Tetragonal Cs$_{1.17}$In$_{0.81}$Cl$_3$: A Charge-Ordered Indium Halide Perovskite Derivative

Xiaoyan Tan, Peter W. Stephens, Mylène Hendrickx, Joke Hadermann, Carlo U. Segre, Mark Croft, Chang-Jong Kang, Zheng Deng, Saul H. Lapidus, Sun Woo Kim, Changqing Jin, Gabriel Kotliar, and Martha Greenblatt

Department of Chemistry and Chemical Biology and Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794, United States
EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Department of Physics and CSRRI, Illinois Institute of Technology, Chicago, Illinois 60616, United States
Institute of Physics, School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, P. R. China
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
Department of Chemical Education, Chosun University, Gwangju 61452, South Korea

ABSTRACT: Polycrystalline samples of Cs$_{1.17}$In$_{0.81}$Cl$_3$ were prepared by annealing a mixture of CsCl, InCl, and InCl$_3$, stoichiometric for the targeted CsInCl$_3$. Synchrotron powder X-ray diffraction refinement and chemical analysis by energy dispersive X-ray indicated that Cs$_{1.17}$In$_{0.81}$Cl$_3$, a tetragonal distorted perovskite derivative ($I4/m$), is the thermodynamically stable product. The refined unit cell parameters and space group were confirmed by electron diffraction. In the tetragonal structure, In$^+$ and In$^{3+}$ are located in four different crystallographic sites, consistent with their corresponding bond lengths. In1, In2, and In3 are octahedrally coordinated, whereas In4 is at the center of a pentagonal bipyramid of Cl because of the noncooperative octahedral tilting of In4Cl6. The charged-ordered In$^+$ and In$^{3+}$ were also confirmed by X-ray absorption and Raman spectroscopy. Cs$_{1.17}$In$_{0.83}$Cl$_3$ is the first example of an inorganic halide double perovskite derivative with charged-ordered In$^+$ and In$^{3+}$. Band structure and optical conductivity calculations were carried out with both generalized gradient approximation (GGA) and modified Becke–Johnson (mBJ) approach; the GGA calculations estimated the band gap and optical band gap to be 2.27 eV and 2.43 eV, respectively. The large and indirect band gap suggests that Cs$_{1.17}$In$_{0.83}$Cl$_3$ is not a good candidate for photovoltaic application.

INTRODUCTION

Recently, inorganic halide perovskites and related compounds have gained attention because of their promising application in optoelectronic devices such as photodetectors, solar cells, light-emitting diodes, semiconductor lasers, and so forth.

In particular, cesium-based halide perovskites with formula CsMX$_3$ (M = Pb, Sn; X = Cl, Br, I) have shown exceptional optoelectronic properties. CsPbI$_3$, quantum dots have been incorporated into solar cells, which display a power conversion efficiency of 10.77%. The efficiency can be further increased to 11.33% in CsPb$_{0.80}$Sn$_{0.20}$I$_3$ by substituting Pb with Sn and I with Br. The highest efficiency of solar cells based on CsPbI$_3$ quantum dot films reaches 13.45%, which is the highest among all quantum-dot-based solar cells. CsPbBr$_3$-based green light-emitting diodes exhibit a high electroluminescence quantum efficiency of 10.4%, which are the highest in all perovskite green light-emitting diodes.

CsPbX$_3$ has outstanding properties but because of the toxicity of Pb, both experimental and theoretical scientists are searching for alternative inorganic halide perovskites. Filip et al. used computational screening methods and explored the possible cesium metal halide perovskites with other divalent metal ions such as Mg$^{2+}$, V$^{2+}$, Mn$^{2+}$, Ni$^{2+}$, Cd$^{2+}$, Hg$^{2+}$, Ga$^{3+}$, and In$^{3+}$. The proposed CsInCl$_3$ and CsInBr$_3$ compounds are of interest because of the unusual 2+ valence state of In, which has not been reported so far. Later, Körbel et al. also carried...
out extensive density functional theory (DFT) calculations to explore novel inorganic perovskites and identified CsInCl₃ and RbInBr₃ as small gap semiconductors. More recent work by Kang and Kotliar studied systematically the structures of AlNₓ compounds (A = alkali metals, X = F or Cl) and identified the low-lying structures of these materials and showed that CsInCl₃ should be thermodynamically stable and thus should form, providing further motivation for our studies. Recent experimental study of the similar compound CsTlX₃ (X = F, Cl) found that Tl disproportionated into Tl⁺ and Tl³⁺. Therefore, we expected that In might disproportionate into In⁺ and In³⁺ in CsInCl₃ as well. To explore the existence of CsInCl₃ compound, its crystal structure, and the oxidation states of In, we embarked on the experimental work to synthesize and investigate the properties of CsInCl₃.

