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We consider the magnetic circular dichroism spectrum of a crystal with broken time-reversal
symmetry in the electric-dipole approximation. Using the Kubo formula for the absorptive part of
the antisymmetric optical conductivity, the frequency integral is recast as a ground-state property.
We show that in insulators this quantity is proportional to the circulation of the Wannier orbitals
around their centers (more precisely, to the gauge-invariant part thereof). This differs from the
net circulation, or ground state orbital magnetization, which has two additional contributions: (i)
the remaining Wannier self-rotation, and (ii) the “itinerant” circulation arising from the center-
of-mass motion of the Wannier orbitals, both on the surface and in the interior of the sample.
Contributions (i) and (ii) are not separately meaningful, since their individual values depend on the
particular choice of Wannier functions. Their sum is however gauge-invariant, and can be inferred
from a combination of two experiments: a measurement of the magneto-optical spectrum over a
sufficiently wide range to evaluate the sum rule, and a gyromagnetic determination of the total
orbital magnetization.

PACS numbers: 78.20.Ls, 75.10.Lp, 73.43.-f

I. INTRODUCTION

Optical sum rules provide a link between excitation
spectra and ground-state properties. The best-known
example is the f -sum rule of atomic physics.1 It relates
the frequency-integrated absorption of linearly polarized
light to the number of valence electrons. In this work
we consider the analogous result for circularly polarized
light. For non-magnetic systems the circular f -sum rule
is simply the average of the f -sum rules for the two
linearly-polarized components of the beam, again yield-
ing the total number of electrons. If, however, the sys-
tem is magnetized, either spontaneously or by an applied
field, this is no longer the case; there is a small correc-
tion that flips sign when either the magnetization of the
sample or the helicity of the incident light is reversed.
We are interested in what information this correction to
the circular f -sum rule provides about the magnetization.
Special emphasis will be placed on insulating systems, for
which an intuitive picture in terms of localized Wannier
orbitals can be given.

The differential absorption of left- and right-circularly-
polarized light by magnetic materials is known as mag-
netic circular dichroism (MCD). The object of interest
in this work can thus be viewed as a “dichroic” f -sum
rule for the integrated MCD spectrum. Such a sum rule
was first derived by Hasegawa and Howard for the spe-
cial case of a hydrogen atom in a magnetic field.2 They
showed that it is proportional to the quantum-mechanical
expectation value of the orbital angular momentum op-
erator, i.e., to the orbital moment. It has been assumed
that this conclusion generalizes trivially to many-electron
systems such as solids.3,4 This is not so, as shown by Op-
peneer, who obtained the correct sum rule for that case.5

He observed that it yields a quantity that is subtly differ-
ent from the orbital magnetization, and should instead

be viewed as one of two terms adding up to the orbital
magnetization Morb.

In a separate development, a rigorous theory of orbital
magnetization in crystals was recently formulated.6,7,8,9

Interestingly, it also identifies two separate contributions
to Morb. One key result of the present work is to re-
cast the dichroic f -sum rule in the language of this
modern theory, elucidating its physical content. Con-
versely, the sum rule solves an open problem in the the-
ory of Refs. 6,7,8,9 as raised explicitly in Ref. 8: whether
the two gauge-invariant contributions to Morb identi-
fied therein are separately measurable in principle. The
present work answers this question in the affirmative.

Although we will mostly focus on crystalline solids, we
find it useful to start in Sec. II by discussing the sum
rule in the more general context of bounded samples un-
der open boundary conditions. The detailed treatment of
periodic crystals is deferred until Sec. III, after which we
conclude in Sec. IV with a summary and outlook. In Ap-
pendices A, B, and C we derive and elaborate on some re-
sults quoted in the main text. In particular, Appendix A
discusses the relation between the dichroic f -sum rule
and three other sum rules from the literature.

II. BOUNDED SAMPLES

A. Preliminaries

In this work we are interested in systems displaying
broken time-reversal symmetry in the spatial wavefunc-
tions. A typical example would be a ferromagnet such
as iron in which the exchange interaction breaks time-
reversal symmetry in the spin channel and this symme-
try breaking is then transmitted to the orbital degrees
of freedom by the spin-orbit interaction. Other exam-
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ples include systems in applied magnetic fields, and also
certain spinless model Hamiltonians such as the Haldane
model.10

We work in the independent-particle approximation.
The interaction with light will be treated in the electric-
dipole approximation, valid at not-too-high frequencies.
This should be adequate provided that the sum rule sat-
urates before higher-order contributions, such as electric
quadrupole and magnetic dipole terms, become signifi-
cant. The oscillator strength for the transition between

one-electron states n and m is f
(ǫ̂)
n→m = (2me/h̄ωmn)|ǫ̂ ·

vnm|2, where ǫ̂ is the polarization. For light propagating

along α̂× β̂ with circular polarization ǫ̂ = (α̂± iβ̂)/
√

2,

f (±)
n→m =

1

2
f ′

nm,αα +
1

2
f ′

nm,ββ ∓ f ′′
nm,αβ , (1)

where we have introduced the complex quantity

fnm,αβ = (2me/h̄ωmn)vnm,αvmn,β . (2)

Here α, β label Cartesian directions, h̄ωmn = Em − En,
vnm,α are velocity matrix elements, and me is the electron
mass. Note that the object fnm,αβ is Hermitian in the
Cartesian indices. Thus its real and imaginary parts, f ′

and f ′′, are symmetric and antisymmetric respectively.
The dichroism of the transition is

f (+)
n→m − f (−)

n→m = −2f ′′
nm,αβ. (3)

Consider now a macroscopic system (e.g., a sample of
volume V cut from a bulk crystal) and decompose its
optical conductivity σ(ω) in three different ways: (i) real
and imaginary parts, σ′ and σ′′; (ii) symmetric and an-
tisymmetric parts, σS and σA; (iii) Hermitian and anti-
Hermitian parts, σH and σAH. Then

σH = σ′
S + iσ′′

A (4)

and

σAH = σ′
A + iσ′′

S , (5)

where the Cartesian indices have been omitted. The
properties of σ(ω) can be summarized by noting that the
Hermitian part is dissipative while the anti-Hermitian
part is reactive, and the symmetric part is “ordinary”
while the antisymmetric part is “dichroic.” At T = 0 the
dissipative (or absorptive) part is

σH(ω) =
πe2

2meV

occ∑

n

empty∑

m

fnmδ(ω − ωmn), (6)

where −e is the electron charge. For circularly polarized
light propagating along ẑ,

σ
(±)
abs (ω) =

1

2
σ′

S,xx(ω) +
1

2
σ′

S,yy(ω) ∓ σ′′
A,xy(ω). (7)

Thus the dichroism is given by the imaginary part of the
antisymmetric optical conductivity,11

σ
(+)
abs (ω) − σ

(−)
abs (ω) = −2σ′′

A,xy(ω). (8)

This vanishes for time-reversal-invariant systems, as can
be seen from the Onsager relation σαβ(H) = σβα(−H).

B. Dichroic f-sum rule

With the notation

〈f〉 ≡
∫ ∞

0

f(ω)dω, (9)

the dichroic f -sum rule relates the integrated MCD spec-
trum 〈σ′′

A,αβ〉 to a certain ground-state property of the

system. To see how, we begin by expressing σ′′
A,αβ(ω) as

the imaginary part of the Kubo formula (6). Combining
with Eq. (2) and taking the integral,

〈σ′′
A,αβ〉 =

πe2

h̄V

occ∑

n

empty∑

m

Im

( 〈n|v̂α|m〉〈m|v̂β |n〉
ωmn

)
.

