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First-principles perturbative computation of dielectric and Born charge tensors in
finite electric fields

Xinjie Wang and David Vanderbilt
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854-8019
(Dated: December 19, 2006)

We present a perturbative treatment of the response properties of insulating crystals under a dc
bias field, and use this to study the effects of such bias fields on the Born effective charge tensor and
dielectric tensor of insulators. We start out by expanding a variational field-dependent total-energy
functional with respect to the electric field within the framework of density-functional perturbation
theory. The second-order term in the expansion of the total energy is then minimized with respect
to the first-order wave functions, from which the Born effective charge tensor and dielectric tensor
are easily computed. We demonstrate an implementation of the method and perform illustrative
calculations for the ITI-V semiconductors AlAs and GaAs under finite bias field.

PACS numbers: 71.15.-m, 71.55.Eq, 77.22.-d, 78.20.Ci.

I. INTRODUCTION

The dielectric tensor and Born (or dynamical) effec-
tive charge tensor are of fundamental importance in un-
derstanding and modeling the response of an insulator
to an electric field.! They give, respectively, the first-
order polarization and atomic force appearing in response
to a first-order change in the macroscopic electric field.
While one is most often interested in evaluating these
response tensors at zero field, there is increasing inter-
est in finite-field properties. For example, the study
of bulk ferroelectrics?>* and of ferroelectric films® and
superlattices®0 in finite field, and of lattice vibrations in
polar crystals in finite field,” have recently generated in-
terest. While it may sometimes be reasonable to model
the dielectric behavior by assuming that the dielectric
and Born effective charge tensors have a negligible depen-
dence on the bias field, it is important to be able to quan-
tify such approximations and to compute the field depen-
dence when it is physically important to do so (e.g., for
describing non-linear optical phenomena such as second-
harmonic generation).

Density-functional perturbation theory (DFPT)3?
provides a powerful tool for calculating the second-order
derivatives of the total energy of a periodic solid with re-
spect to external perturbations such as atomic sublattice
displacements or a homogeneous electric field. In con-
trast to the case of sublattice displacements, for which
the perturbing potential remains periodic, the treatment
of homogeneous electric fields is subtle because the cor-
responding potential acquires a term that is linear in real
space, thereby breaking the translational symmetry and
violating the conditions of Bloch’s theorem. For this rea-
son, electric-field perturbations have often been studied
in the past using the long-wave method, in which the
linear potential resulting from the applied electric field
is obtained by considering a sinusoidal potential in the
limit that its wave vector goes to zero. In this approach,
however, the response tensor can only evaluated at zero
electric field, and it also requires as an ingredient the
calculation of the derivatives of the ground-state wave

functions with respect to wave vector.

Recently, Nunes and Gonze introduced an electric-
field-dependent energy functional expressed in terms of
the Berry-phase polarization.'® This approach was ini-
tially introduced in order to provide an alternative frame-
work for the DFPT treatment of electric-field perturba-
tions (evaluated at zero field) in which the long-wave
method is entirely avoided. More recently, it has been
pointed out that the Nunes-Gonze functional could also
serve as the basis for a calculation of the “ground-
state” properties in finite electric field.!*'? (Here, the
phrase “ground state” is used advisedly; because of Zener
tunneling, the state of interest is actually a long-lived
resonance.') In this approach, the energy functional is
minimized with respect to a set of field-polarized Bloch
functions that form a natural representation of the one-
particle density matrix even though they are no longer
eigenstates of the Hamiltonian.!*'? The introduction of
this approach has also made possible the calculation of
the dielectric and Born effective charge tensors at finite
electric fields using finite-difference methods.t

In a recent paper’ we developed a perturbative
method, within this framework, for computing the
phonon properties of insulators at finite electric fields.
The starting point was the Nunes-Gonze electric-field-
dependent energy functional, which represents the effect
of the electric field by including its coupling to the Berry-
phase polarization.'® This total-energy functional was ex-
panded up to second order in atomic displacements. The
linear response of the field-polarized Bloch functions to
the atomic displacements was obtained by minimizing the
second-order term in the expansion of the total-energy
functional with respect to the first-order changes in the
Bloch functions. Finally, the force-constant matrix was
constructed based on these first-order Bloch functions.
This method provides a tractable and efficient computa-
tional scheme for computing phonon properties at finite
electric field, and suggests that a similar treatment of
other response properties of insulators in finite electric
field should be possible.

