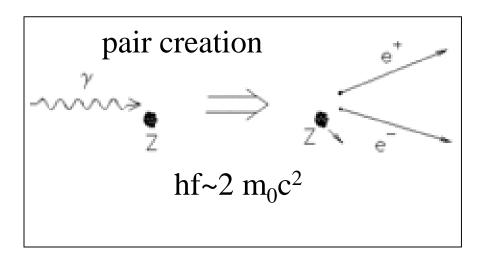
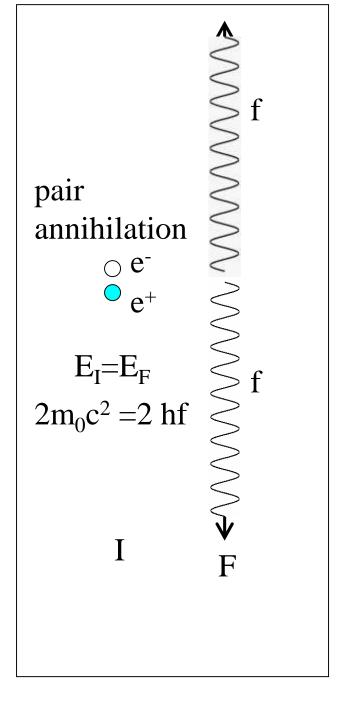
measure mass in energy equivalent of rest mass

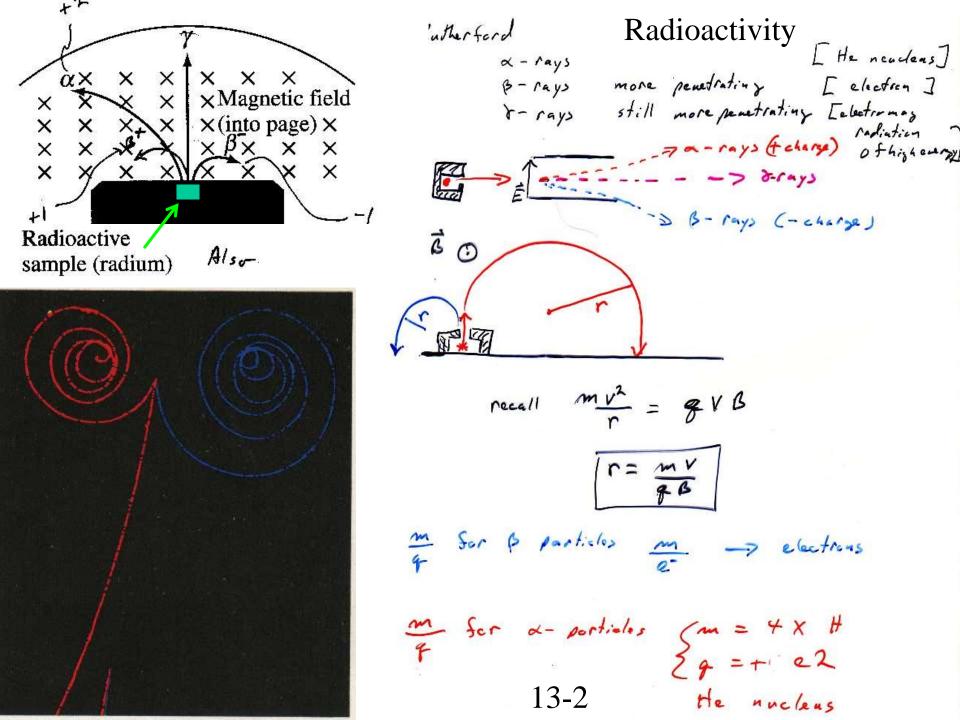
e. g. for electron m = 9.1 (10)⁻³¹ kg
$$mc^2 = 9.1 \ (10)^{-31} \ kg \ [3 \ (10)^8 \ m/s \]^2 = 8.19 \ (10)^{-14} \ J$$
 or


$$mc^2 = 8.19 (10)^{-14} J [1.602 (10)^{-19} J/eV = 0.511 MeV]$$

 $m \leftrightarrow 0.511 \text{ MeV}$

matter ⇔ energy


object/particle	charge	mc ²	comments
electron/beta-minus e-/β-	-e	0.511 MeV	
positron/beta-plus e ⁺ / β ⁺	+e	0.511 MeV	anti-particle of electron
proton p ⁺	+e	938.272 MeV	
neutron n	0	938.566 MeV	
α-particle = He nucleus	+2e	3728.402 MeV	
neutrinos v	0	> 1 eV	involved in weak force
gamma-ray γ	0	0	photon E=h f