(10)
Using the identity

〈n|v̂α|m〉
ωmn

= −i〈n|r̂α|m〉 (11)

and defining the projector onto the empty states Q̂ =∑empty
m |m〉〈m|,

〈σ′′
A,αβ〉 = − πe2

2h̄V

occ∑

n

〈n|r̂αQ̂v̂β |n〉 − (α ↔ β). (12)

Introducing the pseudo-vector σ′′
A = (1/2)ǫαβγσ′′

A,xy and

P̂ =
∑occ

m |n〉〈n|, this can be written more concisely as

〈σ′′
A〉 = − πe2

2h̄V
Tr[P̂ r̂ × Q̂v̂]. (13)

Eq. (13) is the dichroic f -sum rule, also obtained in

Ref. 5. Using the closure relation Q̂ = 1̂ − P̂ , it becomes
apparent that the right-hand-side depends exclusively on
the occupied states, and is closely related to the ground-
state orbital magnetization Morb = γTr[P̂ r̂ × v̂], where
γ = −(e/2cV ) in electrostatic units (esu). Writing

Morb = M
(I)
SR + ∆M, (14)

with

M
(I)
SR = γTr[P̂ r̂ × Q̂v̂] (15)

and

∆M = γTr[P̂ r̂× P̂ v̂] (16)

(the notation will be explained shortly), Eq. (13) becomes

〈σ′′
A〉 =

πec

h̄
M

(I)
SR. (17)

Hence the sum rule yields an orbital quantity M
(I)
SR with

units of magnetization, but differing from the actual or-
bital magnetization by the remainder ∆M.
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Two of the three quantities in Eq. (14) are indepen-
dently measurable. The left-hand side can be deter-

mined from gyromagnetic experiments,12 while M
(I)
SR on

the right-hand side is obtainable from magneto-optical
experiments via the sum rule. Thus, their difference ∆M

can also be determined in principle. However, measuring

M
(I)
SR and ∆M independently will be of only limited in-

terest unless some physical meaning can be attached to
each of them separately. With this goal in mind we shall
now make contact with the recent theory of macroscopic
orbital magnetization.

C. Relation to the orbital magnetization

The results obtained so far are fairly general. To pro-
ceed further we specialize to insulating samples. For
the present purposes “insulating” means that the ground
state wavefunction can be written as a Slater deter-
minant of well-localized orthonormal molecular orbitals
|wi〉, which we will generically refer to as Wannier func-
tions (WFs) even when the sample does not have a crys-
talline interior.13 This definition encompasses a broad
range of systems, both macroscopic and microscopic, but
it excludes metals and Chern insulators,14 which are not
Wannier-representable in the above sense.

By invariance of the trace, the orbital magnetization
can be expressed in the Wannier representation as

Morb = γ
occ∑

i

〈wi|r̂× v̂|wi〉. (18)

In Ref. 6 this was decomposed as15

Morb = MSR + MIC (19)

where

MSR = γ

occ∑

i

〈wi|(r̂ − ri) × v̂|wi〉 (20)

arises from the circulation of the occupied WFs around
their centers ri = 〈wi|r̂|wi〉 = rii (“self-rotation”), while

MIC = ri × 〈wi|v̂|wi〉 (21)

is the circulation arising from the motion of the centers
of mass of the WFs.

It is well known that the WFs of a given system are not
uniquely defined; unitary mixing among the WFs is al-
lowed, giving rise to a “gauge freedom.” In practice one
deals with this issue by choosing, among the infinitely
many possible gauges, a particular one that has certain
desirable properties. A common strategy is to work in the
gauge that minimizes the quadratic spread of the WFs,
producing so-called maximally-localized WFs.13 Natu-
rally, any physical observable (e.g., Morb) is necessarily
invariant under a change of gauge. This is unfortunately

not the case for the individual terms MSR and MIC in
Eqs. (20)–(21), which turn out to be gauge-dependent.
This is to be expected since these quantities do not take
the form of traces, unlike those in the decomposition in-
troduced earlier via Eqs. (14)–(16).

The two decompositions (14)–(16) and (19)–(21) are
not unrelated, however. To see this, we insert the identity
1̂ = Q̂+P̂ at the location of the cross product in Eq. (20)
to obtain

MSR = M
(I)
SR + M

(II)
SR , (22)

where M
(I)
SR is the quantity defined in Eq. (15) (since

〈wi|Q̂ = 0), and

M
(II)
SR = γ

(
Tr[P̂ r̂ × P̂ v̂] −

occ∑

i

ri × vi

)

= γ
occ∑

i,j 6=i

rij × vji. (23)

In this way we have segregated the gauge-dependence of

MSR to the term M
(II)
SR , isolating a gauge-invariant part

M
(I)
SR which turns out to be precisely the quantity defined

in Eq. (15) and appearing in the sum rule (17). When the

gauge-dependent self-rotation M
(II)
SR is combined with the

gauge-dependent itinerant circulation MIC, it forms the
gauge-invariant quantity ∆M of Eq. (16). The relation
between the decompositions (14)–(16) and (19)–(21) can
be summarized by writing

Morb = M
(I)
SR + M

(II)
SR + MIC︸ ︷︷ ︸

∆M

. (24)

There is a remarkable parallelism between the decom-
position (22) of the Wannier self-rotation (20) and the
decomposition13

Ω = ΩI + Ω̃ (25)

of the Wannier spread

Ω =

occ∑

n

〈wi|(r̂ − ri)
2|wi〉 (26)

into a gauge-invariant part

ΩI =
∑

α

Tr [P̂ r̂αQ̂r̂α] (27)

and a gauge-dependent part

Ω̃ =

occ∑

i,j 6=i

|rij |2. (28)

The similarities between Eqs. (15) and (27), and be-
tween Eqs. (23) and (28), are striking. (Interestingly,
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the gauge-invariant spread ΩI is related to the “ordi-
nary” absorption spectrum by a second sum rule, as dis-
cussed in Ref. 16 and Appendix A. In addition, the in-
terpretation of ΩI as a measure of the quadratic quantum
fluctuations, or “quantum spread,” of the many-electron

center of mass16 is mirrored by M
(I)
SR having the mean-

ing of a center-of-mass circulation, as discussed in Ap-
pendix B.) First-principles calculations show that for

maximally-localized WFs, Ω̃ is typically much smaller
than ΩI.

13 Indeed, the minimization of the spread acts

precisely to reduce Ω̃ as much as possible. In general

Ω̃ cannot be made to vanish exactly in two or higher
dimensions, since the non-commutivity of P̂ x̂P̂ , P̂ ŷP̂ ,
and P̂ ẑP̂ implies that the off-diagonal rij cannot all be
zero. In practice, however, they can become quite small.

According to Eq. (23), M
(II)
SR would also vanish if all off-

diagonal rij were precisely zero. Hence we expect the self-
rotation of maximally-localized WFs to be dominated by
the gauge-invariant part as well.17

The fact that ∆M is composed of self-rotation
and itinerant-circulation parts which are not separately
gauge-invariant means that angular momentum can be
converted back and forth between MSR and MIC via
gauge transformations. This will be discussed in more
detail in Sec. III D; here we simply note that the two
parts are similar in that both originate from the spatial
overlap between neighboring WFs. This is evident from

the definition of M
(II)
SR , and for MIC it follows from writ-

ing vi in terms of the “current donated from one Wannier
orbital to its neighbors” as in Ref. 6. ∆M can therefore
be interpreted as an interorbital contribution to Morb,
even though it includes part of the self-rotation, while

M
(I)
SR is the purely intraorbital portion. (Similarly, ΩI

and Ω̃ are the intraorbital and interorbital parts of the
Wannier spread, respectively.)

