at room temperature, and the room-
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TABLE VI: Longitudinal FEC components at fixed E at room temperature. µL1 = µ1111, µL2 = µ1122 +2µ1221 , and anisotropy
∆ = µL2 − µL1. Units: nC/m. Note that the choice of units is three orders or magnitude larger than in Table IV.

Even force Mass-weighted force
µel
L1 µel

L2 µld
L1 µld

L2 µL1 µL2 ∆ µld
L1 µld

L2 µL1 µL2 ∆
C –1.0 –0.9 0 0 –1.0 –0.9 0.1 0 0 –1.0 –0.9 0.1
Si –1.3 –1.1 0 0 –1.3 –1.1 0.2 0 0 –1.3 –1.1 0.2
MgO –0.3 –0.5 –0.8 –0.6 –1.1 –1.1 0.0 –1.1 –0.9 –1.4 –1.4 0.0
NaCl –0.1 –0.2 –0.3 –0.2 –0.4 –0.4 0.0 –0.2 –0.2 –0.3 –0.4 –0.1
CsCl –0.4 –0.4 –0.4 –0.5 –0.6 –1.0 –0.4 –0.5 –0.8 –0.9 –1.2 –0.3
BZO –0.8 –1.0 –1.1 –1.4 –1.9 –2.4 –0.5 –2.0 –2.2 –2.8 –3.2 –0.4
BTO –1.1 –1.4 –333.2 –435.4 –334.3 –436.8 –102.5 –369.7 –479.6 –370.8 –481.0 –110.2
PTO –1.5 –2.0 –18.5 –24.9 –20.0 –26.9 –6.9 –24.9 –32.0 –26.4 –34.0 –7.6
STO –0.9 –1.0 –36.0 –42.0 –36.9 –43.0 –6.1 –47.5 –52.5 –48.4 –53.5 –5.1

temperature ǫ0 values used in the conversion to µE for
these materials were obtained from this tetragonal struc-
ture. Therefore, the results presented for BaTiO3 and
PbTiO3 in Table VI are not fully consistent and should
be interpreted with caution. We also assume for all ma-
terials that the optical dielectric constants and fixed-D
FECs are temperature-independent, but we expect this
to be a rather good approximation.
From Table IV it can be seen that the FECs at fixed

D for the different perovskites are very similar, while
instead the fixed-E FECs reported in Table VI show dra-
matical variations. This is because µE is linearly scaled
to the static dielectric constant, as in Eq. (103), and
these perovskites have very different dielectric constants
as shown in Table I. BaTiO3 has the largest FEC due to
its large dielectric constant, which also explains the large
FEC observed in the work of Ma and Cross;4–9 all of the
materials they measured displayed large dielectric con-
stants (typically several thousands). However, they also
observed that the FEC does not exactly scale linearly
with the dielectric constants in some materials, which
may indicate that µD also has some weak temperature
dependence. Their measurements may also be affected
by surface effects not considered here.
Our flexoelectricity theory is valid for materials with

any symmetry, but our current first-principles calcula-
tions are limited to cubic materials. However, our previ-
ous work has shown that ferroelectric tetragonal BaTiO3

has a similar µ1111 value (along the [001] direction) as
for cubic BaTiO3,

42 and ferroelectric tetragonal PbTiO3

has a similar µel
1111 (along [001]) as for cubic PbTiO3.

45

These results hint that µ1111 may have similar values in
tetragonal and cubic phases of a given perovskite mate-
rial.

C. Transverse and full Cartesian flexoelectric

response

In order to make closer contact with experiment, in this
section our goal is to present results for the fixed-E FECs
in the Cartesian frame. If µL1, µL2, and µT are known, it
is straightforward to invert Eqs. (50-52) to obtain µ1111,

µ1122, and µ1221. However, as discussed in Sec II C and
more fully in Appendix A, we can only obtain the longitu-
dinal contributions µL1 and µL2 from our first-principles
calculations based on the charge-response formulation;
additional terms from the current-response formulation
would be needed to obtain µT. Since µ1111 = µL1, there
is no ambiguity about its value, but µ1122 and µ1221 can-
not be obtained individually without access to µT.

Another way to see the problem is that we can imagine
obtaining µld

1122 or µ
ld
1221 at fixedD directly from Eq. (76).

However, this requires a knowledge of TD
1122, which is not

one of the raw ingredients available to us in Table III. In-
stead, we have T E

1122, but converting this to TD
1122 would

require the use of Eq. (106); this in turn requires µel,D
1122,

which is not available without the current-response cal-
culation.