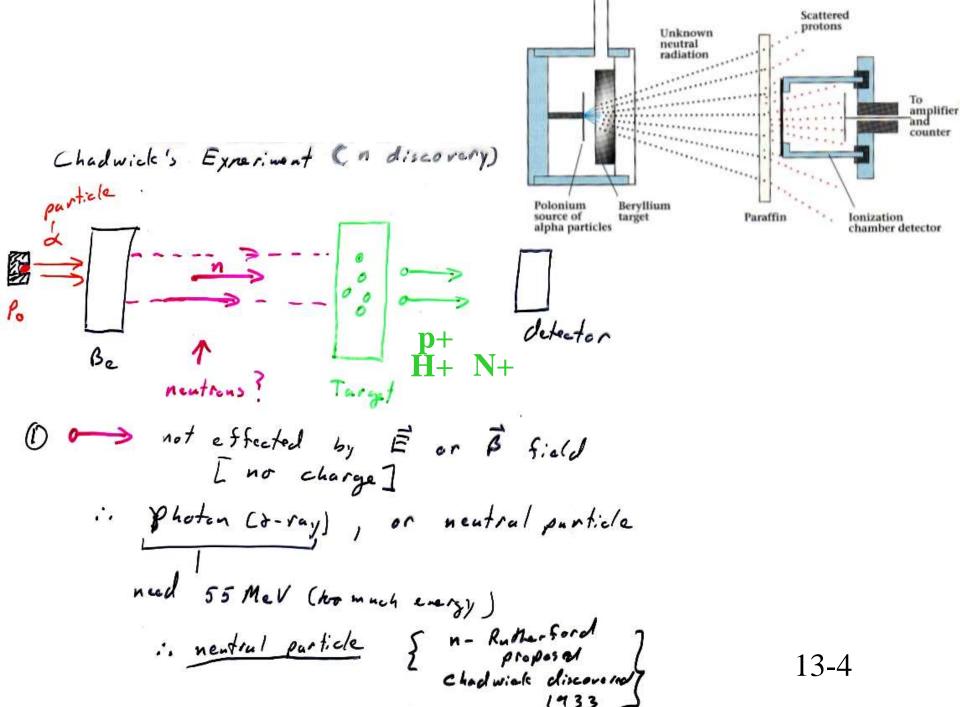

13-1bmatter \Leftrightarrow energy

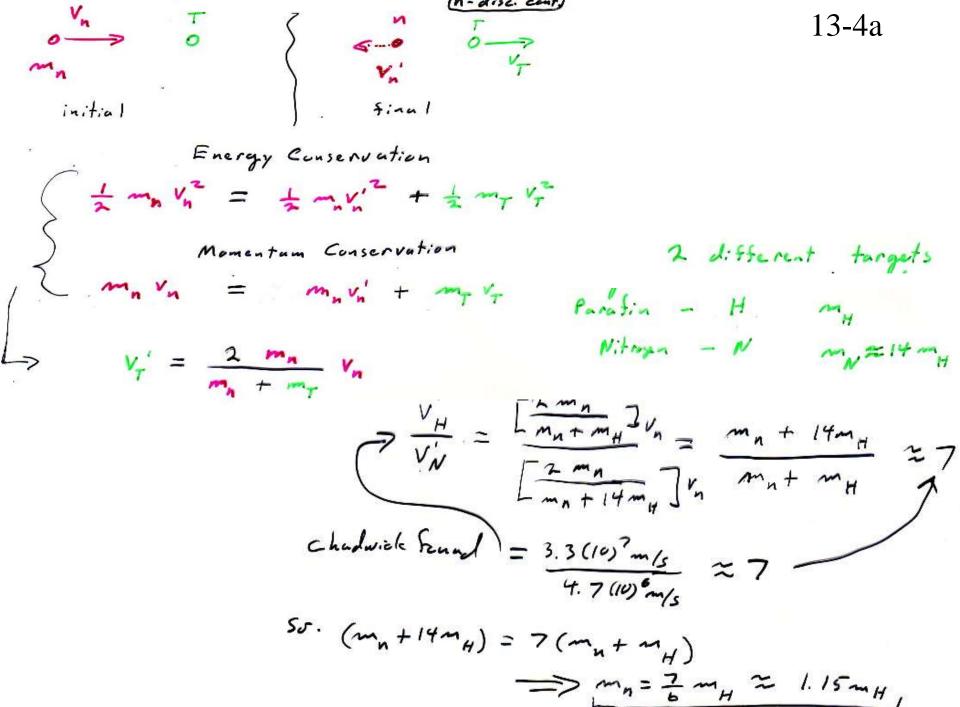
$$\gamma + n\omega \rightarrow e^+e^-$$

C. Bamber et al Phys. Rev D 60 092004

Nuclear notation

atomic mass units 1 u = 931.5 MeV/c²
$$\left\{ M \binom{1^2}{6} \right\} \equiv 1^2 u$$


A atomic mass number = # n+p chemical element (determined by # p)

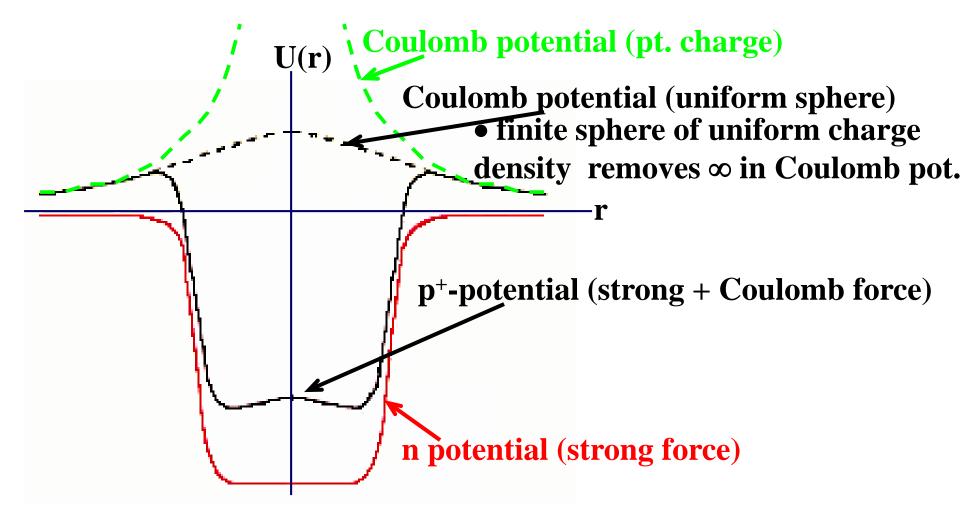

A nucleons A-Z = # neutrons =
$$N$$

examples

atomic number = # p

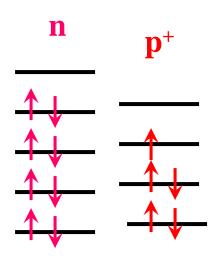
chemical mass =
$$10 (.802) + 11 (.198) = 10.80$$

note: nuclear stability favors $\#n = \#p^+$


A

Strong Nuclear Force Nuclear size Proten P-P force V= Volume & A (# nucleons) Coulomb repulsion 0 Ro = 1.2(10)-15 example 197 Au r = 7(105-15

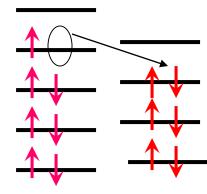
Nuclear size

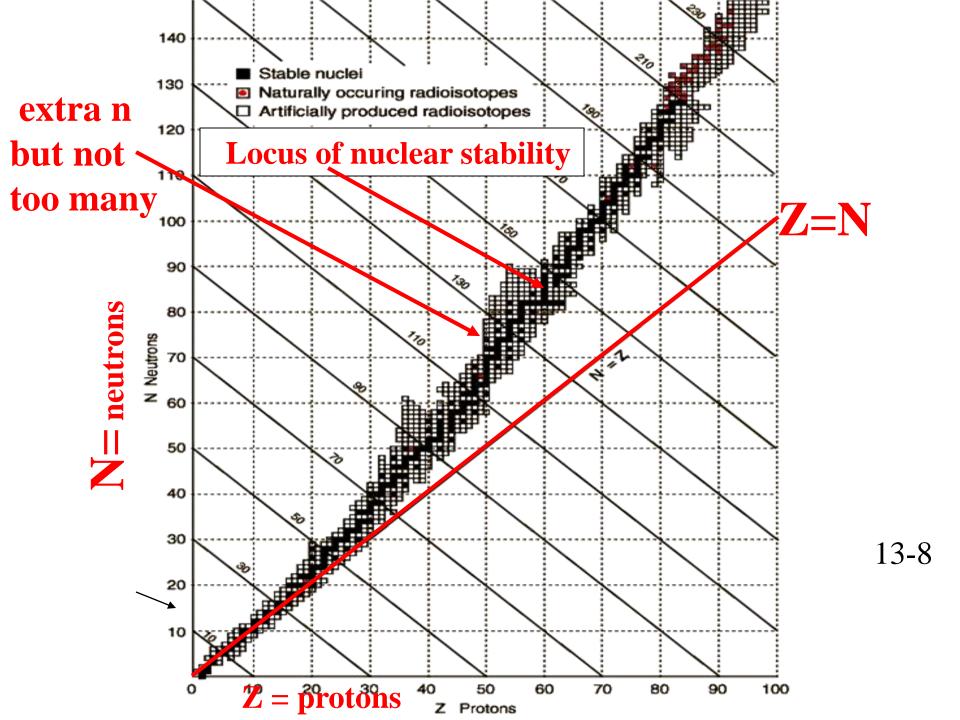


- nucleons feel effective potential due to all other nucleons combined
- n help lend stability dilute repulsive Coulomb force
- square well-like potential (3-dimensional)
- nucleon quantized standing matter waves (recall QM square well)
- nucleon quantized energy levels 3-6