Another motivation for studying CsInCl₃ arises from its possible superconductivity, observed in related compounds. An example is the well-known perovskite BaBiO₃, an insulator with mixed valence Bi⁵⁺ and Bi³⁺, which becomes superconducting by hole doping in Ba₀.₆K₀.₄BiO₃ and BaBi₀.₇Pb₀.₃O₃ because of the strongly phonon-coupled bands across the Fermi level. CsTlX₃ has the same valence electron count as BaBiO₃, which is expected to show a similar band structure. Theoretical calculations predict the superconducting critical temperature of doped CsTlF₃ and CsTlCl₃ to be ~30 and ~20 K, respectively. Although experimental work on CsTlX₃ has not yet discovered the superconductivity in these phases so far, it is of interest to explore analogous CsInCl₃ for future discovery.

In this manuscript, we report that polycrystalline Cs₁.₁₇In₀.₈₁Cl₃ can be prepared by conventional solid-state techniques. The crystal structure has been determined by X-ray and electron diffraction. The space group is I₄/m, a distorted derivative of a cubic perovskite (Figure 1). The oxidation state of In is revealed by X-ray absorption spectroscopy. The band gap is determined by first-principles calculations and compared with literature results.

EXPERIMENTAL METHODS

Starting Materials and Synthesis.

The nominal CsInCl₃ phase was prepared by conventional solid state methods, similar to ones used for tetragonal CsTlCl₃ (I₄/m), with anhydrous CsCl (wt 99.9%, Alfa Aesar), InCl (wt 99.995%, Alfa Aesar), and InCl₃ (wt 99.999%, Alfa Aesar). The starting materials were mixed in the ratio of CsCl:InCl:InCl₃ = 2:1:1, ground thoroughly, and loaded into a silica tube, which was sealed under vacuum (<10⁻² mbar). The ampule was ramped up to 923 K within 24 h, kept at this temperature for 24 h, and then cooled down to room temperature over a course of 24 h. All sample preparations were carried out in an Ar-filled glove box with O₂ and H₂O concentration below 1 ppm.

Laboratory and Synchrotron Powder X-ray Diffraction (SPXD).

Samples were measured in the 2Θ range from 10 to 80° and collected for 1 h on a Bruker D8 Advance diffractometer (Cu Kα, λ = 1.5418 Å) with a SOL-X solid state detector. Room temperature SPXD (λ = 0.412723 Å) was collected in the 2Θ range from 0.5 to 50° at the 11-BM-B beam line at the Advanced Photon Source (APS), Argonne National Laboratory. Diffraction data analysis and Rietveld refinement were performed with TOPAS-Academic.

Chemical Analysis.

The chemical composition of the samples was determined by energy dispersive X-ray (EDX) analysis with a JEO 5510 scanning electron microscope (SEM) equipped with an INCA system (Oxford Instruments). Sample preparation was carried out in the glove box to avoid contact with air. The powder was gently smeared out over carbon tape, which was mounted on a metal stub. The stub was transported to the SEM instrument in a protective Ar atmosphere. During insertion, the sample had to be exposed to air for a short while (maximum 5 min). Cs L, In L, and Cl K lines were used for the composition quantification.

A separate chemical composition analysis was performed on a FEI Osiris transmission electron microscope (TEM), operated at 200 kV equipped with a Super-X detector. A vacuum transfer holder was used to avoid contact with air, and the Cs L, In L, and Cl K lines were used for the composition quantification.

Electron Diffraction.

The samples for the TEM analysis were prepared in the glove box by crushing the powder of the sample and gently depositing the dry powder on a copper grid covered with a holey carbon film. The sample was transported and inserted into the TEM without contact with air with a vacuum transfer holder. Selected area electron diffraction (SAED) patterns were performed with a FEI Tecnai G2 TEM.

Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC).

A powder sample of about 25 mg was loaded into an alumina crucible in a SDT Q600 TA instrument and measured between room temperature and 1000 °C at a heating and cooling rate of 10 °C/min under argon flow.

X-ray Absorption Spectroscopy (XAS).

XAS data were collected at the indium K-edge in fluorescence at the Materials Research Collaborative Access Team (MRCAT) insertion device beam line (Sector 10-ID) on a powder-filled Kapton capillary at room temperature. Data were normalized and background subtracted with Athena and IFEFFIT. White line intensities were obtained with Fitx with a Gaussian peak function plus an arc tangent step (constrained to the peak energy).

Raman Spectroscopy.

Micro Raman measurements have been carried out with an inVia Raman microscope (Renishaw) and excited with a solid-state laser (λ_exc = 532 nm).

DFT Calculations.

The all-electron full-potential linearized augmented plane-wave (FLAPW) method implemented in WIEN2k was adopted to calculate the electronic structure. A generalized gradient approximation (GGA) functional was chosen to calculate the electronic structure. Because GGA underestimates a band gap, we used the modified Becke–Johnson (mBJ) exchange
potential29 to determine the precise band gap. A $17 \times 17 \times 17$ \textit{k}-mesh was used for the Brillouin zone integration, and the plane-wave cutoff was $R_{\text{mt}} = K_{\text{max}} = 7$ in the calculations.