In this paper, we follow the approach of Ref. 7 to de-
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velop a method for computing the dielectric and Born
effective charge tensors at finite electric field. Again us-
ing the Nunes-Gonze energy functional,'’ we compute
the first-order responses of the electronic wave functions
to a small change in the electric field. We then use these
to construct the second-order derivatives of the total en-
ergy with respect to electric field (to give the dielectric
tensors evaluated at non-zero field) and the mixed deriva-
tives with respect to electric field and atomic sublattice
displacement (to give the Born effective charge tensors
evaluated at non-zero field).

The paper is organized as follows. In Sec. II, the
second-order perturbation expansion of the total energy
functional with respect to electric fields is derived and
the steepest-descent directions are identified. The ex-
pressions for computing the dielectric and Born effec-
tive charge tensors are also given. In Sec. III, we de-
scribe the implementation of the approach in the ABINIT
code package,'* and present test calculations for the III-
V semiconductors AlAs and GaAs. (Since we are mainly
interested in the purely electronic effects here, we do not
include the strains or sublattice displacements that might
occur in response to the electric field; these could easily
be included by employing structural-relaxation methods
at finite field.'!) By comparing with the results of finite-
differences calculations, we demonstrate the correctness
of the new formulation and the internal consistency of the
theory. A brief summary and conclusion are presented in
Sec. IV.

II. METHOD

A. Perturbation expansion of the enthalpy
functional

We start from the electric enthalpy functionall?-t!

F[R;¢;&] = Exs[R;¢] — QE - P[], (1)

where R, £, ) and P are, respectively, the atomic coor-
dinates, the electric field, the cell volume, and the macro-
scopic polarization, EFks is Kohn-Sham energy functional
at zero electric field, and atomic units are used through-
out. After minimizing this functional, the field-polarized
Bloch functions ¥ may be regarded as depending implic-
itly on the electric field £. Our treatment of this func-
tional will parallel the treatment given in our previous
Ref. 7.

In the present case, we take the electric field £ to con-
sist of two parts, a finite part £(®) and a small variation
0€. In the following, we consider the perturbation ex-
pansion of the functional in Eq. (1) with respect to the
small variation € under the orthonormality constraints

The wave functions are to be relaxed, subject to these
constraints, in such a way as to minimize the electric

enthalpy functional
F = Fxs + Fpp + ILMm (3)

where Fks = Fks is the Kohn-Sham energy (as it would
be calculated at & = 0), Fgp = —Q& - P contains the
coupling of the Berry-phase polarization P to the electric
field, and the constraint is implemented by the inclusion
of the Lagrange-multiplier term Fia. The first and last
of these terms are given by
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FKS = Fh Z<1/}nk|T + cht|1/)nk> + Ech [n] (4)
kn

and

occ

f
LM = e kzm:n ie;mn ((Vmk| i) ) (5)
where f is the spin degeneracy (normally f=2), Ny is the
number of k-points, and Ay y,n, is the matrix of Lagrange
multipliers. In a notation similar to that of Ref. 7, the
second term may be written as
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Here a; are the three primitive real-space lattice vectors,
and the mesh of Nj k-points is defined by mesh vectors
g = b;/N () where b; is the reciprocal lattice vector
dual to a;. Thus, N, = NON@ NG and we also define
Nil) = Nk/N(i) as the number of k-point strings running
in direction ¢. Finally,

Dy = ImIndet Sk (7)
where the overlap matrix is defined as
(Skk’)mn = <Umk|unk’> . (8)