n p⁺

n


- have lower energy (no Coulomb repulsion)
- dilute Coulomb energy
 - \Rightarrow extra n lower energy = stabilize



n and p+ obey Pauli Exclusion Principal

- too many n, energy to high
- unstable \Rightarrow decays to lower energy

e.g.
$$n \Rightarrow p^+ + e^- + \overline{\nu}$$

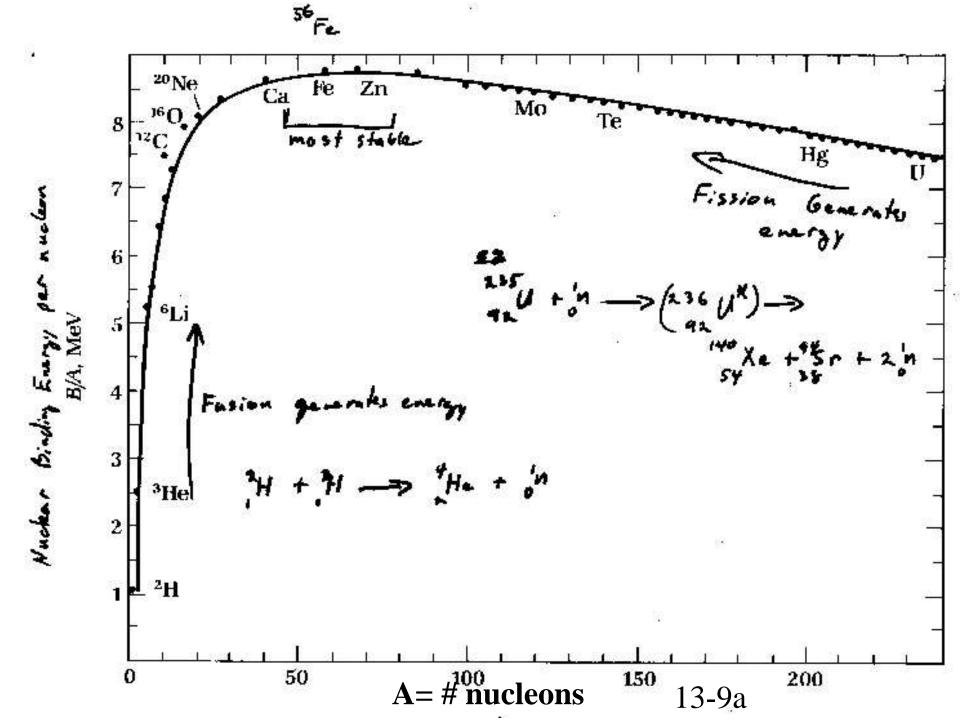
$$M_{_{^4\text{He}}} < 2M_{_{\rm H}} + 2M_{_{\rm n}}$$
 Nuclear Binding

13-9

²He ∴ ∆M is in binding energy

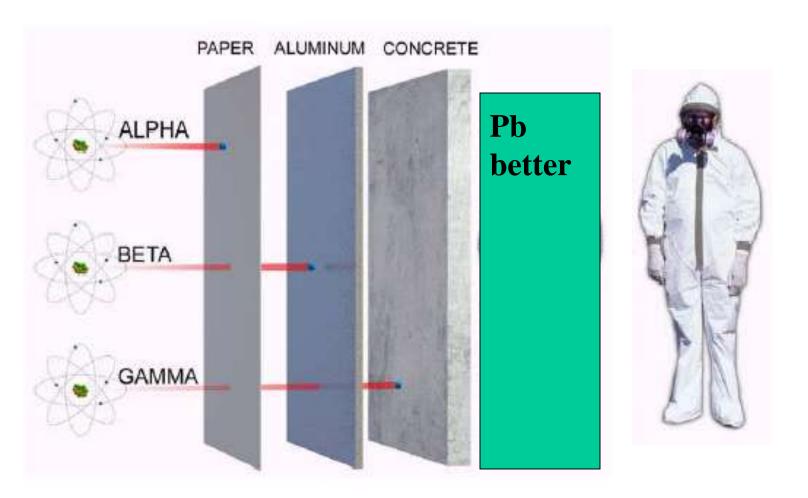
 $E_{binding} = \Delta M c^2$

 $E_{binding} = [(2m_H + 2m_n) - M_{_{^4He}}] c^2$

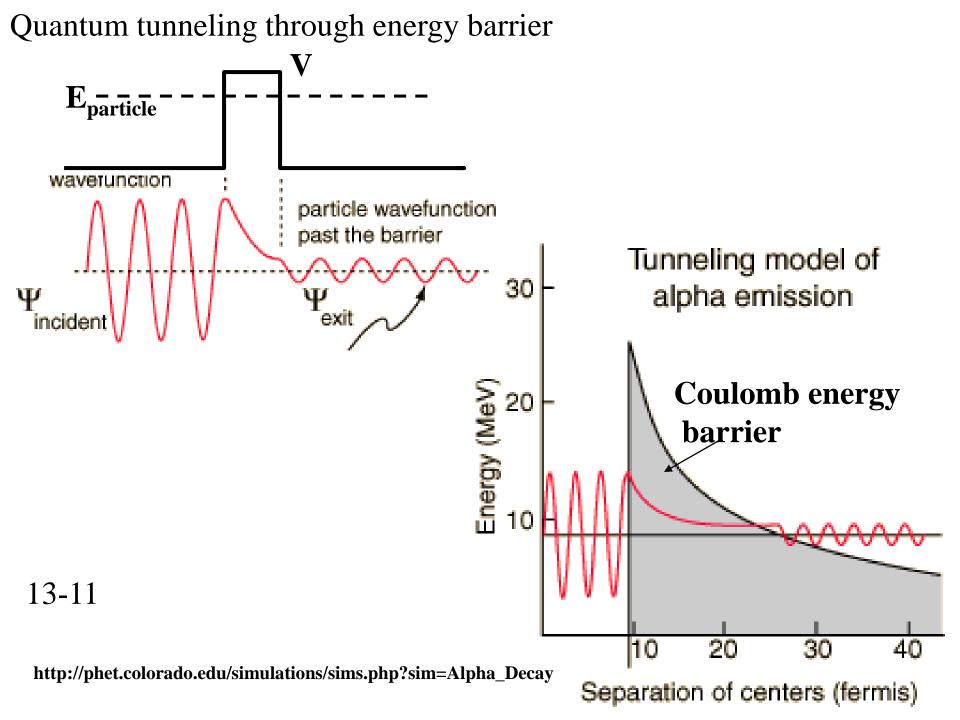

2m+2m= 2.01560+ 2.017330=4.03298

Esinday = (0.03077) (931.5 MeV)

= 28.3 MeV this is 106 times atomic binding!!


