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First-principles effective Hamiltonian simulation on multiferroic RMn2O5
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We investigate the phase diagrams of RMn2O5 via a first-principles effective Hamiltonian method.
We are able to reproduce the most important features of the complicated magnetic and ferroelectric
phase transitions. The calculated polarization as a function of temperature agrees very well with
experiments. The dielectric constant step at the commensurate to incommensurate magnetic phase
transition is well reproduced. The microscopic mechanisms for the phase transitions are discussed.

Introduction: RMn2O5 (R=Tb, Dy, Ho, Y etc.) belong
to a very special class of multiferroics, because the fer-
roelectricity is driven by the magnetic ordering[1, 2, 3].
These compounds therefore possess strong magnetoelec-
tric (ME) coupling, showing remarkable new physical
effects, such as the colossal magnetodielectric [4] and
magneto-polarization-flop effects [5, 6, 7], etc. The
strong ME coupling effects are not only interesting in
the view of fundamental physics, but also they have po-
tential important applications in future multi-functional
devices.

Due to the complex magnetic interactions and the ME
coupling, RMn2O5 compounds undergo several magnetic
and associated electric phase transitions[4, 8, 9, 10] upon
cooling from room temperature to near zero tempera-
ture. Generally, these compounds transform at about
40K from a paramagnetic (PM) phase to an antiferro-
magnetic (AFM) phase whose magnetic ordering is ini-
tially commensurate (CM) along the a axis. This phase
transition is accompanied by a ferroelectric-like transi-
tion, with the appearance of a spontaneous polarizations
and a divergence of the dielectric constant. When the
temperature is lowered further to about 20K, the mag-
netic structures become incommensurate (ICM) along
the a axis, and there is a drop of the electric polarization
together with the appearance of a step in the dielectric
constant [4, 7, 9]. The special phase transition sequence
[7, 11] is very puzzling and the driving forces for the
phase transitions are not understood. It is therefore very
important to explore the closely related magnetic and
electric phase transitions to gain a full understanding of
the microscopic mechanism of the ME coupling and novel
physics in these materials.

It was believed that the ME coupling in these com-
pounds originated from the spin-orbit interactions. How-
ever, recent neutron scattering experiments [11, 12] as
well as first-principles calculations [3, 13] suggest that
the strong ME coupling in RMn2O5 is due to the “ex-
change striction” effect. This finding is important, be-
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FIG. 1: A schematic sketch of the magnetic structure pro-
jected onto the ab plane. The angle of spin orientation is
given in the parentheses. The dashed, solid, and double lines
represent J3, J4 and J5 exchange interactions respectively. J1

and J2 (not shown) are along the c-direction.

cause the spin-orbit coupling is a relativistic effect, and
intrinsically very small, whereas the “exchange striction”
effect can in principle be much stronger. However, pre-
vious first-principles calculations [3, 13] were limited to
zero temperature, and did not provide information about
the phase transitions.

The phase diagrams of RMn2O5 materials have been
studied via a phenomenological approach [14]. This ap-
proach, based on symmetry considerations only, does not
reveal any of the microscopic mechanisms of the ME cou-
pling. In this letter, we present a first study of the phase
diagrams of RMn2O5 materials as a function of tem-
perature by using a first-principles effective-Hamiltonian
method [15]. We obtain the most important features of
the phase diagram, including the the magnetic PM-CM-
ICM transitions, the accompanying ferroelectric transi-
tions, the electric polarization as function of the temper-
ature, and the dielectric-constant step at the CM-ICM
transition.

Construction of the Hamiltonian: The high-
temperature crystal structure of TbMn2O5 is or-
thorhombic (space group Pbam) with four TbMn2O5
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formula units per primitive cell, containing Mn4+O6

octahedra and Mn3+O5 pyramids [16]. The effective
Hamiltonian was derived in Ref. 13 from a Heisenberg-
like model. The spin-phonon coupling comes from the
dependence of the exchange interactions Jα on the
phonon modes uλ. Jα({uλ}) was expanded around the
high-symmetry structure to second order in the phonon
mode amplitudes. Five nearest-neighbor (NN) exchange
interactions were included, as sketched in Fig. 1. J3

is the Mn4+-Mn3+ superexchange interaction through
pyramidal base corners, while J4 is the superexchange
interaction through the pyramidal apex [11]. The
Mn3+ ions in connected pyramids couple to each other
antiferromagnetically through J5, whereas J1 and J2

couple Mn4+ ions along the c axis.
At lower temperature a further distortion occurs,

reducing the crystal symmetry to Pb21m. The lat-
tice distortion involves 14 IR-active B2u modes. Since
the symmetry-lowering displacement from the high-
symmetry structure is extremely small, we treated this
displacement (henceforth u) as the only phonon nor-
mal mode in the model. Only the single parameter
J ′