In order to obtain the desired response properties, we
now wish to expand the finite-field enthalpy functional
Fxs up to second order in the electric field. We shall as-
sume for the moment that the electric field is applied in
Cartesian direction « only. The expansion of Fxg with
respect to atomic displacements was already obtained in
Ref. 7, and the expansion with respect to electric field
can be carried through in a very similar way. Indeed, the
second-order expansions of Fkg and Fr\ can essentially
be transcribed from Ref. 7 with the first-order wave func-
tions with respect to displacement replaced here by the
first-order wave functions with respect to electric field,
giving
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As in Ref. 7, terms that can be eliminated by use of the

“2n + 1 theorem” (e.g., (ulsf|T + vewt|u£32>) have been
dropped. The the first-order wave functions are

6|u k,->
Ea \ _ n
unkj> - 880; (11)
and the second-order Fyy. are
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In these and subsequent equations, the partial deriva-
tives indicate that the structural coordinates R are being
held fixed (while, however, the wave functions |unx) are
allowed to vary).

The second-order expansion of Fpp with respect to
electric field requires somewhat more care. We find
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where €, is the unit vector along Cartesian direction a.
The first term in the last line of Eq. (13) is special to the
case of the electric-field perturbation, while the second
term can be derived in close correspondence to the case
of displacement perturbations in Ref. 7. The first-order
variation of P with field &, is

ca e (1)
P =50 1Nz> Dicicres (14)

and its second-order variation is
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1
Dl(c,Lg = ImTr [Sl(c k+g; Qk-l-gmk} (16)
and
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(1)
Sk k+ngk+gmkSk k+g¢Qk+gu } : (17)
In these equations, ‘Tr’ indicates a trace of the bracketed
matrix over band indices, and @, S, and S are de-
fined with respect to the series expansion of the overlap
matrix via

S (Ea) = SE) + EaSL) + E2S5) + .. (18)

and
Que = [SO. (19)

The first- and second-order expansions of the overlap ma-
trix take the form

1 0
Sl(c,l)c’,mn = < mk|unk’> + <u£an|ur€L(lxc/> (20)
and
2
Stetrmn = (Uieluie) (21)

In the last equation above, terms like (u5 o Ea |u§lolz,> have

again been dropped by virtue of the “2n 4 1 theorem.”

B. First-order wave functions with respect to
electric-field perturbation

The second-order term in the expansion of the energy
functional, given by the sum F() = F(2) + Fézp) + F(N)I of
the expressions in Egs. (9), (13), and (10) respectively, is
minimized with respect to the first-order wave functions
|uii‘{> using standard conjugate-gradient methods. The
steepest-descent direction is obtained from the gradient
of F®) with respect to (ui‘m, whose contributions take
the form
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Here

Crkk = (|ui(lx>lek - |u1(3)>Qk’kSl((L)’Qk’k )m ) (25)

Dk = (|u$)>Qk’k)m ; (26)

and 651012 is the diagonal zero-order matrix of Lagrange

multipliers. Convergence of the conjugate-gradient pro-
cedure yields a set of first-order wave functions |ui‘f(>
These then become the essential ingredients for con-
structing the dielectric and Born charge tensors as dis-
cussed below.



C. Dielectric permittivity tensor

The dielectric permittivity tensor can be written as
6205 = 6aﬁ + 47T)(ag (27)

where the electric susceptibility tensor x.g at a finite
electric field is defined as

_ 1 O?F(E)
A XTAY:H P
_ 9% =é, P% . (28)
0Es E=£O)

The derivative P of the polarization with respect to
electric field is already given by Eq. (14). Since the first-
order wave functions |ui‘l’;> have already been obtained in
Sec. IIB, it is straightforward to evaluate Eq. (28) and
thus obtain the polarizability and permittivity.