Chamical reactions (coulomb force) ~ eV

Ho nuclear reactions (strong nuclear) ~ 106V



Relative Stopping Power

$$\begin{array}{c}
\alpha \text{ emission} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^{+} \\
A \times \longrightarrow A^{+} \times Y + H^$$

M+m final or
$$V = \frac{m}{M} v$$
 (1a)*

energy $\Delta E = \frac{1}{2} M V^2 + \frac{1}{2} m v^2$ (2)

*(1a) into (2) $\Delta E = \frac{1}{2} M V^2 + \frac{1}{2} m v^2$ 1

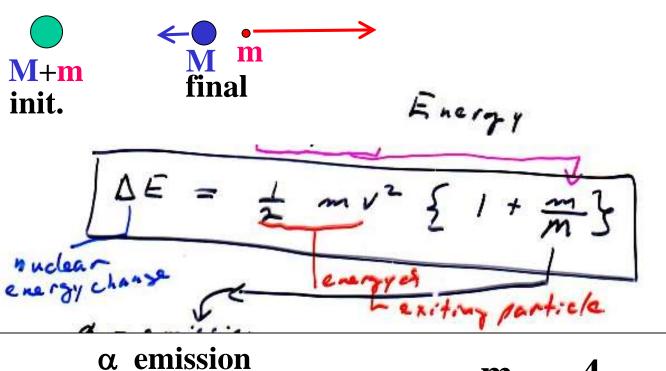
(2)
$$\Delta E = \frac{1}{2}M(\frac{m}{M}v)^2 + \frac{1}{2}mv^2$$

Particle decay α and β emission momentum

$$(v)^2 + \frac{m}{2}mv$$

 $(1 + \frac{m}{M})$

conservation


Note: most of energy goes to KE of light (m) particle

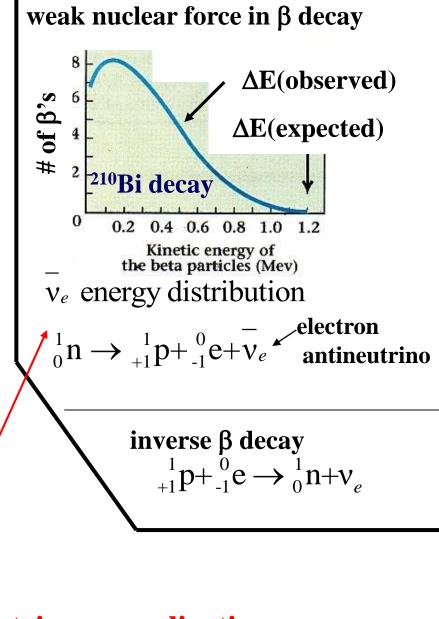
 $0 = MV - mv \quad (1)$

nuclear energy
$$2 \frac{\Delta E}{2} = \frac{1}{2} m v^2 \{1 + \frac{m}{M}\}$$
change energy of emitted m particle
$$\frac{KE(M)}{KE(m)} = \frac{\frac{1}{2}MV^2}{\frac{1}{2}mv^2} = \frac{\frac{1}{2}mv^2(\frac{m}{M})}{\frac{1}{2}mv^2} = \frac{1}{2}mv^2$$

of light (m)
$$\Rightarrow \frac{KE(M)}{KE(m)} = \frac{m}{M}$$

Particle decay α and β emission

 $^{210}_{84}$ Po $\rightarrow ^{206}_{82}$ Pb $+ ^{4}_{2}$ He


 ${}^{14}_{6}\text{C} \rightarrow {}^{14}_{7}\text{N} + {}^{0}_{-1}\text{e} + \nu_{e}$

$$\beta$$
 (e) decay $\beta^{-} = e^{-}$ emission
$${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e + {\overset{-}{\nu}}_{e} \qquad \frac{m}{M} = \frac{5.5(10)^{-4}}{14} \sim 0.003\%$$

 $\frac{\mathbf{m}}{\mathbf{M}} = \frac{4}{206} = 0.0194 \sim 2\%$

*(corr)

13-12a

 β (e) decay β = e emission

$${}^{14}_{6}\text{C} \rightarrow {}^{14}_{7}\text{N} + {}^{0}_{-1}\text{e} + {}^{-/}_{\nu_e}$$

neutrino complication

momentum
$$c = \lambda f$$
conservation
$$0 = MV - \frac{h}{\lambda} \implies V = \frac{h}{M\lambda} = \frac{hf}{Mc}$$
energy liberated $\Delta E = hf + \frac{1}{2}MV^2$

$$\Delta E = hf + \frac{1}{2}M(\frac{hf}{Mc})^2$$

$$\Delta E = hf \left[1 + \left\{\frac{hf}{2Mc^2}\right\}\right] \qquad \left\{\frac{hf}{2Mc^2}\right\} \sim \frac{1}{10,000} \text{ or } \frac{1}{200,000}$$

$$hf \sim 1 \text{ MeV} \qquad \text{energy to } \gamma$$

$$2Mc^2 \sim 2 \text{ A } [1000 \text{ MeV}] \sim 200,000 \text{ MeV}$$

$$A \sim 4 \text{ to } 300$$

13-13

Tc used in nuclear stress tests to look at distribution of blood flow in heart

Activate Mo in reactor
$${}^{98}_{42}$$
Mo + ${}^{1}_{0}$ n $\rightarrow {}^{99}_{42}$ Mo

 99 **m Tc** $^{1/2}$ -life of 6.01 hours $\{15/16 = 93.7\% \text{ done in } 24 \text{ hr}\}$

Transport and inject in patient blood stream
Image gamma rays emanating from heart to measure blood flow