III. CRYSTALLINE SOLIDS

In this Section we apply the general formalism of Sec. II
to crystalline solids, recasting the relevant quantities in
the form of Brillouin zone integrals. We start in Sec. III A
by rederiving the dichroic f -sum rule for Bloch electrons.
In the remaining subsections we explore the connections
between this bulk reformulation and the theory of orbital
magnetization in crystals.6,7,8,9

A somewhat unsatisfying aspect of that theory as de-
veloped in Ref. 8 is the lack of consistency in the way
the orbital magnetization was decomposed, in the follow-
ing sense. One partition (Morb = MLC + MIC in their
notation15) was made for bounded samples, after which
the thermodynamic limit was taken for each term sepa-
rately. The resulting k-space expressions were then com-
bined to form the total Morb. Finally, working in k-space,

a different partition (Morb = M̃LC + M̃IC) was identi-
fied whose individual terms were gauge-invariant, unlike
those of the original decomposition. In the process, how-

ever, the intuitive real-space interpretation of the original
decomposition was lost, and the separate meanings of the
two terms in the gauge-invariant decomposition was left
unclear.

Here, instead, we shall work from the very beginning

with the two gauge-invariant terms M
(I)
SR and ∆M, which

afford a simple real-space interpretation in terms of WFs.
They are first identified for fragments with a crystalline
interior (crystallites) in Sec. III B. The thermodynamic
limit of each term is then taken, producing the reciprocal-
space expressions of Eqs. (44)–(45) (the details of the
derivation can be found in Appendix C). Interestingly,

we find that our gauge-invariant terms M
(I)
SR and ∆M

differ from – but are simply related to – those of the
gauge-invariant decomposition of Ref. 8. In the partic-
ular case of an insulator with a single valence band, on
the other hand, they reduce exactly to the terms identi-
fied in Ref. 7, as will be discussed in Sec. III C. Because
the work of Ref. 7 is based on a semiclassical picture of
wavepacket dynamics, however, it is not easily general-
ized to a multiband gauge-invariant framework as is done
here.

In Eq. (24) of Sec. II the decomposition ∆M = M
(II)
SR +

MIC for insulating systems was obtained by working in
the Wannier representation. For insulating crystallites

MIC can be divided further into a “surface” part M
(surf)
IC

and an “interior” part M
(int)
IC . The interplay between the

resulting three contributions to ∆M will be the focus
of the final two subsections. Single-band insulators are
discussed in Sec. III C. The general case of multiband
insulators is considered in Sec. III D, where the gauge-
transformation properties of those terms is analyzed.

A. Dichroic f-sum rule

The first step is to rewrite the Kubo formula (6) in
a form appropriate for periodic crystals, where dipole
transitions connect valence and conduction Bloch states
with the same crystal momentum k. Eq. (2) becomes,
dropping the index k for conciseness,

fnm,αβ = −(2meωmn/h̄)〈un|∂αum〉〈um|∂βun〉, (29)

where ∂α ≡ ∂/∂kα and we have used the relation18

vnm,α = ωmn〈un|∂αum〉 for m 6= n, with |un〉 a cell-
periodic Bloch state. Eq. (6) now reads

σH(ω) =
πe2

2me

∫
dk

(2π)3

occ∑

n

empty∑

m

fnmδ(ω − ωmn). (30)

Consider the frequency integral of σH(ω),

〈σH〉 =
πe2

2me

∫
dk

(2π)3

occ∑

n

empty∑

m

fnm. (31)

The dichroic f -sum rule will be obtained from the imag-
inary part of this complex quantity, while the real part
yields the ordinary f -sum rule (see Appendix A).
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Using Eq. (29) to expand the summation,

occ∑

n

empty∑

m

fnm,αβ =

= −2me

h̄2

occ∑

n

empty∑

m

〈un|∂αum〉(Em − En)〈um|∂βun〉

= −2me

h̄2

occ∑

n

empty∑

m

〈∂αun|um〉(En − Em)〈um|∂βun〉

=
2me

h̄2 (gk,αβ − hk,αβ), (32)

where we have introduced a set of notations as follows:

bk,αβ =

occ∑

n

〈∂̃αun|∂̃βun〉, (33)

gk,αβ =

occ∑

n

〈∂̃αun|Ĥ|∂̃βun〉, (34)

and

hk,αβ =

occ∑

n

En 〈∂̃αun|∂̃βun〉. (35)

The symbol ∂̃ denotes the covariant derivative,8,19

defined as |∂̃αunk〉 = Q̂k|∂αunk〉, where Q̂k =∑empty
m |umk〉〈umk|. The imaginary part of bk,αβ is es-

sentially the Berry curvature while its real part is related
to the quantum metric (Ref. 13, Appendix C; we discuss
the physical content of bk,αβ in Appendix A). Quanti-
ties gk,αβ and hk,αβ are similar to bk,αβ except that they
carry an extra factor of Hamiltonian or energy. Note that
bk,αβ corresponds to the quantity fk,αβ in Ref. 8, while
gk,αβ and hk,αβ are the same as in that work.

With these definitions Eq. (31) becomes

〈σH,αβ〉 =
πe2

h̄2

∫
dk

(2π)3
(gk,αβ − hk,αβ). (36)

The imaginary part reads, in vector form,

〈σ′′
A〉 =

πe2

h̄2

∫
dk

(2π)3
(g′′

k − h′′
k). (37)

This is the dichroic f -sum rule in the Bloch representa-
tion.

We can now compare this result with the decomposi-
tion obtained in Ref. 8, where the ground-state orbital
magnetization was partitioned into two gauge-invariant
terms as

Morb = M̃LC + M̃IC (38)

where

M̃LC =
e

h̄c

∫
dk

(2π)3
g′′
k, (39)

M̃IC =
e

h̄c

∫
dk

(2π)3
h′′

k. (40)

We thus arrive at our main result

〈σ′′
A〉 =

πec

h̄

(
M̃LC − M̃IC

)
(41)

relating the integrated MCD spectrum to the compo-
nents of the orbital magnetization. Note that the sum
rule is proportional to the difference between the gauge-
invariant contributions of Ref. 8. By independently

measuring the sum of M̃LC and M̃IC via gyromagnetic
experiments12 and the difference via the magneto-optical
sum rule, the value of each individual term can indeed be
measured in principle, resolving an open problem posed
in Ref. 8.

Strictly speaking, Eqs. (38)–(40) as written are valid
for conventional insulators only. The generalization to
metals and Chern insulators is subtle, but the under-
standing emerging from Refs. 7,8,9 is that it the appro-
priate generalization is obtained by making the replace-
ments H → H − µ and En → En − µ in Eqs. (34) and
(35), where µ is the electron chemical potential. Clearly
gk − hk, and with it the sum rule (37), are insensitive to
these substitutions.20

Comparing Eqs. (38) and (41) for extended crystals
with Eqs. (14) and (17) for bounded samples, it appears
plausible that the two partitions (14) and (38) of Morb

ought to be related by

M
(I)
SR = M̃LC − M̃IC, (42)

∆M = 2M̃IC, (43)

or explicitly,

M
(I)
SR =

e

h̄c

∫
dk

(2π)3
(g′′

k − h′′
k), (44)

∆M =
2e

h̄c

∫
dk

(2π)3
h′′

k. (45)

The correctness of these identities is demonstrated in Ap-
pendix C by taking the thermodynamic limit of results
derived in the next subsection.