So the problem is that we do not have the lattice
quadrupole contribution µlq,J to µlq,T in Eqs. (46) and
(A25), nor do we have the electronic contribution µel,J =
µel,T in Eqs. (47) and (A26). The lattice quadrupole
contribution µlq vanishes by symmetry for all of our com-
pounds except for C and Si, where it makes a contribution
only to the transverse component µT. We have computed
these contributions, neglecting any current-response con-
tribution µlq,J, following the discussion in Sec. II F 1. We
find γ = 0.14 (0.72)Bohr, q = −0.10 (0.12) eBohr, and
µlq,T = −0.84pC/m (1.5 pC/m) for C (Si) respectively.
These values are much smaller than the other values in
Table IV, and we speculate that the current-response
contributions are probably small too. We do not consider
the lattice quadrupole contributions any further here.

For the materials other than C and Si, the only miss-
ing ingredient is the electronic contribution µel,T to
the transverse response, which comes entirely from the
current-response contribution µel,J in Eq. (A26). We
have essentially no information about this contribution.
On the other hand, we can still calculate the full lattice-
dipole contribution µld, since there is no current-response
correction for this term. To do so, we move one layer of
atoms along the y direction under fixed-Ey boundary con-

ditions and obtain T E
1122 and thus µld,E

1122 and µld,E
1221.

72 For
high-K materials in which the lattice contribution dom-
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inates the FEC, calculating µld is a good approximation
for the total FEC response. However, for the low-K ma-
terials in which the electronic contribution µel is compa-
rable to the lattice contribution, we need to obtain µel

1122

and µel
1221 for the full FEC tensor. Here, we introduce

the assumption that µel
1122 = µel

1221, i.e. µ
el,T = µel,J = 0,

to obtain a rough first approximation to the full FEC
tensor. A proper calculation would require the inclusion
of the current-response terms of Appendix A, which are
not currently implemented in this work.
The results for the full fixed-E FEC tensor at room

temperature, making use of this assumption, is presented
in Table VII. We present the results in terms of the
FEC components defined in terms of both unsymmetrized

strains (µ) and symmetrized strains (g). We also give
values for the effective bending FEC geff defined as31,32

geff = −tg1111 + (1− t)g1122 , (123)

where t is the Poisson’s ratio whose experimental value
were reported in Table VII for our materials of interest.
As we discussed in Sec. II F, the lattice contribution to

the FECs has a dependence on the choice of force pattern
because of the force density that arises due to the non-
zero divergence of the stress in a general strain-gradient
configuration. However, in the beam bending experi-
ment, the beam is in local static equilibrium at every
interior point, so there is no such force density; the con-
tributions coming from individual elements of the strain
gradient tensor cancel each other. Therefore, the effec-
tive bending FEC geff should not depend on the choice of
force pattern in our calculation. This can be confirmed
by referring to Table VII, where geff obtained from dif-
ferent force patterns are indeed the same to within the
numerical precision of the calculations. This confirms
that although the individual FEC components are force-
pattern dependent coming from the first-principles cal-
culations, using them for problems of static equilibrium
should not cause any problem. Conversely, it follows
that it may be problematic to measure the full set of
FEC components experimentally from static-equilibrium
experiments, since only special linear combinations of
strain-gradient components, for which the force density
vanishes, are accessible in this way.
Since quantities related to elastic properties are usually

defined in the literature for symmetrized strain, we focus
on the FECs gαβγδ related to symmetrized strain for the
remainder of this subsection. From Table VII, we can
see that the values of g1111 and g1122 are comparable,
but the value of g1221 is much smaller than the other two
components, indicating that the gradient of the shear
strain ǫ21,2 makes only a very weak contribution to the
flexoelectric response (under the assumption µel = 0), in
agreement with the results of Ponomareva et al.46

According to Eq. (123), in order to obtain a large bend-
ing flexoelectric response, a large g1122 and a small g1111
are preferred, as well as a small Poisson’s ratio. Even if
the individual FEC components are all negative, the ef-
fective bending FEC can still be positive, depending on

the ratio of g1111 to g1122. Specifically, g
eff is has a posi-

tive value if g1111/g1122 > (1 − t)/t (assuming g1111 and
g1122 are negative).