\section*{RESULTS AND DISCUSSION}

\subsection*{Chemical Analysis and Crystal Structure.}

A polycrystalline light yellow product was obtained, and powder X-ray diffraction (PXD) analysis confirmed the major phase to be “CsInCl\textsubscript{3}” with $\sim 5\%$ of the Cs\textsubscript{2}InCl\textsubscript{5}·H\textsubscript{2}O impurity. The sample is hygroscopic, and the color of sample becomes darker when it is exposed to air. Numerous efforts to synthesize CsInF\textsubscript{3} and RbInCl\textsubscript{3} with similar approach at different temperatures failed to yield the targeted phases.

SEM-EDX and TEM-EDX measurements were carried out to investigate the chemical composition of the “CsInCl\textsubscript{3}” product. Both EDX studies clearly confirm the presence of the Cs, In, and Cl elements (representative spectrum in Figure S1). The TEM-EDX study of 20 different crystals reveals a molar ratio of Cs:In:Cl = 0.26(2):0.18(1):0.56(2), which is close to a target of 1:1:3 but with an excess of Cs and less In. This is equivalent to a Cs/In ratio of 1.44 ± 0.14. These results are also confirmed by a statistical SEM-EDX study taken from 50 different crystals, which shows a molar ratio of Cs:In:Cl = 0.23(2):0.16(1):0.60(2) with a Cs/In ratio equal to 1.44 ± 0.16. Thus, the chemical analysis indicates that the composition of the material produced is a Cs rich, In deficient phase of formula Cs\textsubscript{1.17}In\textsubscript{0.81}Cl\textsubscript{3}. We speculate that the difference from stoichiometry is not an intrinsic property of the nominal CsInCl\textsubscript{3} phase but due to unknown side reaction(s).

SPXD of the Cs\textsubscript{1.17}In\textsubscript{0.81}Cl\textsubscript{3} sample is very similar to that of CsTlCl\textsubscript{3}, and indeed, initial Rietveld refinement results indicate that it is isostructural with tetragonal CsTlCl\textsubscript{3}.17 In this structure, shown in Figure 1, there are two Cs sites, four In sites, and seven Cl sites. The SEM-EDX results imply that there must be a significant amount of Cs in the nominal In sites as discussed below. Isotropic thermal parameters were refined independently for each site, except for those of the Cl sites, which had a common thermal factor. The Rietveld fit is shown in Figure 2, and the refined crystallographic data are summarized in Table 1. Details of the refinement, including raw data and computed fit, have been deposited as a cif file in the inorganic crystal structure database with CCDC number 1877027.

Two of the nominal In sites, In1 and In3, are octahedrally coordinated, with In–Cl distances between 2.50–2.64 Å, close to the value expected for the In3+–Cl− distances based on Shannon sum of radii (2.61 Å). The calculated bond valence sums for the sum of In1 and In3 are 3.06 and 3.14, respectively.30 Therefore, the charge of In on In1 and In3 sites can be assigned to 3+. The observed In3+–Cl− distances are also consistent with distances in Cs\textsubscript{1}In\textsubscript{2}Cl\textsubscript{6} (2.41–2.65 Å)31 and Cs\textsubscript{6}In\textsubscript{3}Cl\textsubscript{6}·H\textsubscript{2}O (2.47–2.71 Å).32 The remaining two nominal In sites have significantly longer In–Cl bond distances (3.00–3.55 Å), indicating a lower oxidation state on In2 and In4 sites. On the basis of the similar bond distances between Cs\textsubscript{1.17}In\textsubscript{0.81}Cl\textsubscript{3} and CsTlCl\textsubscript{3} (Table 2), one would conclude that In2+ occupies In2 and In4 sites, similar to the case of Tl+ on Tl2 and Tl4 sites. Although the Shannon radius of In+ is not assigned, the estimated In2+–Cl− distance should be close to the expected Tl+–Cl− distance (3.31 Å) for a six-coordinated environment, which agrees with In2+–Cl− distances in Cs\textsubscript{1.17}In\textsubscript{0.81}Cl\textsubscript{3}. The observed In2+–Cl− distances are also comparable with those in red InCl (2.87–3.26 Å) and yellow InCl (2.90–3.53 Å).33 In2 is octahedrally coordinated, whereas In4 is at the center of a pentagonal bipyramid of Cl. It is therefore not surprising that In44+–Cl− distances (3.05–3.55 Å) are longer than In22+–Cl− distances (3.00–3.02 Å). The long In44+–Cl− distances are also observed in the mixed valence compound, In\textsubscript{2}Cl\textsubscript{9} where the average In2+–Cl distance is 3.58 Å.34 Thus, there is an In3+/In4+ charge order, no In2+ in Cs\textsubscript{1.17}In\textsubscript{0.81}Cl\textsubscript{3}, similar to that of Tl3+/Tl4+ in CsTl\textsubscript{0.83}Tl\textsubscript{0.17}Cl\textsubscript{3}.