B. The magnetization of an insulating crystallite

To gain a deeper insight into the expressions derived
from the reciprocal-space Kubo formula in the previ-
ous section, we now specialize the results obtained for
bounded samples in Sec. II C to the case that the sample
has a crystalline interior. Working in the Wannier repre-
sentation, we are then able to establish connections be-
tween the k-space and Wannier viewpoints and associate
a local physical picture with the various terms appearing
in the bulk orbital magnetization.
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Following Refs. 6 and 8, we divide our crystallite into
“surface” and “interior” regions. This division is largely
arbitrary, and it only needs to satisfy two requirements:
(i) the border between the two regions should be placed
sufficiently deep inside the sample where the local envi-
ronment is already crystalline, and (ii) the surface region
should occupy a non-extensive volume in the thermody-
namic limit. The Wannier orbitals spanning the ground
state are assigned to each region. Those in the interior
converge exponentially to the bulk WFs |Rn〉 (R is a lat-
tice vector), and those on the surface will be denoted by
|ws〉.

We first divide the orbital magnetization into self-
rotation (SR) and itinerant-circulation (IC) contribu-
tions according to Eqs. (19)–(21). In the thermodynamic
limit the SR part, which only involves the relative coordi-
nate r̂−ri, is dominated by the interior region. Invoking
translational invariance,

MSR = γc

∑

n

[〈0n|r̂ × v̂|0n〉 − rn × vn] , (46)

where γc = −e/(2cVc), with Vc the cell volume, rn =
〈0n|r̂|0n〉, and vn = 〈0n|v̂|0n〉. Henceforth summations
over band-like indices span the valence-band states.

Next we break down the self-rotation as in Eq. (22),

setting P̂ =
∑

R

∑
n |Rn〉〈Rn|:

M
(I)
SR = γcRe trc[P̂ r̂ × Q̂v̂] (47)

M
(II)
SR = γc

(
Re trc[P̂ r̂ × P̂ v̂] −

∑

n

rn × vn

)

= γc

∑

n

∑

Rm 6=0n

Re
{
〈0n|r̂|Rm〉 × 〈Rm|v̂|0n〉

}
.

(48)

The symbol trc denotes the trace per unit cell. Note
that we have taken the real part of the traces explicitly;
this was not needed in Eqs. (15) and (23) for bounded
samples, where the traces were automatically real.

Now we turn to the IC term (21) in Eq. (19). Un-
like MSR, in the thermodynamic limit it generally has
contributions from both interior and surface regions:6,8

MIC = M
(int)
IC + M

(surf)
IC . (49)

The interior part becomes

M
(int)
IC = γc

∑

n

rn × vn (50)

where it was necessary to use
∑

n

vn = 0 (51)

when exploiting the translational invariance. Eq. (51)
expresses the fact that no macroscopic current, or dy-
namic polarization,19 flows through the bulk in a sta-
tionary state. Because of this constraint, the quantity

(50) necessarily vanishes for insulators with a single va-
lence band. In multiband insulators it takes the form
of an intracell itinerant circulation: the WF centers in
each cell can have a net circulation while their collective
center-of-mass remains at rest.

Finally, the surface contribution is

M
(surf)
IC = γ

Ns∑

s=1

rs × vs. (52)

It was shown in Refs. 6 and 8 that in the thermodynamic
limit this can be recast as

M
(surf)
IC = −γc Im

∑

mnR

R×〈m0|r̂|nR〉〈nR|Ĥ |m0〉, (53)

where γc = γc/h̄. This result is remarkable in that it
expresses a circulation in the surface region solely in
terms of matrix elements between the interior WFs, in
a way that does not depend on the precise location of
the boundary between the two regions (provided that
the boundary satisfies the two criteria mentioned earlier).
We emphasize that it holds for crystalline insulators only.

Whereas M
(int)
IC is an intracell-like term, in the bulk

form (53) M
(surf)
IC is seen to have an intercell character,

vanishing in the “Clausius-Mossotti” limit of zero over-
lap between WFs belonging to different cells. The as-
signment of the bulk WFs to specific cells is however
not unique, and by making a different choice it is possi-

ble to convert between “intracell” M
(int)
IC and “intercell”

M
(surf)
IC . For this and other reasons to be detailed in

Sec. III D, the interior and surface parts of Morb are in
general not physically well-defined, even in crystalline in-
sulators. Collecting terms, the full orbital magnetization
reads

Morb = M
(I)
SR + M

(II)
SR + M

(int)
IC + M

(surf)
IC︸ ︷︷ ︸

∆M

, (54)

which is similar to Eq. (24) except that the IC term has
been separated into interior and surface parts.

This Wannier-based decomposition of the magnetiza-
tion of a crystallite follows closely that of Ref. 8. Two
differences are worth noting. First, we have emphasized
the distinction between Wannier self-rotation and itiner-
ant circulation. In Ref. 8 the emphasis was more on the

separation between the surface contribution M
(surf)
IC (de-

noted by MIC in that work) and the interior contribution

MLC = γctrc[P̂ r̂× v̂] containing the net magnetic dipole
density of the WFs in a crystalline cell. This “local cir-
culation” includes all of the self-rotation as well as the
intercell part of the itinerant circulation. In the present
notation the decomposition of Ref. 8 reads

Morb = M
(I)
SR + M

(II)
SR + M

(int)
IC︸ ︷︷ ︸

MLC

+M
(surf)
IC . (55)

Note that for one-band insulators M
(int)
IC = 0, in

which case the interior contribution coincides with the
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self-rotation, and the surface part with the itinerant
circulation.6 Second, by identifying a gauge-invariant
part of the self-rotation, we have been able to orga-
nize the four resulting terms into the two gauge-invariant
groups indicated in Eq. (54).

The present viewpoint appears to be more useful for
arriving at a simple physical picture for the sum rule. It
has the additional advantage of being applicable to disor-
dered and microscopic systems, for which the distinction
between interior and surface contributions loses meaning.

C. One-band insulators

We begin our discussion of Morb in insulators with a
single valence band by considering the remainder ∆M.
We saw in Sec. III B that, of the three terms into which it
is naturally decomposed in the Wannier representation,
one of them vanishes if there is only one WF per cell,

M
(int)
IC = 0. (56)

Remarkably, the two surviving terms become identical,

M
(II)
SR = M

(surf)
IC =

∆M

2
, (57)

and thus individually gauge-invariant. This follows from
Eqs. (42)–(43) in the one-band limit. Indeed, the quan-

tities M̃LC and M̃IC therein were defined in Ref. 8 in
such a way that for one-band insulators they reduce to

the quantities MLC = MSR and M
(surf)
IC in Eq. (55). It is

then seen that Eqs. (42) and (43) correspond to the first
and second equalities in Eq. (57) respectively. We em-
phasize that Eqs. (56)–(57) only hold for crystalline WFs
which respect the full translational symmetry of the crys-
tal. If, for instance, a larger unit cell is used (effectively
folding the Brillouin zone and turning the system into a
multiband insulator), the additional gauge freedom can
be used to construct WFs for which Eqs. (56)–(57) no
longer hold.

Consider now the full orbital magnetization. For one-
band insulators the reciprocal-space expressions (44)–
(45) reduce to

M
(I)
SR =

e

2h̄c
Im

∫
dk

(2π)3
〈∂kuk|×(Ĥk−Ek)|∂kuk〉 (58)

and

∆M =
e

h̄c

∫
dk

(2π)3
Ek Im 〈∂kuk| × |∂kuk〉. (59)

Their sum Morb is given by the right-hand-side of
Eq. (58) with −Ek replaced by +Ek, which is the ex-
pression originally obtained in Refs. 6 and 7. More-

over, the individual contributions M
(I)
SR and ∆M coincide

with those identified in Ref. 7. Instead, the derivation of
Ref. 6 leads to the alternative – but, for one-band insula-
tors, also gauge-invariant – partition into the “interior”

and “surface” parts MLC = MSR = M
(I)
SR + ∆M/2 and

M
(surf)
IC = ∆M/2.