Example KE of -> 228 Th + 4he + KE tot 232U CalSc Ti V CrMnFe Co Ni Cu Zn Ga Ge As Se Br Rb|Sr|Y|Zr|Nb|Mo|Tc|Ru|Rh|Pd|Ag|Cd| In |Sn|Sb|Te||I M(Th) + M(He) m(U) Cs**i**Ba**i**LaiHfiTaiW iReiOsiIr iPtiAuiHgiT1 iPtiBiiPoiA 228, 02 87/6 4 232.037/31 u 4.002602 4 ĿĮCeĮPrįNdjPnįSnįEuįGdįTbįDųįHoįErįTnįYbįLuį larger 2 32.03 13 18 4 ThiPai U NpiPujAmiCmiBkiCfiEsjFmiMdiNo smaller difference .005813 x . 931.5 MeV = 5.4 MeV KE + KE = KE tot = 5.4 MeV

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(128)

(1 KE ME (232) 5.4 MeV = 5,3 MeV = 4 5.4MeV = 0.1 MeV 13-14

Radioactive decay: a stochastic statistical process

- -a given nuclei decays randomly and independently of others
- -constant statistical decay rate (probability per unit time)

{short time compared to time when ~ nothing left)

- ⇒1) the more nuclei the more decays
 - 2) the longer the time the more decays.
- 1) \Rightarrow N radioactive nuclei at time t, then $\Delta N \sim N$
- 2) $\Rightarrow \Delta N \sim \Delta t$

$$\Rightarrow \Delta N = -\lambda N \Delta t$$

$$\Rightarrow$$
 dN = $-\lambda$ N dt

$$\Rightarrow \frac{dN}{dt} = -\lambda N$$

$$\Rightarrow \frac{\mathbf{dN}}{\mathbf{dt}} + \lambda \mathbf{N} = 0$$

Have seen this before!!

Poisson process: every object has a fixed probability of decaying in a given time [Remember the Fr. mathematician Siméon Denis Poisson (1781 – 1840) who was wrong about "Poissions' bright spot".]

Exponential Function remember 8.0 $f(t/\tau) = e^{-t/\tau}$ $f(t) = e^{-\frac{t}{\tau}}$ (t/t) 0.6 τ = time constant 0.2

$$f(t) = e^{-\tau}$$

$$\tau = \text{time constant}$$

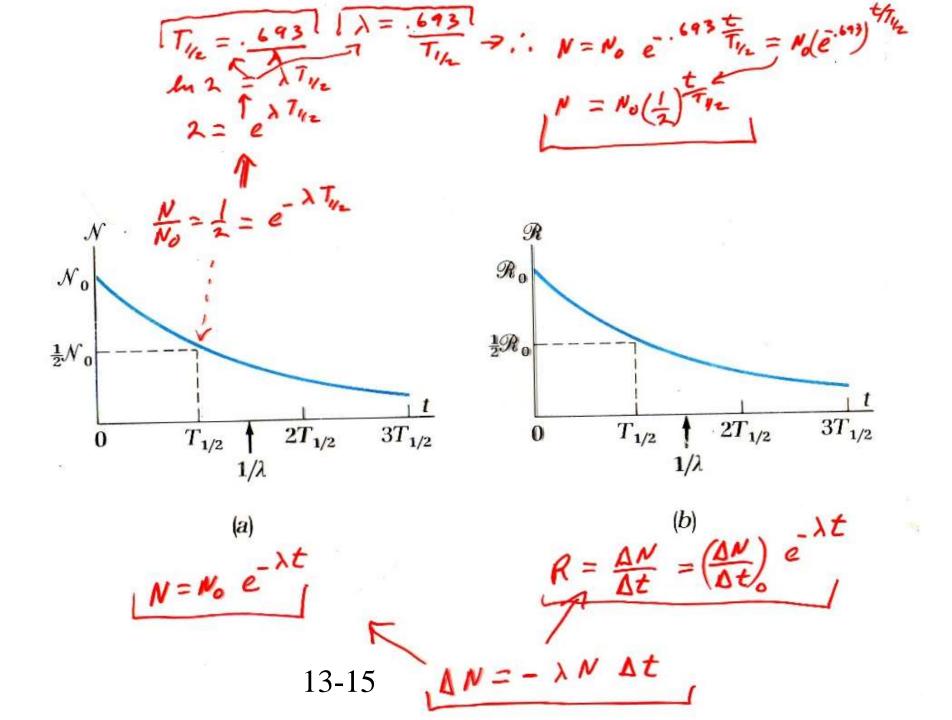
$$f(t=\tau) = e^{-1} = \frac{1}{e} = \frac{1}{2.732}$$

$$\frac{df}{dt} = -\frac{1}{\tau} f$$

$$\frac{df}{dt} = -\frac{1}{\tau} dt$$

$$\frac{df}{f} = -\frac{1}{\tau} \int dt$$

$$f(t=\tau) = e^{-1} = \frac{1}{e} = \frac{1}{2.732}$$


$$\frac{df}{dt} = -\frac{1}{\tau} f$$

$$\frac{df}{dt} = -\frac{1}{\tau} f$$

$$\frac{df}{dt} = -\frac{1}{\tau} dt$$

$$\frac{df}{f} = -\frac{1}{\tau} dt$$

$$\frac{df}{f} = -\frac{1}{\tau} \int dt$$

 $\mathbf{n} + {}^{14}_{7}\mathbf{N} \rightarrow {}^{14}_{6}\mathbf{C} + {}^{1}_{1}\mathbf{p}$ Constantly creates ${}^{14}_{6}\mathbf{C}$

13-15

 $^{14}_{6}$ C is incorporated into CO₂ in the atmosphere with stable $^{12}_{6}$ C photosynthesis incorporates $^{14}_{6}$ CO₂ into plants

animals eat plants (and each other)

but
$${}^{14}_{6}\text{C} \rightarrow {}^{14}_{7}\text{N} + \text{e}^{-} + \overline{\text{v}}_{\text{e}}$$
 $\tau_{1/2} = 5730 \text{ years}$

Constantly decay

Constantly decaying ¹⁴₆C

 $\frac{N(^{14}C)}{N(^{12}C)} = 1.3 \times 10^{-12}$ equilibrium isotope ratio in atmosphere and all living things organism dies \Rightarrow ^{14}C content decays as

organism dies
$$\Rightarrow {}_{6}$$
C content decays as
$$\frac{N (^{14}C)}{N (^{12}C)} = 1.3 \times 10^{-12} e^{-t[.693/5730]} \frac{N_{_{14}C}(t)}{N_{_{12}C}} = 1.3 (10)^{-12} \left(\frac{1}{2}\right)^{t/5700}$$

$$\frac{N_{14_{C}}(t)}{N_{12_{C}}} = 1.3 (10)^{-12} e^{-.693 t/5700}$$

$$\frac{N_{14_{C}}(t)}{N_{12_{C}}} = 1.3 (10)^{-12} \left(\frac{1}{2}\right)^{t/5700}$$
suppose
$$\frac{N_{14_{C}}}{N_{12_{C}}} = 1.3 (10)^{-12} \left(\frac{1}{10}\right)$$