We now turn to the occupancy of the metal sites. If only In is placed in the In sites, refined occupancies in three of the sites are essentially unity and 0.93 ± 0.01 in site In2 for a sample composition of CsIn\textsubscript{0.996}Cl\textsubscript{3}. This refinement is presented as model I in Table S1. However, the EDX results imply that there must be a significant amount of Cs in sites that are nominally In. The X-ray diffraction essentially measures the total number of electrons (not only valence) in each atomic site, and so the Rietveld refinements are consistent with the replacement of unit occupancy of In by a fraction x Cs\textsubscript{x} (1–55/49x) In, and (1–6/49x) vacancies. (These estimates based on atomic number are borne out by refinements with the full atomic form factors, and they are not significantly affected whether one uses tabulated form factors for neutral atoms or ions). If we assume that Cs+ only goes into the In2+ sites, that is, In2 and In4, and seeks to substitute enough Cs for In to account for the observed ratio of Cs:In, 1.44 ± 0.14, the problem of occupancy of sites In2 and In4 is still undetermined. The allowed parameter space, including standard uncertainties of the EDX and X-ray refinements, is illustrated in Figure S2. Table 1 describes a refinement of model II for a composition, Cs\textsubscript{1.17}In\textsubscript{0.81}Cl\textsubscript{3} with an equal ratio of Cs to In in each of the 1+ sites, 0.536, and a total ratio of Cs to In of 1.44; other assignments of occupancies, consistent with the parameters in Figure S2, give Rietveld fits that are essentially indistinguishable. The consequent vacancies in sites In2 and In4 (11 and 3%, respectively) create an apparent
Table 1. Refined Crystallographic Data of Cs$_{1.17}$In$_{0.81}$Cl$_3$ According to Model II Described in the Text

<table>
<thead>
<tr>
<th>compound</th>
<th>Cs${1.17}$In${0.81}$Cl$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>chemical formula, mol wt</td>
<td>Cs${1.17}$In${0.81}$Cl$_3$, 354.20</td>
</tr>
<tr>
<td>X-ray wavelength</td>
<td>$\lambda = 0.412723 , \angstrom$</td>
</tr>
<tr>
<td>lattice dimensions; unit cell volume</td>
<td>$a = b = 17.1098(1) , \angstrom$, $c = 11.0523(1) , \angstrom$, $\alpha = \beta = \gamma = 90^\circ$; 3235.50(5) $, \angstrom^3$</td>
</tr>
<tr>
<td>space group</td>
<td>$I4_1/m$, No. 87</td>
</tr>
<tr>
<td>Z</td>
<td>20</td>
</tr>
<tr>
<td>Rietveld criteria of fit for powder diffraction refinementsa</td>
<td>$\chi^2 = 2.77$, $R_{wp} = 9.85%$, $R_p = 7.43%$, $R_{exp} = 5.91%$, $R_{brdep} = 5.21%$</td>
</tr>
<tr>
<td>parameters refined</td>
<td>62</td>
</tr>
<tr>
<td>parameter restraintsb</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nominal atom, (valence charge) site multiplicity and Wyckoff symbol</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>fractional occupancy model II</th>
<th>B_{pp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs1 (+1)</td>
<td>4d</td>
<td>0</td>
<td>$1/2$</td>
<td>$1/4$</td>
<td>1</td>
</tr>
<tr>
<td>Cs2 (+1)</td>
<td>16i</td>
<td>0.2108(1)</td>
<td>0.1091(1)</td>
<td>0.2773(1)</td>
<td>1</td>
</tr>
<tr>
<td>In1 (+3)</td>
<td>2a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>In; 1</td>
</tr>
<tr>
<td>In2 (+1)</td>
<td>2b</td>
<td>0</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>0</td>
</tr>
<tr>
<td>In3 (+3)</td>
<td>8h</td>
<td>0.4073(2)</td>
<td>0.1966(2)</td>
<td>0</td>
<td>In; 1</td>
</tr>
<tr>
<td>In4 (+1)</td>
<td>8h</td>
<td>0.0837(2)</td>
<td>0.2589(2)</td>
<td>0</td>
<td>In: 0.629(3) Cs: 0.337(2)</td>
</tr>
<tr>
<td>Cl4 (−1)</td>
<td>4c</td>
<td>0</td>
<td>0</td>
<td>0.227(1)</td>
<td>1</td>
</tr>
<tr>
<td>Cl2 (−1)</td>
<td>16i</td>
<td>0.0926(4)</td>
<td>0.3073(4)</td>
<td>0.2688(4)</td>
<td>1</td>
</tr>
<tr>
<td>Cl5 (−1)</td>
<td>8h</td>
<td>0.1372(5)</td>
<td>0.0586(6)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cl6 (−1)</td>
<td>8h</td>
<td>0.3771(6)</td>
<td>0.0524(7)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cl7 (−1)</td>
<td>8h</td>
<td>0.2616(6)</td>
<td>0.2470(7)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C17 (−1)</td>
<td>8h</td>
<td>0.1529(7)</td>
<td>0.4539(7)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

aFor each metal atom, bonds are listed in order of increasing length.