The dielectric responses above are the static responses
computed with atomic coordinates frozen. That is, they
correspond to the dielectric response that would be mea-
sured at frequencies low compared to electronic frequen-
cies but high compared to any infrared-active phonon
modes. The true static susceptibility could be computed
by including the lattice displacements (and, if appropri-
ate, the piezoelectric strains) using, e.g., the methods of
Ref. 15.

D. Born effective charge tensor

The electronic contribution to the Born effective charge
tensor at finite electric field takes the form
O?F (&
caB = _OFE) : (29)
850487',{7{3 £=£(0)
This expression can be calculated equivalently in two
different ways. First, introducing the force f. . =
—OF(E)/074,o acting on atom k in direction «, it can
be written as

* — af’fﬁ
mal T 9g,

Using the Hellmann-Feynman theorem, the expression
for the force is given as

(30)
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and taking an additional derivative with respect to elec-
tric field yields

. 2f oce 0 _ X
Zn,aﬁ = N_k Z Z<u£7,lz (T + Uemt) h’ﬁ|/u‘fzk> : (32)
k n=1

This has essentially the same form as Eq. (43) in Ref. 9,
except that here the zero-order wave functions are al-
ready polarized by the preexisting finite electric field.

Alternatively, Eq. (29) can be computed as the deriva-
tive of the polarization with respect to the displacement,

OP,
07,8

fag =0 = 6, P (33)

Here P7=# takes a form very similar to that of Eq. (14),
except that the first-order changes |ui(ﬂ]> in the wave

functions in response to an electric field are replaced by
the corresponding changes |u:5f' ) in response to a sub-
J

lattice displacement. The computation of the |u:5{f ) has
already been described in detail in Ref. 7.

The computation of the first-order derivatives of the
wave functions is typically the most time-consuming step
of the linear-response calculation. Therefore, for a com-
plicated unit cell with many atoms M per cell, the com-
putation of the three derivatives |u®*) will be much
cheaper than that of the 3M derivatives [u™#), and the
method of Eq. (32) will therefore be significantly faster
than the method of Eq. (33). In the special case that
the displacement derivatives |u"=#) have already been
computed for some other reason (e.g., for the purpose of
computing the phonon frequencies in finite field), the use
of the latter method may be advantageous. In any case,
a comparison of the two methods should provide a useful
check on the internal consistency of the theory and its
computational implementation.

IIT. TEST CALCULATIONS FOR III-V
SEMICONDUCTORS

In order to check our method, we have performed
test calculations on two prototypical III-V semiconduc-
tors, AlAs and GaAs, for which the electronic contri-
bution to the polarization is typically comparable to
the ionic contribution.* The calculation is carried out
using the planewave-pseudopotential method based on
density-functional theory with local-density approxima-
tion (LDA). We use Troullier-Martins norm-conserving
pseudopotentials'® in which the 3d states on the Ga and
As atoms are treated as core states. (The omission of
the semicore 3d states from the valence on the Ga atom
may limit the accuracy of the Ga pseudopotential some-
what.) A 16 x 16 x 16 Monkhorst-Pack mesh is used for
the k-point sampling. More computational details can be
found in our preceding paper.”

The calculation of the dielectric permittivity tensor
and the Born effective charge tensor is carried out in three
steps. First, a ground-state calculation at finite electric
field is performed using the Berry-phase approach!! im-
plemented in the ABINIT code, and the field-polarized
Bloch functions are stored for the later linear response
calculation. Second, the linear response calculation is
carried out to obtain the first-order response of Bloch
functions. Third, the matrix elements of the dielectric
and Born effective charge tensors are computed using
these first-order responses.



TABLE I: Calculated electronic dielectric constants of AlAs
and GaAs at zero field, and changes resulting from an electric
field of 3.08 x 10%® V/m along the [100] direction. ‘LR’ and
‘FD’ denote the results of linear-response [Eq. (28)] and finite-
difference calculations, respectively.

TABLE II: Calculated cation Born effective charges of AlAs
and GaAs at zero field, and changes resulting from an electric
field of 3.08 x 10® V/m along the [100] direction. ‘LR’ and
‘FD’ denote the results of linear-response [Eq. (32)] and finite-
difference calculations, respectively.