3=∂J3/∂u was assumed to be involved in the first-
order spin-phonon interaction. The neglect of J ′′

α terms,
which renormalize the phonon frequencies and lead to
the phonon anomalies near the magnetic phase transi-
tions [17, 18, 19], is justified because these terms have
a quite small effect on the phase-diagrams studied here.
The simplified Hamiltonian is then

E({uk}) = E0 +
∑

k

1

2
mω2u2

k +
∑

k 6=l

1

2
ξklukul (1)

−
∑

ij∈Jα

Jα(0)Si · Sj −
∑

ij∈J3

∑

k

J ′
3 ukSi · Sj .

Here E0 is the energy of high the symmetry structure
without magnetic interactions, whereas m and ω are the
reduced mass and frequency of the IR-active mode, uk is
the local phonon mode of the k-th unit cell, and ξkl are
force-constant matrix elements that couple the NN local
phonon modes. This last term was absent from Ref. 13,
but is included here to describe the phonon dispersion
properly. We assume that the ξkl are isotropic in the ab
plane, and we neglect the much smaller couplings along
the c direction.

Calculation of the parameters: The parameters of
the simplified Hamiltonian Eq. (1) were determined by
carrying out a series of first-principles calculations for
TbMn2O5 [3, 13]. The calculations were based on
density-functional theory within the generalized-gradient
approximation (GGA) implemented in the Vienna Ab-
initio Simulations Package (VASP)[20, 21]. Projec-
tor augmented-wave (PAW) pseudopotentials[22] and a
500 eV plane-wave cutoff were used. Spin polarization
was included in the collinear approximation.

To get the spin-phonon coupling constant J ′
3, it is
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FIG. 2: (a) The electric polarization P as a function of the
temperature; (b) The dielectric constant ε as a function of
temperature for both J

′

3 = 1.125 and J
′

3 = 0.4. The inset
window shows the full view of ε. The dielectric constants are
normalized to unity at high temperature.

enough to use the the energy difference ∆E between
the high-symmetry and the ground-state low-symmetry
structures. To simplify the notation, we redefine u to
be a dimensionless parameter taking the value of unity
at the ferroelectric low-symmetry state, and assign spin
moments |Si|=1.0 as well. Then it is easy to show that
J ′

3 = ∆E/4. We have J ′
3 ∼ 1.125meV. In order to calcu-

late the phonon coupling constant ξkl, we calculate the
total energies of different local-mode configurations. In
practice, we find that including the short-range phonon
interaction only has a very small effect on the results.
The exchange interactions J1 - J5 were fitted to the total
energies of different spin configurations and were given
in Ref. 13.

In the present work, we have now also fitted
the parameters to GGA+U calculations [23] with
1.0 eV≤U ≤ 4.0 eV on the Mn ions. We find that J ′

3 de-
creases with increasing U, falling to J ′

3 = 0.325meV at
U = 4.0 eV. As we shall see, this improves the com-
parison of some of our later simulation results with ex-
periment. Unfortunately, increasing U also worsens the
agreement with experiment for the J parameters them-
selves. This tension between the fitting of J and J ′ pa-
rameters will be further discussed later.

Monte Carlo simulations: We investigated the finite-
temperature behavior of our effective Hamiltonian by us-
ing Monte Carlo (MC) simulations. Traditional serial-
temperature MC methods have great difficulty treating
systems with complex frustrated interactions. Moreover,
the present system has a first-order CM-AFM–to–ICM
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phase transition which would be very difficult to treat
using conventional methods. Here we adopt the replica-
exchange method [24] in which one simulates M replicas
each at a different temperature T covering a range of in-
terest, and allows configurational exchange between the
replicas. Importantly, the inclusion of high-T configura-
tions ensures that the lower-T systems can access a broad
phase space and avoid becoming trapped in local minima.