D. Comparison with experiment and previous

theoretical results

As mentioned in the Introduction, large discrepan-
cies between experimental and theoretical results for the
FECs have been reported. For example, for high-K ma-
terials, the experimental effective FECs are usually re-
ported to be on the order of µC/m4–9 with a positive sign,
while the theoretical results are typically on the order of
nC/m with negative sign.39,42 One possible reason is that
the theoretical results are calculated at 0K while the ex-
perimental results are measured at room temperature (or
above the Curie temperature), and very strong depen-
dence of the static dielectric constant can contribute to
this large discrepancy. Regarding the sign problem, the
effective bending coefficient is given by Eq. (123), and as
discussed in the previous subsection, the negative indi-
vidual components can give a positive effective bending
FEC even if g1111 and g1122 are negative.82

As we showed in the previous section, the individual
FEC components are dependent on the force pattern
adopted for the first-principles calculations. Therefore,
we should not expect that individual FEC tensor compo-
nents, such at µ1111, can be compared directly between
theory and experiment.
In order to obtain the full FEC tensor, we need to

have information about µT. In Sec. IVC we assumed
that µel,T = 0 in order to obtain a rough estimate of
the the full FEC tensor as presented in Table VII. How-
ever, it can be seen that the effective bending FEC com-
puted in that way does not agree with available experi-
ment results. For example, geff has been reported to be
6.1 nC/m for SrTiO3 single crystals31,32 and 9µC/m for
BaTiO3 ceramics9 at room temperature, while we obtain
−22nC/m and −0.246µC/m for SrTiO3 and BaTiO3 re-
spectively. There are several possible reasons for this
discrepancy. First, it may well be that our assumption
that µel,T = 0, introduced to obtain the full FEC ten-
sor in Table VII, is strongly inadequate.82 Second, the
experiment results include surface effects that have not
been included here. To do so would require computing
the surface contributions as discussed in Ref. [45], which
is beyond the scope of the present paper.
Hong et al.42 also calculated the longitudinal FECs

for SrTiO3 and BaTiO3 at fixed D, including electronic
and lattice contributions, by imposing a strain wave of
cosine form for the A atoms in the supercell and relaxing
all other atoms. This corresponds to a choice of force
pattern in which all of the force is on the A atoms. Their
results are µD

1111 = −0.37 ± 0.03 nC/m for BaTiO3and
µD
1111 = −1.38 ± 0.65 nC/m for SrTiO3. It can be seen

that our results agree with their BaTiO3 result in order
of magnitude and sign, with the remaining discrepancy
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TABLE VII: Cartesian FECs at fixed E using the assumption µel
1122 = µel

1221. Room-temperature ǫ0 values are used for
perovskites (see Table I). First column is experimental Poisson’s ratio t (dimensionless); others are FECs in nC/m. FECs µ
and g are defined in terms of unsymmetrized and symmetrized strains respectively and are related by Eqs. (59-61).

Poisson’s Even force Mass-weighted force
ratio µ1111 µ1122 µ1221 µ1111 µ1122 µ1221

t g1111 g1221 g1122 geff g1111 g1221 g1122 geff

C 0.1a –1.0 –0.3 –0.3 –0.3 –0.2 –1.0 –0.3 –0.3 –0.3 –0.2
Si 0.22a –1.3 –0.4 –0.4 –0.4 0.0 –1.3 –0.4 –0.4 –0.4 0.0
MgO 0.18a –1.1 –0.3 –0.4 –0.6 –0.3 –1.4 –0.4 –0.5 –0.7 –0.3
NaCl 0.25a –0.2 0.0 –0.2 –0.4 –0.2 –0.2 0.0 –0.2 –0.4 –0.3
CsCl 0.27a –0.8 –0.2 –0.4 –0.6 –0.2 –0.9 –0.5 –0.3 –0.2 0.0
BZO 0.24a –1.9 0.0 –1.2 –2.3 –1.3 –2.8 –0.2 –1.5 –2.7 –1.4
BTO 0.27a –334.3 12.2 –224.5 –461.1 –246.4 –370.8 –4.5 –238.2 –472.0 –244.5
PTO 0.31a –20.0 0.2 –13.6 –27.3 –12.5 –26.4 –1.9 –16.0 –30.2 –12.5
STO 0.24a –36.9 –1.1 –20.9 –40.7 –22.0 –48.4 –4.4 –24.5 –44.6 –22.2

aExperimental values: C, Ref. 73; Si, Ref. 74; MgO, Ref. 75; NaCl,

Ref. 76; CsCl, Ref. 77; BZO, Ref. 78; BTO, Ref. 79; PTO, Ref. 80;

STO, Ref. 81.

coming mostly from the difference in force patterns.