While the individual terms M
(I)
SR and ∆M agree, for

single-band insulators, with those of Ref. 7, we interpret
them somewhat differently here. Eq. (58) of Ref. 7 had
the meaning of an intrinsic magnetic moment associated
with the self-rotation of the carrier wavepackets. Accord-
ing to the present derivation, that term is only part of
the Wannier self-rotation. As for Eq. (59), in the deriva-
tion of Ref. 7 it was seen to arise from a Berry-phase
correction to the electronic density of states, and was
subsequently claimed to be associated with a boundary
current circulation.21 Instead, according to the present
viewpoint only half of it originates in the itinerant circu-

lation M
(surf)
IC of the surface WFs, while the other half is

ascribed to the remaining self-rotation M
(II)
SR of the WFs

in the bulk.

D. Gauge transformations for multiband insulators

In multiband insulators all three terms M
(II)
SR , M

(int)
IC ,

and M
(surf)
IC can be nonzero. However, their individual

values are not physically meaningful, since a gauge trans-
formation can redistribute the total ∆M among them.
In particular, it is interesting to consider gauge trans-
formations that shift the location of a WF by a lattice
vector.

A general gauge transformation takes the form13

|unk〉 →
∑

m

|umk〉Umn(k) (60)

where Umn(k) is an Nb ×Nb unitary matrix in the band
indices. We assume that a transformation of this kind has
already been applied to transform from the Hamiltonian
eigenstates at each k to a set of states that are smooth
in k from which the WFs are to be constructed. We can
then interpose an additional diagonal gauge transforma-
tion

|unk〉 → e−ik·Rn |unk〉, (61)

where Rn is a real-space lattice vector; this has the effect
of shifting the location of WF n by Rn. For a one-band
insulator, or if Rn is the same for all bands, this amounts
to shifting the choice of the “home” unit cell. However,
in the multiband case different WFs can be shifted dif-
ferently, corresponding to the freedom in choosing which
WFs “belong” to the home unit cell.

For example, Fig. 1 shows four cells of a model two-
dimensional crystal consisting of “molecular magnets”
disposed on a square lattice with lattice constant a. Be-
fore the transformation (61), the home unit cell contains
the four WFs shown in bold in Panel (a). Applying the
transformation with R2 = ax̂ and Rm = 0 for all other
WFs changes the selection of the “basis” of WFs belong-
ing to the home cell to be that shown in Panel (b).



8

(a)

4

2

3

1

1 2

4 3

(b)

R2

FIG. 1: Schematic model of a molecular crystal with one
molecule per cell and four WFs per molecule. The range of
the orbitals is indicated by the overlapping circles, and their
center-of-mass velocities vn are denoted by arrows. The two
panels show in bold two possible choices of “Wannier basis.”

How does this affect the individual terms composing
∆M? Clearly the self-rotation (46) is not affected. Ac-

cording to Eq. (50), M
(int)
IC changes by γcR2×v2. To pre-

serve the overall invariance of ∆M the remaining term

M
(surf)
IC must change by an equal and opposite amount.

Let us see in more detail how this comes about.
We begin with a general formal derivation. The k-

space expression for M
(surf)
IC is given by8

M
(surf)
IC =

e

2h̄c
Im

∑

mn

∫
dk

(2π)3
Emn,k〈∂kunk| × |∂kumk〉.

(62)
A few steps of algebra show that under the transforma-

tion (61) M
(surf)
IC changes by

e

h̄c
R2 ×

∑

m

∫
dk

(2π)3
Re

{
〈u2|∂kum〉〈um|Ĥk|u2〉

}
. (63)

Replacing 〈u2|∂kum〉 by −〈∂ku2|um〉 allows to identify a

term P̂kĤk = Ĥk in the above expression, which becomes

− e

h̄c
R2 ×

∫
dk

(2π)3
Re

{
〈u2|Ĥk|∂ku2〉

}
. (64)

FIG. 2: A finite sample cut from the bulk crystal of Fig. 1.
With the choice of Wannier basis of Fig. 1(a), “interior” and
“surface” WFs lie inside and outside the dashed line respec-
tively; with that of Fig. 1(b), they are denoted by solid and
open circles respectively. Right panel: open and solid arrows

show the extra “itinerant currents” (M
(surf)
IC and M

(int)
IC re-

spectively) associated with the latter choice.

Comparison with the Wannier velocity19

vn = −2Vc

h̄

∫
dk

(2π)3
Re

{
〈un|Ĥk|∂kun〉

}
(65)

then produces the desired result −γcR2 × v2.
Coming back to the example in Fig. 1, the intramolec-

ular orbital overlap gives rise to the nonzero velocities
vn indicated by the arrows. With the choice of Wannier
basis of Panel (a), the collective circulation of the Wan-

nier centers in each cell results in a finite M
(int)
IC , while

from Eq. (53) M
(surf)
IC vanishes, since there is negligible

intercell overlap. When the configuration of Panel (b) is

chosen, M
(surf)
IC becomes −γcR2 × v2. From the present

viewpoint this nonzero value is made possible by the in-
tramolecular (but now intercell) overlap between the sec-
ond WF of each cell with WFs one, three, and four from
the cell shifted by R2.

To view M
(surf)
IC as a surface contribution rather than

a bulk intercell term, we consider now a finite sample of
the same crystal (Fig. 2), which has been divided into
surface and interior regions. In deciding which WFs are
“interior-like” and which are “surface-like” we shall re-
quire that all WFs assigned to the same cell must belong
to the same region. If the Wannier basis of Fig. 1(a) is
used, the surface region can be chosen to comprise the
outermost layer of molecules, so that the border between
the two regions is given by the dashed line. The four WFs
on each molecule form a unit with some internal IC circu-
lation but zero center-of-mass velocity. The total sample
magnetization is the sum of all such internal circulations,
which in the large-sample limit is interior-dominated, so

that M
(surf)
IC → 0.

If the Wannier basis of Fig. 1(b) is chosen instead, the
upper and lower surface regions are still composed of the
outermost layer of molecules. However, the left surface
now contains, in addition, one WF from each molecule in
the second layer. Those lone surface WFs carry a down-
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ward particle “IC current” which extends along the left
surface and is indicated by an open arrow on the right
panel. A corresponding IC current appears on the right

surface, and together they yield M
(surf)
IC = −(e/2ca)|v2|ẑ,

which agrees with the result M
(surf)
IC = −γcR2×v2 found

earlier using a purely bulk argument [in this example
γc = −e/(2ca2)]. A change of gauge should not change
any physical quantity, such as the actual current flow-
ing on the left surface. Since it appears to change by
adding the open arrow, there must be another equal and
opposite contribution (the adjacent solid arrow). This
contribution is the “interior” IC current carried by the
remaining three WFs (filled circles) on the molecules of
the second layer.

The situation just described is reminiscent of the
“quantum of polarization” in the theory of dielectric
polarization,22 where a change of Wannier basis like that
leading from Fig. 1(a) to Fig. 1(b) shifts the polarization
by a quantum and also changes the surface charge by one
electron per surface cell area. This might suggest that the
full gauge invariance of the interior and surface parts of
Morb discussed in Sec. III C for single-band insulators be-
comes, in multiband insulators, a gauge-invariance mod-
ulo γcRn × vn. While true for this particular example,
this is generally not so.23 Even for this model it will cease
to be true as soon as the molecules start overlapping sig-

nificantly. When this happens, the value of M
(surf)
IC can

be tuned continuously using other types of gauge trans-
formations, e.g., the continuous diagonal transformation

|unk〉 → eiθnk |unk〉 (66)

with θn,k+G = θnk. When applied to the n = 2 states

this produces a change in M
(surf)
IC given by Eq. (64) with

R2 therein replaced by a factor of ∂kθ2k in the integrand.
Since both r2 and v2 remain invariant (the former was
shown in Ref. 18 and latter follows from Eq. (51) together
with the fact that all other vm are unaffected), so does

M
(int)
IC . The change in M

(surf)
IC must therefore be absorbed

by M
(II)
SR .