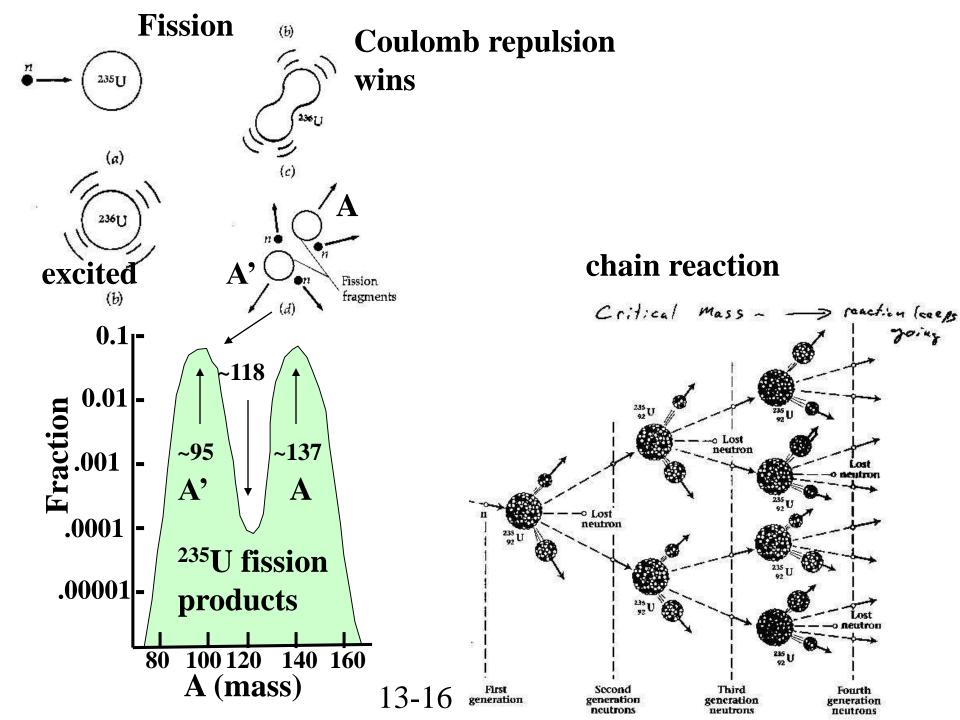
$$\Rightarrow \frac{1}{10} = e^{-.693 t/5700}$$

$$\frac{1}{10} = -.693 t/5700$$

$$\frac{1}{2} = \frac{1}{1} = 0.5$$

$$\frac{1}{10} = 0.5$$

$$t = -\frac{5700}{.693} \ln(\frac{1}{10}) \sim 3.3 (5700)$$


$$t = 18,939 \text{ yrs}$$

$$\frac{(\frac{1}{2})^{2} = \frac{1}{2} = 0.35 \qquad 1(3700) = 3700}{(\frac{1}{2})^{2} = \frac{1}{4} = 0.25 \qquad 2(5700) = 11400}$$

$$(\frac{1}{2})^{3} = \frac{1}{8} = 0.125 \qquad 3(5700) = 17100$$

$$(\frac{1}{2})^{4} = \frac{1}{16} = 0.0625 \qquad 4(5700) = 22800$$

13-15a

Atomic weapons: fission bombs: U-bomb

²³⁵U 0.7 % natural abundance

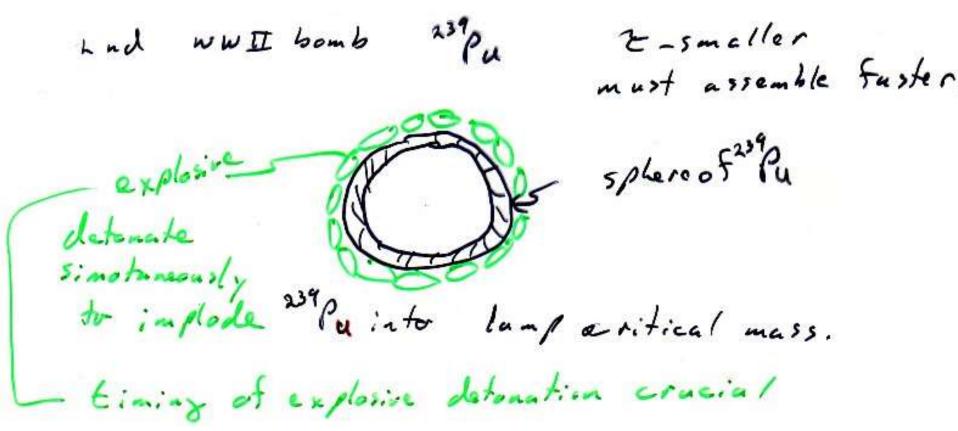
Weapons grade of enrichment 99% ²³⁵U

Reactor grade of enrichment 3-4% 235U

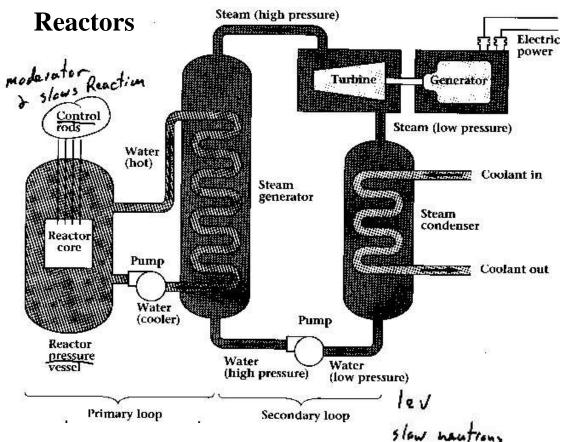
τ= time for spontaneous ¹n emission to initiate chain reaction

 $\tau \sim 1 \ \mu s \ \text{for} \ ^{235}\text{U}$

time to assemble critical mass must be τ <


uranium gun-type atomic bomb (Little Boy) - Hiroshima

Atomic weapons: fission bombs: Pu-bomb


²³⁹Pu man made in reactors

τ= time for spontaneous ¹n emission to initiate chain reaction

time to assemble critical mass must be τ <

implosion-type bomb (Fat Man) on the city of Nagasaki 13-17a

1 eV slow ¹n best

1
n + 235 U \Rightarrow 236 U*

$$^{236}U^* \Rightarrow ^{140}Xe + ^{94}Sr + 2 ^{1}n$$
 $^{236}U^* \Rightarrow ^{141}Ba + ^{92}Kr + 3 ^{1}n$
 $^{236}U^* \Rightarrow ^{150}Nd + ^{81}Ge + 5 ^{1}n$