V. CONCLUSION

A general and unified first-principles theory of piezo-
electric and flexoelectric tensors has been developed and
presented here. The longitudinal contributions to the
flexoelectric tensor can be computed from the dipoles as-
sociated with strain-gradient-induced displacements (lat-
tice dipole), quadrupoles associated with strain-induced
displacements (lattice quadrupole), and octupoles asso-
ciated with an ideal strain gradient (electronic). The
full tensor also requires the transverse part, which has
contributions that can only be obtained from the adia-
batic currents that flow in response to the flexoelectric
displacements.
While the full formalism is presented in Appendix A,

we have implemented only the charge-response formalism
in the present work, following the equations presented
in the main text and working in the framework of first-
principles density-functional calculations. We have paid
careful attention to the distinction between FECs com-
puted at fixed E vs. fixed D and presented the relation-
ships connecting them. We have argued that the FECs
at fixed D provide a characteristic “ground-state bulk
property” that can be used to predict finite-temperature
fixed-E properties by scaling to the dielectric constant.
We also show how the FCCs can be computed from our
approach and used in a similar way as for the fixed-D
FECs.
A practical supercell-based method is proposed to cal-

culate the FECs from first principles and is demonstrated
by computing the coefficients of several cubic insulat-
ing materials, namely C, Si, MgO, NaCl, CsCl, BaZrO3,
BaTiO3, PbTiO3 and SrTiO3. It is found that the FECs
at fixedD are on the order of −0.1nC/m for all these ma-
terials, and their FCCs are in the range of −10 to −20V,

indicating that when large FECs are found in experiment,
it is likely to arise from a large dielectric constant, or
possibly from surface effects not treated explicitly here.
Therefore, searching for large dielectric-constant materi-
als is a good way to obtain materials with a large FxE
response. The FECs computed from our first-principles
theory at fixed E still do not agree well with available ex-
periment results, even after considering the relations be-
tween different electric boundary conditions. However,
this discrepancy is two orders of magnitude less severe
that some previous discrepancies between theory and ex-
periment for the FECs (i.e., for BaTiO3). When surface
effects are treated properly, it is hoped that this discrep-
ancy will become even smaller.

Our calculations show that the lattice contribution to
the FECs depends on the force pattern applied in the unit
cell to maintain the strain gradient. Therefore, the total
FECs are also dependent on the force pattern, and it is
not meaningful to compare with FECs computed using
a different force pattern. However, for a system in static
equilibrium (zero stress gradient) the force-pattern de-
pendence should cancel out, and we have confirmed that
this is indeed the case from our numerical calculations.

The full FEC tensor is critical for an understanding
of the FxE response in cases of complicated strain dis-
tributions, as well as for the design of functional FxE
devices. In general it is impossible to obtain all the ele-
ments of this tensor using only the charge-response for-
mulation, even for cubic materials which have only three
independent components. Therefore it is clearly of inter-
est to develop a full implementation based on the current-
response tensors as described in Appendix A. The im-
plementation of such a method, and the calculation of
the remaining terms in the FxE response, remains as an
important avenue for future work.



22

Acknowledgments

This work was supported by ONR Grant N00014-12-
1-1035. Computations were performed at the Center for
Piezoelectrics by Design. We would like to thank R.
Resta, K.M. Rabe, D.R. Hamann, and M. Stengel for
useful discussions.

Appendix A: Current-response formalism and

transverse tensor components

In Sec. II A, we carried out a derivation that expresses
the flexoelectric tensor in terms of changes in the charge
density induced by the atomic displacements associated
with the strain gradient. However, this procedure only
determines a part of the flexoelectric response, which we
denote as the “longitudinal” part since it corresponds to
the the longitudinal part of the current-density field that
arises as the deformation of the material is adiabatically
turned on. In this Appendix, we derive the full expression
in terms of the current-density response, thus clarifying
the status of the expressions given in Sec. II A.
As we discussed in our previous work,42 the choice of

the induced current density instead of the induced charge
density provides a more complete description of the re-
sponse. We define

PI, αβ(r−RlI) =
∂Jα(r)

∂u̇lI,β

(A1)

to be the current density Jα(r) in Cartesian direction α
resulting from the adiabatic motion of atom I in cell l
at some small velocity u̇lI,β along the β direction, keep-
ing all other atoms fixed. We can simply think of this
as the local polarization field ∆P(r) induced by the dis-
placement of the atom. Such a quantity is not generally
well-defined for a finite adiabatic deformation; while its
cell average is fixed by the change in Berry-phase polar-
ization and its longitudinal (curl-free) part is fixed by the
change in ground-state charge density, its transverse (i.e.,
divergence-free) part is not guaranteed to be independent
of path. However, for an infinitesimal displacement, as
arises here in the linear response to a small strain gradi-
ent, there is no such ambiguity.
We then define the moments of the induced current

densities in analogy with Eqs. (2-4) as

J
(0)
I,αβ =

∫
dr PI, αβ(r) , (A2)