To summarize, the transformation (61) transfers dis-
crete amounts of itinerant circulation between the inte-
rior and surface regions, while the transformation (66)
converts continuously between interior self-rotation and
surface itinerant circulation. Finally, under the most gen-
eral transformation (60) all three gauge-dependent terms
in Eq. (54) can be affected simultaneously, so that only
their sum ∆M is unique and physically meaningful.

IV. SUMMARY AND OUTLOOK

We have presented an exact sum rule for the MCD
spectrum, elucidated its physical interpretation, and re-
lated it to the recent rigorous formulation of orbital mag-
netization in crystals. In insulating systems the sum

rule probes the gauge-invariant part M
(I)
SR of the self-

rotation of the occupied Wannier orbitals. The total or-
bital magnetization has a second, less obvious contribu-
tion ∆M, arising from the overlap between neighboring
WFs. It comprises both self-rotation (SR) and itinerant-
circulation (IC) parts in proportions which depend on
the precise choice of WFs, while ∆M itself has a unique
value. Although the intuitive interpretation in terms of
the occupied WFs is restricted to Wannier-representable

systems such as conventional insulators, the terms M
(I)
SR

and ∆M are in fact well-defined for all electron systems,
including metals and Chern insulators.

The practical importance of the sum rule is that it pro-
vides a decomposition of Morb into its gauge-invariant
constituents, using a combination of gyromagnetic and
magneto-optical measurements. This should provide
valuable information on the intraorbital (or localized)
versus interorbital (or itinerant) character of orbital mag-
netism. For example, it has been suggested (Ref. 24,
Appendix B) that the anomalously large g-factors of Bi
might be caused by itinerant circulations very much like
the ones discussed here. On the basis of the present work
it should now be possible to test this conjecture.

In the last decade and a half an approximate sum
rule for the X-ray MCD spectrum4 has been used ex-
tensively to obtain site-specific information about or-
bital magnetism in solids. The resulting orbital moments
have been compared with gyromagnetic measurements
of Morb.

25 Such a comparison may not be appropriate
in systems where the remainder ∆M is significant. It
would therefore be of great interest to find such systems
defying the conventional wisdom about the connection
between the MCD spectrum and the orbital moments.

The ideas discussed in this work should be most rel-
evant for materials displaying appreciable orbital mag-
netism and, in particular, appreciable interorbital effects

which might enhance the ratio |∆M/M
(I)
SR|. These cri-

teria do not favor band ferromagnets. First, their or-
bital magnetization tends to be relatively small. In the
transition metal ferromagnets Fe, Co, and Ni, for ex-
ample, it accounts for less than 10% of the spontaneous
magnetization.12 (For comparison, the field-induced or-
bital magnetization of the d paramagnetic metals can
be as large as the induced spin magnetization.26) Sec-
ondly, ferromagnetism is favored by narrow bands and
localized orbitals, for which interorbital effects are ex-
pected to be relatively minor. Paramagnets and diamag-
nets with relatively wide bands (e.g., the s-p metals and
semiconductors) therefore appear to be more promising
candidates. An important direction for future work is to

perform first-principles calculations of M
(I)
SR and ∆M for

real materials.
In Appendix A we place the dichroic f -sum rule in the

broader context of other known sum rules. We note in
particular that by taking different inverse-frequency mo-
ments, the interband MCD spectrum can be related to
two other phenomena resulting from broken time-reversal
symmetry, namely the ground state orbital magnetiza-
tion and the intrinsic anomalous Hall effect. These are
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generally expected to coexist, and this is indeed the case
for ferromagnets, where all three occur spontaneously.
In the case of Pauli paramagnets, however, the intrinsic
Hall mechanism of Karplus and Luttinger has received
little if any attention. On the other hand, it is known
that Pauli paramagnets can display an appreciable field-
induced MCD spectrum.27,28 This raises the question as
to what role the Berry curvature may play in their “ordi-
nary” (field-induced) Hall effect. Such a “dissipationless”
contribution is undoubtedly present in principle by virtue
of the sum rule (A7). Quantitative estimates and a dis-
cussion of the underlying mechanisms will be presented
in a future communication.29

To conclude, we have shown how to relate the localized

(M
(I)
SR) and itinerant (∆M) parts of the orbital magneti-

zation to magneto-optical and gyromagnetic observables.
This should allow one to probe more deeply into the na-
ture of magnetism in solids and other many-electron sys-
tems than previously possible.
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APPENDIX A: OTHER SUM RULES

In this Appendix we derive three additional sum rules
for Bloch electrons and discuss their relation to the
dichroic f -sum rule. All four involve inverse-frequency
moments 〈ω−pσH〉 [in the notation of Eq. (9)] of the ab-
sorption spectrum (4). They are given by p = 0 and
p = 1, and in each case two sum rules are obtained by
taking the real and imaginary parts: one ordinary and
the other dichroic, respectively.

We first consider p = 0. From the imaginary part of
Eq. (36) we obtained the dichroic f -sum rule (41). To
discuss the real part we revert from (36) to the form
(31),

〈σ′
S,αβ〉 =

πe2

2me

∫
dk

(2π)3

occ∑

n

empty∑

m

f ′
nm,αβ. (A1)

Since fnm,αβ = −[fmn,αβ]∗,

occ∑

n

empty∑

m

f ′
nm,αβ =

occ∑

n

∑

m 6=n

f ′
nm,αβ

=

occ∑

n

[
δαβ −

(
me

m∗
e

)

n,αβ

]
, (A2)

where the second equality is the effective-mass theorem.
Hence we find

〈σ′
S,αβ〉 =

πe2

2me

∫
dk

(2π)3

occ∑

n

[
δαβ −

(
me

m∗
e

)

n,αβ

]
, (A3)

the modified f -sum rule30 for the ordinary spectrum.
To obtain the two sum rules for p = 1 we again start

from Eq. (30), but now replace Eq. (32) by

occ∑

n

empty∑

m

fnm,αβ

ωmn

=
2me

h̄
bk,αβ, (A4)

where bn,αβ was defined in Eq. (33). Thus

〈ω−1σH〉 =
πe2

h̄

∫
dk

(2π)3
bk. (A5)

For the dichroic part, noting that Ωk = −2b′′
k

is
the Berry curvature summed over the occupied states
at k, and comparing with the Karplus-Luttinger Hall
conductivity31

σ′
A(ω = 0) = −e2

h̄

∫
dk

(2π)3
Ωk, (A6)

one finds the Hall sum rule,

〈ω−1σ′′
A〉 =

π

2
σ′

A(ω = 0). (A7)

This is the ω → 0 limit of the Kramers-Krönig relation
for the antisymmetric conductivity.11 Since only the in-

terband part of the optical conductivity was included on
the left-hand-side, the intrinsic dc Hall conductivity was
obtained on the right-hand-side. Extrinsic contributions
to the latter (e.g., skew scattering) arise from intraband
terms in the former.

Finally consider the ordinary (real) part of Eq. (A5).
The quantity b′n,αβ is the quantum metric.13 It is related

to the localization tensor Λαβ of insulators by32

Λαβ =
V

N

∫
dk

(2π)3
b′
k,αβ, (A8)

where N/V is the electron density. Hence we recover the
electron localization sum rule16

〈ω−1σ′
S,αβ〉 =

πe2N

h̄V
Λαβ . (A9)

In summary, we have in Eqs. (36) and (A5) two gen-
eral sum rules for the zero-th and first inverse frequency
moments of the optical absorption, respectively. Tak-
ing imaginary and real parts of (36) gives the dichroic
f -sum rule (41) and the modified ordinary f -sum rule
(A3), while taking imaginary and real parts of (A5) gives
the Hall sum rule (A7) and the electron localization sum
rule (A9).