valence charge imbalance. The most plausible solution is that some fraction of In in those sites must be In$^{3+}$ instead of In$^{1+}$. In the tetragonal ab plane, InCl$_6$ octahedra corner share by four InCl$_3$ octahedra in fourfold axis symmetry, whereas InCl$_6$ octahedra edge-share with InCl$_4$ pentagonal bipyramids in the same fashion. Then, these two symmetric segments are connected by corner-sharing InCl$_6$ octahedra and InCl$_4$ pentagonal bipyramids. Layers centered with InCl$_6$ and InCl$_6$ octahedra are shown in Figure 1a,b, respectively. These two layers alternate every half a unit cell along the tetragonal c axis with a corner-sharing connection (Figure 1c). The fully occupied A-site Cs atoms are located in the space between these InCl$_6$ and InCl$_6$ octahedra and InCl$_4$ pentagonal bipyramids.

One interesting feature of Cs$_{1.17}$In$_{0.81}$Cl$_3$ is that In$^{4+}$ is seven-coordinated with Cl$^-$ and forms an InCl$_4$ pentagonal bipyramid. The irregular coordination environment and the long bond distances for In$^+$ may be attributed to the almost doubly filled In 5s atomic orbital as shown in the study of binary indium bromides. Interestingly, the lone pair 5s2
electrons of In2+ are not stereoreactive, whereas those of In4+ appear to be active; a lone pair distortion can be switched on or off by the environment and does not always distort in its vicinity. If we disregard for the moment the nonstoichiometric composition and presence of Cs in the In sites, nominal “CsIn\textsubscript{0.5}In3+Cl\textsubscript{3.5}” could be understood as “Cs\textsubscript{2}In3+Cl\textsubscript{6}”, a modified form of a double perovskite halide with a B site charge order in the formula of \(\text{A}_n\text{BB}’\text{X}_m \)39. In the double perovskite, the three-dimensional (3D) framework is formed by corner-sharing BX\textsubscript{6} and B’X\textsubscript{6} octahedra, with A site atoms occupying the cubo-octahedral void of the 3D structure. The modified double perovskite tetragonal structure (I4/m) of Cs\textsubscript{1.17}In\textsubscript{0.81}Cl\textsubscript{3} stems from the ~45° rotation in the ab plane of one-fifth of the B’X\textsubscript{6} octahedra (InCl\textsubscript{6}) in the double perovskite structure.39 This InCl\textsubscript{6} rotation results in the change of an adjacent In4 site coordination environment from modiﬁed form of a double perovskite halide with a B site charge order in the formula of \(\text{A}_n\text{BB}’\text{X}_m \)39. The interruption of connected corner-sharing caused by the B’X\textsubscript{6} octahedra rotation is deﬁned as a noncooperative octahedral tilting (NCOT) in double perovskites.40 Other examples in halides with a double perovskite structure.39 This InCl\textsubscript{6} rotation results in the change of an adjacent In4 site coordination environment from In4Cl\textsubscript{4} octahedra to the In4Cl\textsubscript{7} pentagonal bipyramid, with long In4–Cl bond distances. Moreover, edge-sharing is created between In1Cl\textsubscript{6} and In4Cl\textsubscript{7}. The interruption of connected corner-sharing caused by the B’X\textsubscript{6} octahedra rotation is deﬁned as a noncooperative octahedral tilting (NCOT) in double perovskites.40 Other examples in halides with a tetragonal structure (I4/m) include \(\beta\text{-K,KAlF}_6 \) low temperature RbB’KCrF\textsubscript{6} and \(\beta\text{-Rb,KGaF}_6 \) in which the K ions on the B site are also coordinated with seven F atoms and form pentagonal bipyramids.39,41 NCOT also has been reported in oxides and oxyﬂuorides.42–44 In the modiﬁed double perovskite structure of Cs\textsubscript{1.17}In\textsubscript{0.81}Cl\textsubscript{3}, the environment of A site ions is also change, where Cs1 still remains in the cubo-octahedral geometry, but Cs2 connects with eleven Cl and forms an irregular polyhedron (Figure 3).

Figure 3. Coordination environment for (a) Cs1 and (b) Cs2 in Cs\textsubscript{1.17}In\textsubscript{0.81}Cl\textsubscript{3}.