J
(1)
I,αβγ =

∫
drPI, αβ(r) rγ , (A3)

J
(2)
I,αβγδ =

∫
drPI, αβ(r) rγ rδ . (A4)

Note that J
(2)
I,αβγδ is symmetric in indices γδ, but oth-

erwise these tensors are general. The charge-response

tensors of Eqs. (2-4) are related to the current-response
tensors via

Q
(1)
I,αβ = J

(0)
I,αβ , (A5)

Q
(2)
I,αβγ = J

(1)
I,αβγ + J

(1)
I,γβα , (A6)

Q
(3)
I,αβγδ = J

(2)
I,αβγδ + J

(2)
I,γβαδ + J

(2)
I,δβαγ . (A7)

These equations follow after integration by parts using
the Poisson continuity condition

fI, β(r) = −∂αPI, αβ(r) . (A8)

For example, inserting Eq. (A8) in Eq. (3) gives

Q
(2)
I, αβγ = −

∫
dr rαrγ ∂µPI,µβ(r)

=

∫
drPI,µβ(r) ∂µ(rαrγ) (A9)

which leads to Eq. (A6) using Eq. (A3) after noting that
∂µ(rαrγ) = δµαrγ + δµγrα.
Eqs. (A5-A7) make it clear that the charge-response

and current-response tensors are closely related. In fact,
Q(1) and J (0) are identical. For the higher-order ten-
sors, however, the charge-response tensors contain less
information. Essentially, they only contain information
about the longitudinal part of the induced current re-
sponse and lack the additional information contained
in the transverse part. A simple way to see this is
just to count elements: recalling the symmetries of the
various tensors under interchanges of indices, we note

that Q
(2)
I,αβγ has 3×6=18 independent elements while

J
(1)
I,αβγ has 3×3×3=27, and Q

(3)
I,αβγδ has 3×10=30 el-

ements while J
(2)
I,αβγδ has 3×3×6=54. This makes it

clear that some information is missing from the charge-
response tensors.
To make this more precise, we define the longitudinal

parts of the J tensors to be

J
(1,L)
I,αβγ =

1

2

(
J
(1)
I,αβγ + J

(1)
I,γβα

)
(A10)

and

J
(2,L)
I,αβγδ =

1

3

(
J
(2)
I,αβγδ + J

(2)
I,γβαδ + J

(2)
I,δβαγ

)
(A11)

and the transverse parts to be the remainders

J
(1,T)
I,αβγ = J

(1)
I,αβγ − J

(1,L)
I,αβγ , (A12)

J
(2,T)
I,αβγδ = J

(2)
I,αβγδ − J

(2,L)
I,αβγδ . (A13)

The longitudinal current-response tensors describe the
moments of the curl-free part of PI,α and can be written,
using Eqs. (A6-A7), as

J
(0)
I,αβ = Q

(1)
I,αβ , (A14)

J
(1,L)
I,αβγ =

1

2
Q

(2)
I,αβγ , (A15)

J
(2,L)
I,αβγδ =

1

3
Q

(3)
I,αβγδ , (A16)
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thus reproducing the information in the charge-response
tensors. On the other hand, the transverse current-
response tensors J (1,T) and J (2,T) contain new informa-
tion that is not otherwise available.
The entire derivation of Sec. II A can now be repeated

using the current-response formalism. Eq. (19) is re-
placed by

Pα(r) =
∑

lIτ

PI,ατ (r−RlI)ulI,τ (A17)

and its Fourier transform is

Pα(k) = V −1
c

∑

Iτ

WIτβ(k)PI,ατ (k)u0β (A18)

where PI,ατ (k) is the Fourier transform of PI,ατ (r).
Eq. (24) is then replaced by

Pα(k) = V −1
c

∑

I

[
i
∑

τ

J
(0)
IατΓIτβγ kγ − i J

(1)
Iαβνkν

]
u0β

+V −1
c

∑

I

[
−
∑

τ

J
(0)
IατNIτβγδ kγkδ +

∑

τ

J
(1)
IατνΓIτβγkνkγ − 1

2
J
(2)
Iαβνµkνkµ

]
u0β

+ . . . (A19)

Comparing this with Eq. (28) we conclude that

eαβγ = V −1
c

∑

Iτ

J
(0)
IατΓIτβγ − V −1

c

∑

I

J
(1)
Iαβγ . (A20)

Using Eqs. (A14-A15) we find that the lattice-dipole part
eld is still given by Eq. (34) while the electronic part eel

becomes

eelαβγ = V −1
c

∑

I

(
−1

2
Q

(2)
I, αβγ − J

(1,T)
Iαβγ

)
. (A21)

Thus, the free contribution eelαβγ in Eq. (35) has now been
determined and can be seen to represent precisely the
transverse components that were omitted in the charge-
response derivation.