We perform the simulations on an L × L × L cubic
cell with periodic boundary conditions. Each unit cell
contains eight spins and two local phonon modes. In
the simulations, one MC sweep is defined to consist of
a series of attempts of all variables. We performed the
simulations at temperatures ranging from 3 to 90K. The
temperatures are adjusted to ensure that the exchange
rates between adjacent remain close to 20%, which is
considered to be most effective [25]. At each T we carry
out an initial 104 sweeps to prepare the system before al-
lowing replica exchange. We discard these, as well as the
first 106 sweeps after replica exchange is started, when
computing equilibrium properties. Sample averages are
accumulated over 2×106 sweeps, with exchange carried
out after every 100 sweeps. In total 2 × 104 exchanges
are attempted, and among them ∼ 4× 103 are accepted,
which is considered more than enough to get an accurate
sample in the phase space of our model.

Results and Discussion: We give here the results of
typical simulations on a 12×12×12 cell. The calculated
polarization P and dielectric constant ε are shown in
Figs. 2(a) and (b) respectively. If we use J ′

3 = 1.125 meV
and the exchange interactions are fitted from the GGA
calculations, we get a single magnetic PM–to–CM-AFM
transition at about 58K, accompanied by a ferroelectric
transition (shown as the dotted lines in Fig. 2). This
result misses the important CM-to-ICM phase transi-
tion and overestimates the PM-to-CM transition tem-
perature. The problem can be traced to the too-large
spin-lattice coupling constant J ′

3. Including the on-site
Coulomb U can reduce J ′

3, but at the same time it wors-
ens the exchange interactions. We thus find that neither
an effective Hamiltonian built on a pure GGA calcula-
tion, nor one built on GGA+U with a single value of U ,
can give good overall agreement with experiment.

However, if we are willing to adjust the parameters by
using the exchange coupling taken from pure GGA and
the J ′

3 from GGA+U, the situation improves dramati-
cally. If J ′

3 is reduced to about 0.4meV, as obtained from
GGA+U with U=3 eV, we obtain two phase transitions
at about 42 and 18K respectively, in very good agreement
with experiment. The nature of each phase transition was
identified via Fourier analysis of the spin configurations.
At 80K, the spins are fully disordered, indicating a PM
phase. When T is lowered to 25K, the spin spectrum
shows a dominant peak at q = (0.5, 0, 0.5), suggesting a
CM-AFM phase. The Fourier spectrum of the spin struc-
ture at 5K shows dominant peaks at q=(5/12,0,0.5), in-

dicating it is in the ICM phase. We therefore obtain the
most important PM-CM and CM-ICM phase transitions,
and the transition temperatures agree very well with the
experimental values (∼38-44K for the AFM-CM order-
ing along the a axis, and ∼20K for the ICM ordering)
[4, 8, 9, 10]. The calculated qx=5/12 is slightly smaller
than the experimental values (∼0.46-0.48). It is worth
noting that the calculated qx is restricted by the super-
cell sizes in the simulation, which can be improved by
increasing the supercell size. Simulations on a 14×14×14
cell give qx=3/7. While we did not reproduce the correct
qz in both the CM and ICM phases (probably because
we only have NN interactions in the model Hamiltonian),
the fact that we nevertheless reproduce the correct phase
transition sequence tends to confirm that the qz value is
not important for the ME coupling in these materials
[3, 11].

The solid curves in Figs. 2(a) and (b) show the spon-
taneous polarization P and the dielectric constant ǫ as
functions of T for J ′

3=0.4meV. The polarization increases
strongly as the temperature is reduced through the PM-
CM transition, but then it drops suddenly almost to zero
at the CM-ICM transition. The magnetically induced
polarization behaves as P ∝ 〈S3 · S4〉, where S3 and S4

are the spins of the Mn3+ and Mn4+ ions coupled via
the J3 interaction. In the ICM phase, S3 and S4 are
almost orthogonal (i.e., θ ∼ π/2 in Fig. 1), whereas in
the CM phase they are parallel or antiparallel. These
results are in excellent agreement with the experimental
results for RMn2O5 compounds [4, 9, 11, 26], especially
for YMn2O5 [26] and HoMn2O5 [9]. Note, however, that
our simulation does not reproduce the reemergence of a
polarized state observed experimentally in TbMn2O5 at
still lower temperature [7]. This is probably because we
ignore the spins of Tb 4f electrons in our model. Exper-
imentally, it is observed that Tb is magnetically ordered
below ∼10K, which might play an important role in the
reemergence of the polarization at low T [7].