Electron Diffraction. To conﬁrm the reﬁned crystal structure based on SPXD data, selected area electron diffraction (SAED) patterns of the Cs\textsubscript{1.17}In\textsubscript{0.81}Cl\textsubscript{3} sample are taken from different zone axes \{[100], [001], [210], [113]/[135], [353], and [425]\} (Figure 4). All SAED patterns could be indexed with the tetragonal cell parameters: \(a = b \approx 17.11\ \text{Å}, \ c \approx 11.052\ \text{Å}, \) and \(\alpha, \beta, \gamma = 90\degree \) and corresponded to the following reﬂection conditions: \(hk\overline{l}: h + k + l = 2n; \overline{hk}0: h + k = 2n; \overline{0k}l: k + l = 2n; 0\overline{kl}: k = 2n.\)

To check the reﬂection condition 00l (whether it is \(l = 2n \) or \(l = 4n \)), two tilt series of SAED patterns were obtained along the \(c \)-axis, shown in Figures S3 and S4. The intensity of the reﬂections 00l: \(l = 2n \) stays strong during the whole tilt series, indicating that they are not caused by double diﬀraction and thus do not corresponded to 00l: \(l = 4n \). According to the reﬂection conditions and cell parameters, the possible space groups are I4, I4, I4/m, I422, I4/mmm, I42/m, I4m2, or I4/mmm.

On the basis of very clear intensity distributions in the reﬂections, all space groups with Laue class 4/mmm can be excluded. Here, we use the magniﬁed experimental SAED pattern of the zone axis [001] for justiﬁcation (Figure 5). In Figure 5, the projected positions of planes perpendicular to the \(<a> \) and \(<110> \) directions and twofold axes along \(<a> \) and \(<110> \) are drawn. If these are mirror planes or twofold axes for the structure, the reﬂections connected by these symmetry elements should have equivalent intensities. It is clear that the intensity distribution of the reﬂections does not satisfy any of these symmetry elements. Therefore, this disagreement rules out all space groups with Laue class 4/mmm, that is, I422, I4/mmm, I42/m, I4m2, or I4/mmm.

Sample Stability. The stability of the Cs\textsubscript{1.17}In\textsubscript{0.81}Cl\textsubscript{3} phase was determined by thermogravimetric analysis (TGA) and diﬀerential scanning calorimetry (DSC) between 300 and 1273 K under Ar ﬂow. Cs\textsubscript{1.17}In\textsubscript{0.81}Cl\textsubscript{3} is thermally stable below 600 K without any phase transition or melting under the inert environment (Figure 6); however, the sample mass drops as the temperature increases from 600 to 1273 K. The mass drop between 600 and 900 K is probably due to sample melting. After 900 K, an endothermal peak shown in the DSC curve at 910 K indicates possible decomposition. The TGA–DSC curves are similar to those of tetragonal CsTiCl\textsubscript{3}, which is thermally stable up to 623–673 K, the temperature where that phase also starts melting.
X-ray Absorption Spectroscopy (XAS). As a p-block element, the frontier bonding orbitals of In are the 5p/5s states with the configurations: In\(^0\) s\(^2\)p\(^1\), In\(^1+\) s\(^2\)p\(^0\) (reflecting the inert pair effect), and In\(^3+\) s\(^0\)p\(^0\). X-ray absorption edges with final states in the p valence orbitals can be used to probe the valence/configuration of such p block elements. In Figure 7a, the In K near edge spectrum of Cs\(_{1.17}\)In\(_{0.81}\)Cl\(_3\) is shown along with the standards: elemental In\(^0\); In\(^1+\), InCl; and In\(^3+\), InCl\(_3\), and In\(_2\)O\(_3\).

The In K near edge spectra are dominated by a strong “white line” (WL) peak feature because of 2s core transitions into empty 5p states. This WL feature rides upon a step feature because of the onset of transitions into the continuum. Typically, two points regarding the In valence/WL feature coupling should be noted: first, the increase in WL intensity with increasing valence and second, the chemical shift of the WL to higher energy is not always consistent with increasing valence.\(^{46-48}\) The chemical shifts in these materials appears to be too structure/ligand dependent for reliable interpretation, so the WL area will be focused upon.

The increased WL intensity, with increasing valence, is due partially to the increase of available empty p final states (e.g., between the In\(^0\) and In\(^1+\) states) and partially due to the increased transition matrix element via the increased localization of the p final states upon loss of screening with increasing valence (e.g., the loss of the s\(^2\) screening between the In\(^1+\) and In\(^3+\) states). The systematic WL intensity increase between In, InCl, and InCl\(_3\) is clear. The WL intensity in In\(_2\)O\(_3\) is also enhanced by an amount somewhat more than in InCl\(_3\) indicating bonding/ligand dependence. It is important to note that the WL intensity of Cs\(_{1.17}\)In\(_{0.81}\)Cl\(_3\) is intermediate between the In\(^1+\) and In\(^3+\) standards (the sizable ligand/structure dependence in the In\(^3+\) standards is qualification to this statement). The plot of the Gaussian fitted WL areas versus In formal valence for the standard compounds (referred to above) is shown in Figure 8 along with a linear fit to the standard area data. Within the nonnegligible uncertainties in these estimates, these results support the average valence in Cs\(_{1.17}\)In\(_{0.81}\)Cl\(_3\) lying in the vicinity of In\(^2+\).