Besides emerging from a unified formalism, the four
sum rules display certain similarities. For instance, it
will be shown in Appendix B that the dichroic f -sum
rule yields the circulation of the electronic center of mass,
while the trace of the localization tensor yields its quan-
tum spread. Moreover, in a one-particle picture each
quantity can be viewed as the gauge-invariant part of the
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corresponding property (self-rotation or spread) of the
Wannier orbitals, as discussed in Sec. II C for bounded
systems. There is however one important difference be-
tween the behavior of the two quantities in the thermo-
dynamic limit. While the center-of-mass circulation re-
mains well-defined for metals, the trace of the localiza-
tion tensor is only meaningful for insulators, diverging in
metals.16,32 Interestingly, the delocalization of electrons
in metals is also responsible for a correction to the f -sum
rule. Contrary to the canonical f -sum rule for atoms,1

the modified f -sum rule (A3) does not yield the num-
ber density of valence electrons in a metal, due to the
presence of the last term on the right-hand-side. This
term appears because the Bloch states are extended and
do not vanish at infinity.30 The fact that the correction
term nevertheless vanishes for insulators is a consequence
of the localized nature of insulating many-body wave-
functions in configuration space.33

We conclude by noting that Eq. (A7) provides an ex-
treme example of how sum rules from atomic physics can
change qualitatively when applied to extended systems.
Indeed, the corresponding sum rule for bound systems
produces a vanishing result,34

〈ω−1σ′′
A,αβ〉 =

πe2

h̄V
ImTr[P̂ r̂αQ̂r̂β ] = 0. (A10)

In contrast, the bulk formula (A7) produces for Chern
insulators a quantized Hall conductivity, and it also de-
scribes the intrinsic anomalous Hall conductivity of fer-
romagnetic metals.31 This apparent contradiction high-
lights the subtleties associated with the process of
taking the thermodynamic limit and switching from
open to periodic boundary conditions for non-Wannier-
representable systems. Such issues are still not fully re-
solved in the theory of orbital magnetization. While a
general derivation of the bulk formula for Morb has been
given working from the outset with a periodic crystal,9

derivations which start from finite crystallites and take
them to the thermodynamic limit (Refs. 6 and 8 and
Appendix C) are presently restricted to conventional in-
sulators.

APPENDIX B: DICHROIC f-SUM RULE AND

THE MANY-BODY WAVEFUNCTION

In the main text we interpreted the dichroic f -sum
rule, and the associated decomposition (14) of Morb, in
an independent-particle picture based on WFs. It is also
possible to relate these quantities directly to properties
of the many-electron wavefunction, without invoking any
particular single-particle representation. In preparation
for that, let us first discuss a one-electron system (e.g., a
hydrogen atom in a magnetic field). Its absorption spec-
trum is composed of sharp lines, and is more conveniently
described in terms of an oscillator strength rather than
an optical conductivity. Inserting Eq. (2) into Eq. (3)
and using the relation (11) to replace one of the velocity

matrix elements,

f ′′
nm,αβ = −me

h̄

[
〈n|r̂α|m〉〈m|v̂β |n〉 − (α ↔ β)

]
. (B1)

Summing over m 6= n and using the closure relation to-
gether with 〈n|v̂|n〉 = 0 one finds, in vector notation,

∑

m 6=n

f ′′nm = −me

h̄
〈n|r̂ × v̂|n〉. (B2)

This is the original dichroic f -sum rule of Hasegawa and
Howard,2 with the orbital angular momentum appearing
on the right-hand-side; in the notation of Sec. II B it reads
〈σ′′

A〉 = (πec/h̄)Morb (since here ∆M = 0).
We now generalize the discussion to N -electron sys-

tems. In this context r̂ =
∑N

i=1 r̂i and v̂ =
∑N

i=1 v̂i, and
it is crucial to make a distinction between the one-particle

operator Λ̂(1) =
∑N

i=1 r̂i × v̂i and the two-particle opera-

tor Λ̂(2) = r̂× v̂ appearing in Eq. (B2), as emphasized in
Ref. 35. The former is related to the electronic angular
momentum and orbital magnetization, while the latter
is related to the contribution to the angular momentum
coming from the circulation of the electronic center of
mass. (In the classical context, for example, a pair of
electrons orbiting 180◦ out of phase in the same circular
orbit would have Λ̂(1) 6= 0 but Λ̂(2) = 0.)

The derivation of the dichroic sum rule for the N -
electron case proceeds as before, except that the velocity
matrix elements in Eq. (2) become vnm = 〈Ψn|v̂|Ψm〉,
where |Ψm〉 are now many-body eigenstates. The result
is still given by Eq. (B2), with |n〉 replaced by |Ψn〉. In-
deed, it is natural to define the many-body generalization
of Eq. (15) as

M
(I)
SR = γ〈Ψn|Λ̂(2)|Ψm〉 (B3)

so that Eq. (17) continues to hold. From this many-body
perspective the difference ∆M with respect to the full

Morb is seen to arise from the cross terms
∑N

i,j 6=i r̂i × v̂j

in Λ̂(2) − Λ̂(1).
To recover from (B3) the independent-particle expres-

sion (15) we specialize to the case where |Ψm〉 is a single
Slater determinant. In second-quantized notation r̂ =∑

ij rijc
†
i cj , v̂ =

∑
ij vijc

†
icj , and |Ψ0〉 = c†1 . . . c†N |0〉,

where i and j label orthogonal one-particle states. Then
Eq. (B3) becomes

M
(I)
SR = γ

(
〈0|cN . . . c1

)(∑

ij

rijc
†
icj

)
× (B4)

×
(∑

kl

vklc
†
kcl

)(
c†1 . . . c†N |0〉

)
. (B5)

Terms in which the indices do not pair can imme-
diately be eliminated. Furthermore, pairings of the
form (k = l, i = j) give no contribution, since this
leads to (

∑occ
i rii)× (

∑occ
k vkk) which vanishes because
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〈Ψ0|v̂|Ψ0〉 = 0. The only surviving terms are those with
(j = k, i = l), yielding

M
(I)
SR = γ

∑

ij

rij × vji

(
〈Ψ0|cjc

†
j

)(
c†i ci|Ψ0〉

)

= γ
∑

ij

rij × vji(1 − nj)ni = γ

occ∑

i

empty∑

j

rij × vji,

(B6)

where ni is the state occupancy. Clearly the expression
on the right-hand-side is equivalent to that in Eq. (14).

A similar analysis can be made for the other sum rules
presented in Appendix A. For example, the counterpart
of the Hall sum rule for a bounded many-electron system
reads

∑

m 6=0

f ′′0m

ωm0
= − ime

h̄
〈Ψ0|r̂ × r̂|Ψ0〉 = 0, (B7)

which was termed in Ref. 3 the Kuhn sum rule. The
independent-particle form (A10) can be recovered from
(B7) along the lines of Eqs. (B4)–(B6). As for the elec-
tron localization sum rule, it yields the second cumulant-
moment of the quantum distribution of the many-
electron center-of-mass.16 In the independent-particle
limit this reduces to Λαβ = (1/N)Tr[P̂ r̂αQ̂r̂β ], whose
trace yields the gauge-invariant WF spread (27). The
bulk formula (A8) for insulating crystals can be recov-
ered in the thermodynamic limit following the strategy
described below for the orbital magnetization.

APPENDIX C: THERMODYNAMIC LIMIT

In this Appendix we start from the expressions (15)

and (16) for M
(I)
SR and ∆M of insulating crystallites and,

by taking the thermodynamic limit in the Wannier rep-
resentation, turn them into the reciprocal-space expres-
sions (44) and (45).