€oo Aem,gg Aﬁoo,ll Afoo,33

AlAs LR 9.681 0.039 0.027 0.013
FD 9.681 0.040 0.027 0.013

GaAs LR 13.315 0.202 0.211 0.104
FD 13.319 0.203 0.207 0.098

The first column of Table I shows the calculated elec-
tronic dielectric constants of AlAs and GaAs at zero
electric field, and the remaining ones show the nonzero
changes in the dielectric tensor elements after the appli-
cation of an electric field £(©) of 3.08 x 10® V/m along
the [100] direction. The results obtained with the linear-
response approach of Eq. (28) are compared with those
calculated by finite differences. In the latter case, polar-
izations are computed at several values of the electric field
in steps of 3.08 x 10° V/m, and the dielectric tensor is cal-
culated using a finite-difference version of Eq. (28). It can
be seen that the agreement between the linear-response
and the finite-difference results is excellent, demonstrat-
ing the internal consistency between the two approaches.

In Table II we present similar results for the cation
Born effective charges of the same two materials, first at
zero field and then again under application of a field of
E® of 3.08 x 10 V/m along the [100] direction. The
linear-response results were obtained using Eq. (32), but
we also computed the corresponding values using Eq. (33)
and found agreement between the two linear-response ap-
proaches with a maximum fractional error smaller than
10~ for all values reported. For the finite-difference com-
parison, the polarizations were computed at several val-
ues of the atomic displacements in steps of 10~2 Bohr and
the Born charge tensors were calculated using a finite-
difference version of Eq. (33). It can again be seen the
agreement between the linear-response and the finite-
difference results is excellent.

We emphasize that the values of Aey and AZ* re-
ported in Tables I and II are purely electronic or “frozen-
ion” ones — that is, the sublattice displacements that
would be induced by a truly static electric field £() are
not included.

The values of €5, and Z* reported in Tables I and II
are in good agreement with other theoretical values in
the literature’™ ¥ and with experiment. The symmetry
is such that the applied electric field along = breaks the
degeneracy between the diagonal elements of the €., and
Z* tensors so that €o 11 # €00,22 = €c0,33 and Z7; #
Z39 = Z35, and introduces non-zero off-diagonal elements
€00,23 = €c0,32 and Zékg = Z;Z

Symmetry considerations also imply that e 23 and
Z3s should appear to first order in £ while A€so 11,

z* AZ3s AZT AZ3
(x107%)  (x1073)  (x107%)
AlAs LR 2110 17.23 —0.06 -0.13
FD  2.110 17.22 —-0.05 —0.11
GaAs LR 2186 52.88 —3.42 —3.17
FD  2.186 52.83 —3.36 -3.14

Aés 33, AZF,, and AZ3, should be quadratic in £(0).
This is confirmed by our numerical calculations. Indeed,
by repeating calculations like those shown in Tables I and
II for several values of £(9) and fitting to obtain the coeffi-
cients of the linear and quadratic dependence, we can ex-
tract information about the nonlinear dielectric response
and the Raman tensor. The second- and third-order non-
linear dielectric tensors are defined as

@ _1 0Py _ 1 9xos
X123 =5 5g 08, 2 0&;

(34)

and
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(35)

while the Raman polarizability tensor is defined by

 0%fa Dy
YO = 5808~ 9&

(36)

where f is the force on the cation sublattice induced
by the electric field. In practice, we calculate xas,
X11, and Z35 for a series of finite electric fields oriented
along the z-axis with values of £ ranging from zero
to 5.14 x 103V /m in increments of one-fifth of the max-
imum value. Fitting these data to a polynomial in £(©)
then gives the values of X%)?,, Xﬁ)ll, and aro. Note that
aTo can alternatively be expressed as

Oxa3

87’1 (37)

aTo = Q
where 7 is a cation sublattice displacement and x23 is
computed at zero field. We have also computed ato
by fitting to a series of calculations of this type, and
find values of aro that agree with those obtained from
Eq. (36) within 0.3%.