As another check on the charge separation on the sites in Cs\(_{1.17}\)In\(_{0.81}\)Cl\(_3\), FEFF 8.4 model\(^{45}\) calculations for all of the sites were performed with the near-edge results being shown in Figure 7b. In view of the substantial uncertainty in absolute energy in such modeling, the results have been presented relative to the calculated all-site-average peak for Cs\(_{1.17}\)In\(_{0.81}\)Cl\(_3\). The determined structure was used in this modeling. The model calculations indicate: the In2 and In4 sites have a smaller chemical shift and smaller WL area consistent with a smaller In valence and the In1 and In3 sites have a larger chemical shift and larger WL area consistent with

![Figure 6. TGA–DSC measurement of Cs\(_{1.17}\)In\(_{0.81}\)Cl\(_3\) between 298 and 1273 K.](image)

![Figure 7. (a) Comparison of the In K edges of Cs\(_{1.17}\)In\(_{0.81}\)Cl\(_3\) to those of the standards: In\(^0\), In metal; In\(^1+\), InCl; In\(^3+\), InCl\(_3\), and In\(_2\)O\(_3\). (b) An FEFF 8.4 modeling\(^{19}\) of the In K edges at the individual In1, In2, In3, and In4 sites as well as the all-site total Cs\(_{1.17}\)In\(_{0.81}\)Cl\(_3\) spectrum. The energy ΔE is given relative to the all-site WL peak value.](image)
a larger In valence. Thus, the model results are consistent with the experimental observations. It is worth noting that charge separation in solids can often be smaller than the stable full integral valence differences.

Raman Spectroscopy. To further compare Cs$_{1.17}$In$_{0.81}$Cl$_3$ with CsTlCl$_3$ and CsTl$_{1-x}$Hg$_x$Cl$_3$ ($0 \leq x < 1$),17,49 the Raman spectrum of Cs$_{1.17}$In$_{0.81}$Cl$_3$ was collected at room temperature under ambient pressure (Figure 9). For cubic CsTlCl$_3$, the calculated phonon frequency of the Tl$^-$Cl stretching mode is 277 cm$^{-1}$. The experimental Raman spectra of both cubic (Fm$ar{3}$m) and tetragonal CsTlCl$_3$ (I4/m) show a major phonon frequency at 270 cm$^{-1}$, in agreement with the theoretical calculation results.17 In CsTl$_{1-x}$Hg$_x$Cl$_3$, active Raman Tl$^-$Cl$^-$ modes are also observed around 270 cm$^{-1}$. Here, the major phonon frequency of Cs$_{1.17}$In$_{0.81}$Cl$_3$ is at 278 cm$^{-1}$, which is close to values of Raman for Tl$^-$Cl$^-$ modes in CsTlCl$_3$ and CsTl$_{2}$Hg(Cl$_3$). On the basis of the similarity observed in the structure and Raman spectra between Cs$_{1.17}$In$_{0.81}$Cl$_3$, CsTlCl$_3$, and CsTl$_{2}$Hg(Cl$_3$), the active Raman mode observed in Cs$_{1.17}$In$_{0.81}$Cl$_3$ can be ascribed to In$^+$-Cl$^-$In$^+$.

DFT Calculations. To gain insight of the band structure and estimate the band gap, first-principles DFT calculations were carried out with both GGA (PBE version) and mBJ approaches (Figure 10). The calculations were conducted on the CsInCl$_3$ version of the structural model I, that is, without considering the apparent presence of Cs in the In sites or attendant vacancies in the crystal structure of Cs$_{1.17}$In$_{0.81}$Cl$_3$. The band structure with GGA approaches the lowest energy of the conduction band located at the N point, whereas the highest energy of valence band is located at the X point, which indicates an indirect band gap of 2.27 eV (Figure 10a).