In a similar way, we can now obtain the full flexoelec-
tric tensor. Remembering that µαβγδ is forced by defini-
tion to be symmetric in the last two indices, we find that
the the contributions to the flexoelectric tensor, Eq. (44),
are now given by

µld
αβγδ = V −1

c

∑

Iτ

J
(0)
Iατ NIτβγδ , (A22)

µlq
αβγδ = −1

2
V −1
c

∑

Iτ

(
J
(1)
I, αβγ ΓIτβδ

+J
(1)
I, αβδ ΓIτβγ

)
, (A23)

µel
αβγδ =

1

2
V −1
c

∑

I

J
(2)
I, αβγδ . (A24)

Once again, Eqs. (46-47) are recovered, but now we can

identify the missing transverse pieces as

µlq,J
αβγδ = −1

2
V −1
c

∑

Iτ

(
J
(1,T)
I, αβγ ΓIτβδ

+J
(1,T)
I, αβδ ΓIτβγ

)
, (A25)

µel,J
αβγδ =

1

2
V −1
c

∑

I

J
(2,T)
I, αβγδ . (A26)

This completes the full derivation of the flexoelectric re-
sponse tensor using the current-response formalism.
Methods for computing the transverse parts of the

current-response tensors J (1,T) and J (2,T) have not been
developed as part of the present work. No extra contribu-
tions are needed for the lattice dipole contribution, and
the lattice quadrupole terms vanish for all of the cubic
materials considered in this work except for C and Si. For
the electronic contribution, however, we are only able to
report on the longitudinal contributions µel,L1 and µel,L2,
leaving the calculation of µel,T for future work.

Appendix B: Pseudo inverse of force constant matrix

We begin by restating the problem posed in Sec. II F 2,
simplifying the notation by dropping the Cartesian in-
dices. This is clearly sufficient for the binary cubic ma-
terials considered here, since the force-constant matrix
is block-diagonal in the Cartesian representation, and
the procedure outlined applies to each N × N block
(N is the number of atoms per cell). (For the per-
ovskites, the transformation to symmetry mode variables
outlined in Appendix C is performed first. For more
complex crystals, the force-constant matrix would be
block-diagonalized by IR-active irrep before the proce-
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dure would be applied, with N replaced by the number
of copies of the irrep.)
With this simplification, the problem is as follows. We

are given a force-constant matrix K = KT obeying the
acoustic sum rule

∑
j Kijtj = 0, where tj is a vector all of

whose elements are 1, and a set of weights wi specifying
a “force pattern.” We wish to construct a pseudo-inverse
J [w] having the property that Eq. (100) is obeyed, i.e.,

f ext
i −

∑

jk

Kik J
[w]
kj f ext

j = (
∑

j

tjf
ext
j )wi (B1)

for any external force vector f ext. To simplify the nota-
tion we use a bra-ket notation for vectors with implied
matrix-matrix and matrix-vector products, so that this
is equivalent to

K J [w] = I − |w〉〈t| (B2)

with 〈w|t〉 = 1.
The construction proceeds as follows. Construct an

N × N matrix E whose first column is |w〉 and whose
remaining columns are all orthogonal to |t〉, being sure
to keep the columns linearly independent. Also define
D = (ET )−1, i.e., the matrix whose columns are the
duals to those of E (that is, DTE = I). This means that
the first column of D is just |t〉. We can think of D and E
as giving the transformations back and forth between the
original atomic displacements and a set of mode variables
of which the first is the uniform translation.
Next let Dr and Er be the N × (N − 1) rectangular

matrices constructed by dropping the first column of D
and E respectively. Letting |o〉 be the vector (1, 0, . . .),
this can be written as Dr = D − |t〉〈o| and Er = E −
|w〉〈o|, and it follows that

ErD
T
r = I − |w〉〈t| (B3)

after using that D|o〉 = |t〉 and E|o〉 = |w〉. Since K
obeys the acoustic sum rule, the first row and column
of DTKD are zero, and K is fully represented by the
“reduced” matrix