The results for the x% and aro values as computed
from Egs. (34) and (36) are presented in Table III for
AlAs, together with some previous theoretical and exper-
imental values for comparison. In view of the fact that

the calculation of higher-order tensor elements tends to
be delicate, the agreement is generally quite good. In



TABLE III: Values of second-order dielectric susceptibility
and Raman matrix elements in AlAs, as defined by Egs. (34)
and (36) respectively, compared with previous theory and ex-
periment.

Xizs (pm/V) larol (A%)
Present work 62 8.0
Theory,* Ref. 11 64
Theory,” Ref. 20 70 8.5
Theory,” Ref. 21 79 9.0
Theory,” Ref. 22 7.4

Experiment, Ref 23 78420

¢Using finite-difference approach.
bUsing (2n + 1)-theorem approach.

particular, Veithen et al.?® have shown (see their Fig. 1)
that the results for x% can be quite sensitive to the

method of discretization in k-space and the fineness of the

k-point mesh. For GaAs we find X§22)3 = 293pm/V and
ato = —24.1 A2 (which is close to the value in Ref. 22),
but these numbers are of questionable accuracy because

of our use of a Ga pseudopotential that does not include

the 3d semicore orbitals in the valence. We obtain Xﬁ)u

values of 3.90 and 33.8x10 ' esu for AlAs and GaAs,
respectively. We are not aware of previous theoretical
values of Xﬁ)ll with which to compare; this quantity is
beyond the reach of the “2n + 17 theorem using first-
order wave function responses only, and so is difficult
to compute by pure DFPT methods. Experimental val-
ues ranging from 3.9 to 18 x10~ ! esu for GaAs?* can be
found in the literature.

The discrepancies noted above between theory and the-
ory, and between theory and experiment, may have many
possible causes. In addition to some of the computa-
tional and convergence issues mentioned above, the ad-
equacy of the LDA approximation itself is also a seri-
ous question. Because the LDA tends to underestimate
gaps, some authors have included a so-called “scissors
correction” in order to widen the gap artificially; this
tends to decrease the magnitude of response tensors.2®
On the experimental side, the difficulty in obtaining re-
producible results is surely also an issue. Nevertheless,
we emphasize that the relative accuracy of the values re-
ported in Tables I and II, which were done under the

same computational conditions (same pseudopotentials,
k-point meshes, etc.), demonstrates the correctness of our
new finite-field linear-response formulation and the inter-
nal consistency of the computational framework that we
employ.

IV. SUMMARY

We have developed a linear-response method for com-
puting dielectric constants and Born effective charges in
the presence of a finite electric field. We have demon-
strated the reliability of our approach by implementing
it in the context of the ABINIT code package'* and per-
forming test calculations on two III-V semiconductors,
AlAs and GaAs. We have confirmed that the results cal-
culated using the new linear-response approach are con-
sistent with those obtained from finite-difference calcula-
tions carried out within the same framework. In general,
our results are also in good agreement with other theo-
retical calculations and with experiment.

A major advantage of the present approach is that, un-
like the conventional long-wave linear-response method,®
it can be applied to obtain response tensors in finite elec-
tric field. While it is possible to obtain similar infor-
mation from a set of finite-difference calculations car-
ried out for some chosen set of applied electric fields, the
linear-response approach is more direct, and it avoids
the troublesome truncation errors that may arise in a
finite-difference approach. In the future, it may be of
interest to extend the finite-field DFPT treatment not
just to phonon perturbations (presented in Ref. 7) and
electric-field perturbations (presented here), but also to
other perturbations such as those associated with strain
or chemical composition. Taken together, these develop-
ments should allow for much greater flexibility in the cal-
culation of materials properties of insulators under elec-
trical bias and facilitate the study of higher-order non-
linear dielectric properties.
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