As shown in Figure 10, the valence band density of states (DOS) around the Fermi level is mostly contributed by the In states, but the strong peaks located at lower energy are dominated by Cl states (Figure 10a,b,d,e). The In2 (1+, 5s2) and In4 (1+, 5s2) 5s bands are located in valence bands, whereas In1 (3+, 5s0) and In3 (3+, 5s0) 5s bands are located in conduction bands, which clearly support the two oxidation states in the structure as revealed in the structure and XANES analysis. A broader computational survey of compounds AInX$_3$ (A = alkali metals, X = F or Cl) predicts that the most stable state of CsInCl$_3$, In has a single In$^+$ site, but that it is only slightly more likely to occur than the phase described in this work (Tables S2 and S3).16

GGA calculated corresponding optical conductivity predicts an optical gap of 2.42 eV (Figure 10c). In comparison with the GGA results, the calculated band structure using mBJ shows similar indirect band gap features but with a larger band gap of 2.83 eV (Figure 10d–f). In the valence bands, these strong peaks are shifted to lower energy. Consequently, the calculated optical gap using the mBJ approach is increased to 3.03 eV. The calculated band gap here is much larger than the literature report (<1 eV) of theoretical CsInCl$_3$. Because our calculations are carried out based on the experimental crystal structure, the estimated band gap shown here is more reliable than the reported values.14,15 The total DOS and estimated optical band gap of CsInCl$_3$ are similar to those of CsTlCl$_3$, which is predicted to exhibit superconductivity with proper doping. Therefore, it is worth carrying out further calculations and corresponding experiments on CsInCl$_3$ to explore the possibility of making it superconducting by design. It seems especially promising to seek the doping of this material, in view of its apparent natural tendency to prefer off stoichiometry. However, determining and controlling the charge state in sample preparation may be a significant challenge.

CONCLUSIONS

Although CsInCl$_3$ was originally predicted to be a perovskite, synchrotron X-ray diffraction and X-ray fluorescence measurements show that the stable material has some Cs in the nominal In sites and adopts a tetragonal perovskite-related phase (I4/m) of composition Cs$_{1.17}$In$_{0.83}$Cl$_3$, with both corner-sharing and edge-sharing InCl$_6$ octahedra and InCl$_7$ pentagonal bipyramids. Cs$_{1.17}$In$_{0.81}$Cl$_3$ is isostructural with tetragonal CsTlCl$_3$, which was predicted to be a superconductor with proper doping. The revealed oxidation state of In is not 2+, as the theory predicted, but with a charge-ordering of In$^+$ and In$^{3+}$ on four crystallographic positions in the structure. This is a rare inorganic compound accommodating both In$^+$ and In$^{3+}$ in a nominally double perovskite-derived...
“Cs2In3+Cl5− structure. The mixed valence of In+ and In3+ is confirmed by detailed X-ray absorption spectroscopy. Raman spectroscopy demonstrates the In−Cs−In3+ active mode with a phonon frequency of 278 cm−1, similar to that of the Ti−Cs−Ti3+ stretching modes in CsTiCl4 and CsTl1−xHgClx. Theoretical calculations conducted on the In deficient CsInCl3 indicate that it is an indirect band gap semiconductor with a band gap of ~2.27 eV. The large indirect band gap suggests that this nonstoichiometric perovskite-derived phase is not a good candidate for photovoltaic application. The experimental results, however, provide a basis for future theoretical calculations for designing related inorganic halide perovskites for potential photovoltaic functions or superconductivity.

■ ASSOCIATED CONTENT

5 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.8b04771.

EDX spectrum of Cs1.17In0.83Cl3 sample; tilt series of SAED patterns around the c-axis; refined crystallographic data of model I without Cs in In sites; fractional occupancies of sites In2 and In4 as defined by Rietveld refinements of the SXPD; DFT calculation of theoretical and experimental crystal structures of Cs1.17In0.83Cl3 with space group I4/m; DFT calculation of Hull energy, energy difference, and existence probability for theoretical and experimental crystal structures of CsInCl3 (PDF) Cs1.17In0.83Cl3 (CIF)

■ AUTHOR INFORMATION

Corresponding Authors
*E-mail: kotliar@physics.rutgers.edu (G.K.).
*E-mail: greenbla@chem.rutgers.edu (M.G.).

ORCID
Xiaoyan Tan: 0000-0002-1742-8252
Peter W. Stephens: 0000-0002-8311-7305
Joke Hadermann: 0000-0002-1756-2566
Chang-Jong Kang: 0000-0003-2895-4888
Sun Woo Kim: 0000-0003-1057-2283
Martha Greenblatt: 0000-0002-1806-2766

Present Address
†Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

M.G. and X.T. were supported by the Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant No. DE-FOA-0001276. M.G. also acknowledges support of NSF-DMR-1507252 grant. G.K. and C.-J.K. were supported by the Air Force Office of Scientific Research. MRCA/T operations are supported by the Department of Energy and the MRCA/T member institutions. The use of the Advanced Photon Source at the Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The works at IOPCAS were supported by NSF & MOST of China through research projects.

■ REFERENCES

conductivity near 30 K Without Copper - the Ba0.6K0.4BiO3 Perovskite. Nature 1988, 332, 814–816.

(32) Solans, X.; Moron, M. C.; Palacio, F. Structures of Rb2[InCl6(H2O)] and Cs5[InCl6(H2O)]. Acta Cryst. 1988, C44, 965–967.