Heat →**work**

Note: T of reactor is low

→ low thermodynamic efficiency
→ large waste heat loss to surroundings

Moderater 2 Ha D Slows down 11

Controle C rods- absorb M slow down or stop chain reaction

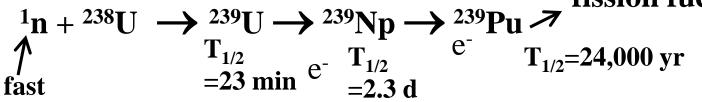
Problems that can occur with nuclear reactors

⁹²Kr gas-radioactive-overpressure develops -released and controlled way (or blow out)

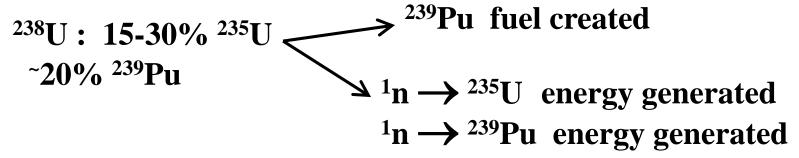
- cooling system breakdown or coolant loss "China syndrome" fuel melts concentrates
 - burns through reactor containment floor
 - molten fuel burns into earth below reactor
 - hits ground water blast of dirty radioactive steam emitted

Chernobyl (C-moderator- Russian design)

- test of reactors ability to run its own cooling system-
- undetected problems local heating
- C- rods fracture blocked at 33% insertion steam blow outs
- C moderator ignited and burns
- fuel rods melt steam explosion C rod fire blow roof off
- smoke carries away radioactivity


Radioactive isotopes released

- ¹³⁷Cs particles aerosol
- ⁹²Sr radioactive released Sr²⁺ like Ca²⁺ -- concentrates in bones
 - ¹²⁹I long half life released I gets in grass cows eat into milk supply


Breeder Reactor

takes advantage of

fission fuel

:. decrease moderator in reactor

reactor lasts 10-20 yr - creates enough fuel for another reactor

Common in Europe (France)

fear – generates ²³⁹Pu weapons product

What to do with nuclear waste?

Fusion 'H+'H -> 2H + et + 2)

Some positron neutrino

Pauterium hydrogen proton -> + -+ + 21 E = mc2 The speed of light squared energy
mass Equation = min c - mout c2 · mass converted to senergy · C2 is a big ## i. little mass
gives lots of energy 1

13-20

Core of sun

High pressure & density \Rightarrow lots of p^+ p^+ collisions

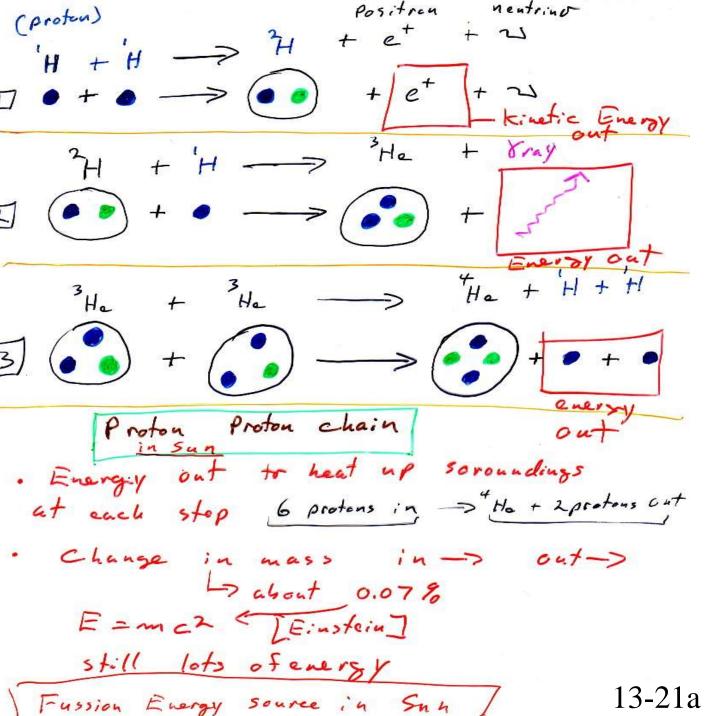
(opportunities to fuse)

High temperature: ~ 15 million K

High temperature
$$\Rightarrow$$
 high p⁺ velocity $<\frac{1}{2}mv^2>=\frac{3}{2}kT$

$$\mathbf{p}^+ \xrightarrow{\mathbf{V}} \qquad \longleftarrow \qquad \mathbf{p}^+$$

Speed (v) high enough: overcome coulomb potential (repulsion). Nuclei get close enough for strong nuclear force to win & fusion to occur.


Fusion bomb (H-bomb)

To drive this reaction high H velocities required (to overcome the coulomb repulsion)

T~ 1-10 million ⁰K needed to get right H velocities

Use fission bomb (U or Pu) to trigger/heat-up fission bomb

It is this fission trigger that makes H-bomb dirty (radioactive)

15-21a

Fusion bomb (H-bomb) cont.

$$^{2}H + ^{3}H \Rightarrow ^{3}He + ^{1}n$$

nuclear weapon needs to keep lump of nuclear reacting material together long enough to react (like to blow apart with partial reaction)

 $T(H-fusion-reaction) \sim 1-10 \ million \ ^0K - nothing \ strong \ enough \ to \ contain$ (even steel turns to vapor $\sim 1/10,\!000$ ' th of this temperature)

high Z material resists expansion by virtue of the inertia of its mass (tamper)

"bright idea"- use left over "scrap" ²³⁸U for tamper

Actually - 238 U tamper used to get more "bang for \$"

1_{n +} 238_U = 239_U > 239_{Np} > 239_{Pu} fissionable fire life 24,000 yrs nuclear reaction activated 238_U > 239_{Pu} which fissioned

results—they get a bigger dirtier blast

Tsar Bomb- 1961 largest test 50 to 58 megatons of TNT used Pb tamper – so one of the "cleanest" nuclear explosions

Fusion bomb (H-bomb) cont.

$$^{2}H + ^{3}H \Rightarrow ^{3}He + ^{1}n$$

Castle Bravo a dry fuel hydrogen bomb, 1954, at Bikini Atoll, Marshall Islands

fuel
$$^{6-7}$$
Li 2 H = $^{6-7}$ LiD Natural Li 7.5% 6 Li + 92.5% 7 Li bomb enriched to 40% 6 Li + 60% 7 Li

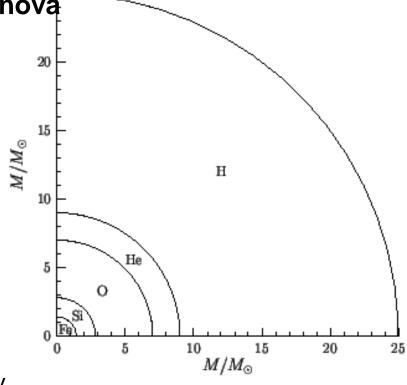
$$^{6}\text{Li} + ^{1}\text{n} \Rightarrow ^{4}\text{He} + ^{3}\text{H}$$