Kr = DT
r KDr ⇔ K = ErKrE

T
r . (B4)

Then our solution is to set

J [w] = Dr(K
−1
r )DT

r (B5)

which is well-defined because the reduced matrix Kr is
non-singular. Substituting into Eq. (B2) we get

KJ [w] = (ErKrE
T
r )(DrK

−1
r DT

r )

= ErKrK
−1
r DT

r

= ErD
T
r = I − |w〉〈t| , (B6)

where Eq. (B3) was used on the last line. This satisfies
Eq. (B2), showing that J [w] is indeed the needed pseudo-
inverse.

Appendix C: Oxygen in the perovskites

As discussed in the main text, the site symmetry of
individual O atoms in cubic perovskites is not cubic, and
some of the space-group operations interchange O atoms.
To handle this case, it is convenient to introduce “mode
coordinates.”
We define O1, O2 and O3 as the oxygen atoms dis-

placed by a/2 from the central Ti along x̂, ŷ, and ẑ,
respectively. Taking SrTiO3 as our example system, we
start by considering zone-center phonons and carrying
out a linear transformation between the 15 sublattice
displacement variables uIτ describing the displacement
of sublattice I = {Sr,Ti, O1,O2,O3} in Cartesian direc-
tion τ = {x, y, z}, and symmetrized mode variables ξστ
that we choose to define as

ξ1x = uSrx , ξ1y = uSry , ξ1z = uSrz ,

ξ2x = uTix , ξ2y = uTiy , ξ2z = uTiz ,

ξ3x = uO1x , ξ3y = uO2y , ξ3z = uO3z ,

ξ{4,5}x = (uO3x ± uO2x)/
√
2 ,

ξ{4,5}y = (uO1y ± uO3y)/
√
2 ,

ξ{4,5}z = (uO2z ± uO1z)/
√
2 , (C1)

where {4, 5} means that the plus and minus apply to
case 4 and 5 respectively. Here σ is a label running over
σ = 1, 2, 3, 4 for the four copies of the IR-active Γ15 irrep,
while σ = 5 corresponds to the IR-silent Γ25 irrep. We
can summarize this as

ξστ =
∑

Iτ ′

Aστ,Iτ ′ uIτ ′ (C2)

where the elements of Aστ,Iτ ′ are given in Eq. (C1).
We have chosen an orthogonal transformation, A−1 =

AT , so that forces transform in the same way,

f̃στ =
∑

Iτ ′

Aστ,Iτ ′ fIτ ′ . (C3)

The T tensor elements of Eq. (68) will also transform in
the same way,

T̃στ,βγδ =
∑

Iτ ′

Aστ,Iτ ′ TIτ ′βγδ , (C4)

which is essentially Eq. (89) using A−1 = AT .

1. Original frame

Our main interest here is the calculation of these T
tensor elements. We start with the original supercell ex-
tended along x as in Fig. 1(a) and detailed in Fig. 3(a-
b), and consider the forces in response to a longitudinal
strain gradient νxxx. In this case all forces are along x by
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x

y

(a)

(b)

(c)

x’

y’ y

x(d)

FIG. 3: (Color online) ABO3 perovskite atomic geometry in
(a-b) original Cartesian frame, and (c-d) 45◦ rotated frame,
as appropriate to the two supercells of Fig. 1 respectively. (a)
and (c): slice at z = 0; filled squares (red) are A and filled
circles (green) are O3 atoms. (b) and (d): slice at z = c/2;
filled diamonds (blue) are B, filled circles (green) are O1, and
open circles (green) are O2 atoms.

symmetry, and from Eq. (C3) with A given by Eq. (C1)
it follows that

f̃3x = fO1x ,

f̃4x = (fO3x + fO2x)/
√
2 ,

f̃5x = (fO3x − fO2x)/
√
2 . (C5)

For this case we find fO2x = fO3x, so f̃5x vanishes and
f̃4x simplifies. Applying this to the T tensor elements,
we find

T̃1,xxxx = TSr,xxxx ,

T̃2,xxxx = TTi,xxxx ,

T̃3,xxxx = TO1,xxxx ,

T̃4,xxxx =
√
2TO2,xxxx ,

T̃5,xxxx = 0 . (C6)

These correspond to TI1111 elements in the notation of
the main part of the manuscript. Similar results hold for
the Q(1) and Q(3) tensors:

Q̃
(1)
3,xx = Q

(1)
O1,xx ,

Q̃
(1)
4,xx =

√
2Q

(1)
O2,xx , (C7)

Q̃
(3)
3,xxxx = Q

(3)
O1,xxxx ,

Q̃
(3)
4,xxxx =

√
2Q

(3)
O2,xxxx . (C8)

If instead we consider the presence of a transverse
strain gradient νyxx, we find that fO1y 6= fO2y 6= fO3y

are non-zero. Again using the transformation rules of

Eq. (C1) we find

T̃1,yyxx = TSr,yyxx ,

T̃2,yyxx = TTi,yyxx ,

T̃3,yyxx = TO2,yyxx ,

T̃4,yyxx = (TO1,yyxx + TO3,yyxx)/
√
2 ,

T̃5,yyxx = (TO1,yyxx − TO3,yyxx)/
√
2 . (C9)

Using symmetry, these correspond to the TI1122 elements
in the notation of the main part of the manuscript.

2. 45◦ rotated frame

Referring now to Fig. 3(c-d), we consider the 45◦ ro-
tated geometry as in Fig. 1(b). Then to relate the forces,
we have to carry out 45◦ rotations on Cartesian indices
twice, once before and once after the transformation to
mode variables. This is trivial for the Sr and Ti atoms,
giving f̃1x′ = fSrx′ etc., but for the oxygens it is more
complex. We find, for example,

f̃3x′ = (f̃3x + f̃3y)/
√
2 ,

= (fO1x + fO2y)/
√
2 ,

= (fO1x′ − fO1y′ + fO2x′ + fO2y′)/2 . (C10)

Using similar algebra, we find the full set of transforma-
tions to be given by




f̃3x′

f̃3y′

f̃4x′

f̃4y′

f̃5x′

f̃5y′




=




h h̄ h h 0 0
h̄ h h h 0 0
t t t t̄ s 0
t t t̄ t 0 s
t t t̄ t 0 s̄
t t t t̄ s̄ 0




·




fO1x′

fO1y′

fO2x′

fO2y′

fO3x′

fO3y′




(C11)

where h = 1/2, s =
√
2, t = 1/2

√
2, and a bar indicates

a minus sign.
We restrict our attention now to longitudinal strain

gradients of the form νx′x′x′ . For the oxygens we find
fO1x′ = fO2x′ , fO1y′ = −fO2y′ , and fO3x′ are non-zero.
Then using Eq. (C11) we find

f̃3x′ = fO1x′ − fO1y′

f̃4x′ = (fO1x′ + fO1y′ + fO3x′)/
√
2

f̃5y′ = (fO1x′ + fO1y′ − fO3x′)/
√
2 (C12)

while f̃3y′ = f̃4y′ = f̃5x′ = 0. It follows that

T̃1,x′x′x′x′ = TSr,x′x′x′x′

T̃2,x′x′x′x′ = TTi,x′x′x′x′

T̃3,x′x′x′x′ = TO1,x′x′x′x′ − TO1,y′x′x′x′

T̃4,x′x′x′x′ = (TO1,x′x′x′x′ + TO1,y′x′x′x′

+TO3,x′x′x′x′)/
√
2

T̃5,y′x′x′x′ = (TO1,x′x′x′x′ + TO1,y′x′x′x′

−TO3,x′x′x′x′)/
√
2 . (C13)
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Similarly, for the Q̃(3) tensors in the rotated frame we
find

Q̃
(3)
3,xxxx = Q

(3)
O1,x′x′x′x′ −Q

(3)
O1,x′y′x′x′ ,

Q̃
(3)
4,xxxx = (Q

(3)
O1,x′x′x′x′ +Q

(3)
O1,x′y′x′x′

+Q
(3)
O3,x′x′x′x′)/

√
2 , (C14)

where we used that Q
(3)
O1,x′x′x′x′ = Q

(3)
O2,x′x′x′x′ and

Q
(3)
O1,x′y′x′x′ = −Q

(3)
O2,x′y′x′x′ from symmetry.

3. Discussion

Note that T̃σαβγδ has the same symmetry for σ ∈
{1, 2, 3, 4}. That is, we have arranged things so that the

σ=3 and 4 cases behave just like σ=1 (Sr) or σ=2 (Ti),
so that any formulas used for Si and Ti contributions can
easily be extended to the oxygen modes of Γ15 symme-
try. Note that strain gradients also induce forces of Γ25

symmetry, corresponding to σ=5, which in turn cause
first-order Γ25 displacements. However, because these
modes are not IR-active, they do not contribute to the
flexoelectric response.
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