The dielectric constant shows a peak at the PM-CM
transition as a consequence of the ferroelectric phase
transition. Most interestingly, the dielectric constant
step at the CM-ICM transition has been well reproduced
in the simulation, in which ε jumps by about 75% in go-
ing from the CM phase at 20K to the ICM phase. The
step is very interesting and important, because it may
directly relate to the colossal magnetodielectric effect,
which happens just at the CM-ICM transition tempera-
tures in these materials.

To gain a better understanding of the spin-lattice cou-
pling effects on the magnetic and structural phase tran-
sitions, we plot the J ′

3-temperature phase diagram in
Fig. 3. As we see, if the spin-phonon coupling is too
strong (J ′

3 > 0.42meV), there is only a PM-CM transi-
tion, and no CM-ICM transition (as in BiMn2O5 [27]).
In contrast, if J ′

3 is very small (J ′
3 < 0.30meV), the CM

state will not appear, and instead a state having spin-
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FIG. 3: The J
′

3-temperature phase diagram of the system,
where PM, CM, ICM and SG represent paramagnetic, com-
mensurate, incommensurate and spin glass phase respectively.

glass (SG) character will appear above the ICM state.
The complex nature of the phase diagram is due to the
frustration of the J3 interactions. It is easy to see that
the CM states do not have the lowest magnetic energies,
since J3 induces spins to rotate to decrease the energy.
Since the spins have the same wave vector qz = 0.5 along
the c axis in both the CM and ICM phases, the inter-
actions due to J1 and J2 do not change in the the two
phases, and can be neglected in the discussion. Accord-
ing to the phase factors shown in Fig. 1, the energy of
the ICM state can be written as

EICM ≈ −8J4+2J5 cos(2πqx)−4J3[cos θ+cos(2πqx−θ)] .
(2)

Here we assume that two spins connected by J4 are al-
ways antiparallel to each other, because the J4 interac-
tions, each having two NNs, are much stronger than the
J3 and J5 interactions. We also ignore the phonon con-
tribution, because in the ICM phase, θ ∼ π/2 and the
energy from spin-lattice coupling J ′

3 is small. For the
CM state, we have θ = 0, qx = 0.5. Therefore,

ECM = −8J4 − 2J5 − 4J ′
3 . (3)

The energy difference between the CM and ICM phases
is determined by the competitions among J3, J5 and J ′

3.
In the case of J ′

3=1.125meV, the energy of the CM state
is always lower than that of the ICM state, and there is
no CM-ICM transition. However, when J ′

3 decreases to
0.4meV, one can find suitable θ and qx that allow the
ICM state be the ground state. Since there is no group-
subgroup symmetry relation between the CM and ICM
states, the phase transition between them is necessarily
a first-order one. We speculate that the transition occurs
because the entropy of the CM state is larger than that
of the CM state for suitable J ′

3.
The above results are calculated from the L=12 cell.

We have also obtained similar results for the L=10 and

14 cells. However, due to the subtle nature of the ICM
state, the parameters J3 and J ′

3 have to be slightly ad-
justed to produce results that are in good agreement with
experiments for different cell sizes.

The “semi-empirical” philosophy we have adopted here
has been to start with first-principles derived parameters,
make the minimal empirical modifications to the param-
eters to get good agreement with experiment, and then
use the resulting model to make predictions. The fact
that we have to adjust J ′

3 by hand (through the choice of
U) to obtain good agreement with experiment is clearly
somewhat unsatisfactory. However, there is considerable
precedent for such an approach. For example, in simula-
tions of ferroelectrics via effective-Hamiltonian methods,
it is a common practice to adjust the lattice constant
to agree with experiment through the application of a
fictitious negative pressure [15].

In summary, we have investigated the phase diagrams
of RMn2O5 using a first-principles effective Hamilto-
nian method. We obtained the most important fea-
tures of the phase diagrams of multiferroic RMn2O5

compounds, including the sequence of magnetic and fer-
roelectric phase transitions. Most importantly, we ob-
tained the dielectric-constant step at the commensurate-
to-incommensurate magnetic phase transition, which is
key to understand the colossal magnetodielectric effects.
The work further clarified the microscopic mechanism of
the magnetoelectric coupling in RMn2O5, and can be use-
ful for exploring other multiferroic materials.
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