Before proceeding, recall that the quantities gk and hk

entering Eqs. (44)–(45) were defined in Eqs. (34)–(35)
in the context of the “Hamiltonian gauge” in which n
labels a Bloch energy eigenstate. Here, we work with
a generalized Wannier representation as in Sec. III B,
where n labels a Wannier function and |unk〉 is the state
of Bloch symmetry (generally not an energy eigenstate)
constructed from that Wannier function.13 The two rep-
resentations are related by a k-dependent unitary rota-
tion as in Eq. (60). Then Eq. (34) remains valid in the
present context, since it already takes the form of a trace,
while Eq. (35) is now replaced by

hk,αβ =
∑

nm

Enm(k)〈∂̃αumk|∂̃βunk〉, (C1)

where Enm(k) = 〈unk|Ĥk|umk〉. With gk and hk written
as traces in this way, it is evident that each is a gauge-
invariant quantity.8

1. Gauge-invariant self-rotation M
(I)
SR

For insulating crystallites in the thermodynamic limit,
Eq. (15) can be replaced by Eq. (47). Thus we need
to establish the equivalence between Eqs. (47) and (44).
Using

v = − i

h̄
[r̂, Ĥ] (C2)

and specializing to the z-component of Eq. (47),

M
(I)
SR,z =

e

h̄cVc

Im trc[P̂ x̂Q̂ĤQ̂ŷ − P̂ ĤP̂ x̂Q̂ŷ]. (C3)

The second term above may be expanded as a trace in
the Wannier representation as

trc[P̂ ĤP̂ x̂Q̂ŷ] =
∑

R

∑

mn

〈0m|Ĥ |Rn〉〈Rn|x̂Q̂ŷ|0m〉.

(C4)
Then using the identities

〈0m|Ĥ|Rn〉 = Vc

∫
dk

(2π)3
e−ik·REmn,k, (C5)

〈Rn|x̂Q̂ŷ|0m〉 = Vc

∫
dk

(2π)3
eik·R〈∂̃xunk|∂̃yumk〉, (C6)

we obtain

1

Vc

trc[P̂ ĤP̂ x̂Q̂ŷ] =

∫
dk

(2π)3
hk,αβ. (C7)

Using a similar argument, it follows that

1

Vc

trc[P̂ x̂Q̂ĤQ̂ŷ] =

∫
dk

(2π)3
gk,αβ. (C8)

Combining the above two equations with Eq. (C3) then
yields Eq. (44).

2. Gauge-invariant remainder ∆M

To take the thermodynamic limit of ∆M we start from
Eq. (16) and apply it to a large crystallite to arrive at
Eq. (45). Focusing on the z-component,

(∆M)z = γTr[P̂ x̂Q̂v̂y] − γTr[P̂ ŷQ̂v̂x]. (C9)

Now use Eq. (C2) to obtain

(∆M)z = −2iγTr[x̂P̂ ŷP̂ ĤP̂ − ŷP̂ x̂P̂ ĤP̂ ], (C10)

where we defined γ = γ/h̄ and replaced P̂ Ĥ by the

more symmetrical form P̂ ĤP̂ . Using −iTr[Ô − O†] =

2ImTr[Ô], this becomes

(∆M)z = 4γImTr[x̂P̂ ŷ(P̂ ĤP̂ )]. (C11)
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At this point we are still considering a bounded sam-
ple. To obtain a bulk expression we first need to manip-
ulate Eq. (C11) into a form where the unbounded oper-

ators x̂ and ŷ are sandwiched between P̂ and Q̂, as in
Eq. (C3). That ensures that ill-defined diagonal position
matrix elements between the extended Bloch states do
not occur. We will make use of the following rules for
finite-dimensional Hermitian matrices A, B, C, and D:

(i) ImTr[ABCD] = ImTr[DABC] (C12)

(ii) ImTr[ABCD] = −ImTr[DCBA] (C13)

(iii) ImTr[AB] = 0 (C14)

and, if any two of the matrices A, B, and C commute,

(iv) Im Tr[ABC] = 0. (C15)

Rule (i) is the cyclic permutation, rule (ii) is reversal, rule
(iii) follows from (i) and (ii), and rule (iv) follows from

(iii). Replacing the first P̂ in Eq. (C11) by 1̂ − Q̂ and

applying rule (iv) to the term containing 1̂ ([x̂, ŷ] = 0

and P̂ ĤP̂ is Hermitian), we obtain

(∆M)z = −4γImTr[P̂ ĤP̂ x̂Q̂ŷ], (C16)

which has the desired form.

Now we invoke Wannier-representability to write

Tr[P̂ ĤP̂ x̂Q̂ŷ] =
∑

j

〈wj |ĤP̂ (x̂ − xj)Q̂(ŷ − yj)|wj〉

(C17)

(note that P̂rQ̂ = 0). Since only the relative coordinate
appears, the contribution from the surface orbitals is non-
extensive, vanishing in the thermodynamic limit. We are
then left with a bulk-like expression:

Tr[P̂ ĤP̂ x̂Q̂ŷ] →
∑

Rm

∑

R′n

〈Rm|Ĥ |R′n〉〈R′n|x̂Q̂ŷ|Rm〉.

(C18)
Both matrix elements on the right-hand-side depend on
R and R′ only through R′−R, and therefore, comparing
with Eq. (C4),

1

Nc

Tr[P̂ ĤP̂ x̂Q̂ŷ] → trc[P̂ ĤP̂ x̂Q̂ŷ], (C19)

where Nc is the number of crystalline cells in the sam-
ple. Combining Eqs. (C7), (C16) and (C19) one obtains
Eq. (45), which concludes the proof.

1 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of

One- and Two-Electron Atoms (Academic Press, 1957).
2 H. Hasegawa and R. E. Howard, J. Phys. Chem. Solids 21,

179 (1961).
3 D. Y. Smith, Phys. Rev. B 13, 5303 (1976).
4 B. T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys.

Rev. Lett. 68, 1943 (1992).
5 P. M. Oppeneer, J. Magn. Magn. Mat. 188, 275 (1998).
6 T. Thonhauser, D. Ceresoli, D. Vanderbilt, and R. Resta,

Phys. Rev. Lett. 95, 137205 (2005).
7 D. Xiao, J. Shi, and Q. Niu, Phys. Rev. Lett. 95, 137204

(2005).
8 D. Ceresoli, T. Thonhauser, D. Vanderbilt, and R. Resta,

Phys. Rev. B 74, 024408 (2006).
9 J. Shi, G. Vignale, D. Xiao, and Q. Niu, arXiv:0704.3824

(2007).
10 F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
11 H. S. Bennett and E. A. Stern, Phys. Rev. 137, A448

(1965).
12 C. Kittel, Introduction to Solid State Physics (Wiley,

1953), 1st ed.
13 N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847

(1997).
14 T. Thonhauser and D. Vanderbilt, Phys. Rev. B 74, 235111

(2006).
15 The quantity MSR was called MLC in Ref. 6. One reason

for using a different notation here is that in Ref. 8 MLC

was defined (for crystals) in a different way, by replacing
the Wannier center ri in Eq. (20) by the lattice vector R

labeling the cell to which the WF “belongs.” The two defi-

nitions turn out to be equivalent for single-band insulators
(the case of interest in Ref. 6). In Sec. IIIB we discuss the
precise relation between our MSR and the MLC of Ref. 8
in the multiband case.

16 I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62,
1666 (2000).

17 However, since the off-diagonal rij enter the self-rotation
as a first power and the spread as a second power, the non-
invariant part may play a larger role in the former quantity
than in the latter.

18 R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47,
1651 (1993).
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