 6 Li + 1 n ⇒ 4 He + 3 H | Expected 6 Li to yield fusion fuel

Expected ⁷Li to do
7
Li $+ ^{1}$ n \Rightarrow 8 Li \Rightarrow e^{-} $+ ^{8}$ Be 8 Be \Rightarrow 2 4 He

With fast n they got

7
Li + 1 n ⇒ 8 Li ⇒ 4 He + 3 H + 1 n ← increased fast n flux ! more fission fuel!


- fireball ~ 4.5 mi (~ 7 km) across within ~ 1 s
- mushroom cloud 1 min height 14 km, diameter 11 km) -10 min 40 km height, 100 km diameter

Expected 5 M tom – got 15 M ton yield

neutronization in core instant before supernova

Figure: Onion-like interior structure of a Population I star of $25~M_{\odot}$ just before the onset of collapse (see Ref. [249]).

Fe represents assorted iron-peak elements: ⁴⁸Ca, ⁵⁰Ti, ⁵⁴Fe, ⁵⁶Fe, ⁵⁸Fe, ⁶⁶Ni. The Si shell contains less abundant amounts of S, O, Ar, Ca, the O shell contains less abundant amounts of Ne, C, Mg, Si, the He shell contains less abundant amounts of C, Ne, O, and the H shell contains less abundant amounts of He, Ne, O, N, C.

Fusion energy burns out – star collapses violently

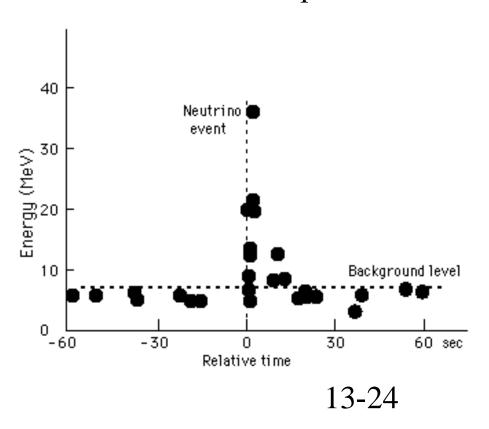
- gravitational energy heats core to 13 billion K - tremendous pressures

Fe nuclei cook apart – decompose (photo dissociate)

$$\gamma + {}^{56}\text{Fe} \rightarrow 13 \alpha + 4 n$$
.

Electrons capture occurs and nuclei decompose to neutrons (neutronization)

$$e^- + p \rightarrow n + \nu_e$$
, This neutrino blast escapes !!!!


Collapsing star rebounds off of hard core of neutron star and explodes in supernova (if massive enough neutron core collapses to gravitational black hole) 13-23

Electrons capture occurs and nuclei decompose to neutrons (neutronization)

$$e^- + p \rightarrow n + \nu_e$$
, This neutrino blast escapes !!!!

Collapsing star rebounds off of hard core of neutron star and explodes in supernova (if massive enough neutron core collapses to gravitational black hole)

Neutrino's from Supernova 1987A (Shelton)

²¹⁰Po

1897 discovered Marie & Pierre Curie - named after Marie's home Poland mg ²¹⁰Po emits as many alpha particles as 5 g of radium

1/2 g quickly reaching a temperature above 750 K.

²¹⁰Po emit a blue glow by excitation of surrounding air.

1 g ²¹⁰Po generates energy at the rate of 150 watts applications: space craft – antistatic

lethal dose of only 0.12 micrograms

1934
$$n + {}^{209}Bi \Rightarrow {}^{210}Bi$$

mg amounts producible using high n flux nuclear reactors -100 g/yr

$$n + ^{209}Bi \Rightarrow ^{210}Bi$$

 $^{210}Bi \Rightarrow \beta^{-} + ^{210}Po$ $\tau = 5.01$ days.
 $^{210}Po \Rightarrow \alpha + ^{206}Pb$ $\tau = 138.38$ days.

²⁰⁶Pb non-radioactive

in {Sn{Sb**£**Te**£** |

222
Rn $\Rightarrow \alpha + ^{218}$ Po $\tau = 3.824$ days.

²¹⁸Po
$$\Rightarrow \alpha$$
 + ²¹⁴Pb τ = 3.05 minutes.

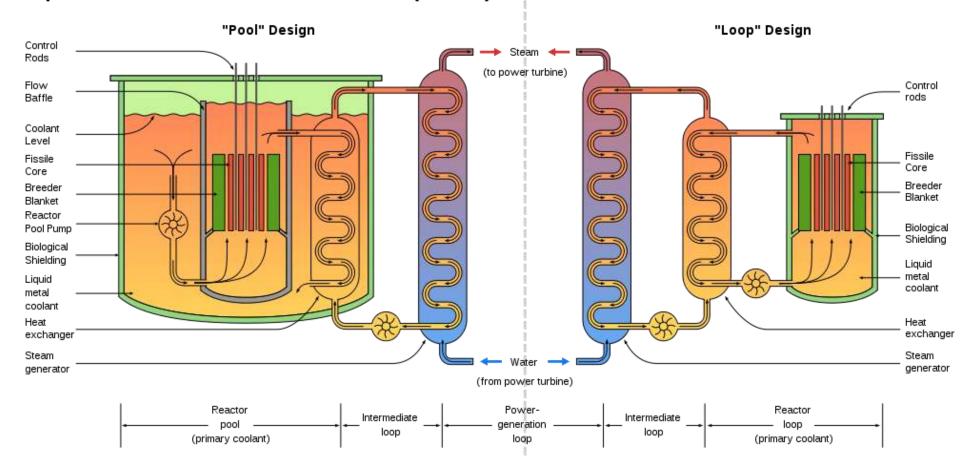
²¹⁴Pb
$$\Rightarrow$$
 β ⁺ + ²¹⁴Bi τ = 26.8 minutes.

²¹⁴Bi
$$\Rightarrow$$
 β ⁻ + ²¹⁴Po τ = 19.8 minutes

²¹⁴Po
$$\Rightarrow \alpha$$
 + ²¹⁰Pb τ = 164 microseconds.

210
Pb ⇒ β⁻ + 210 Bi τ = 22.3 years.

²¹⁰Bi
$$\Rightarrow \beta^- + {}^{210}$$
Po $\tau = 5.01$ days.


²¹⁰Po
$$\Rightarrow \alpha$$
 + ²⁰⁶Pb τ = 138.38 days.

²⁰⁶Pb stable

²⁰⁶Pb non-radioactive

Liquid Metal cooled Fast Breeder Reactors (LMFBR)

