Black body radiation ROY G BIV

$$\lambda_{\text{max}} = \frac{[\text{const.}]}{T}$$

$$\frac{E_{\text{radiated}}}{\text{surf. area}} = \sigma T^{4}$$

Planck

$$E = hf$$

Einstein Photo-electric effect- Photons

$$E_f = W + KE$$

Atom structure

...like firing a 16" shell at a piece of tissue paper and seeing it bounce back.
- E Rutherford.

Thompson electron identification

SPECTRUM OF THE COSMIC MICROWAVE BACKGROUND

http://phet.colorado.edu/en/simulation/photoelectric

Photoelectric Effect

Einstein (1905) explained/predicted with photons = light particles (bundles).

 K_{max} depends on f (not I) ie measure retarding V needed to stop i $K_{max} = eV_0$

Low I

i: high I

http://phet.colorado.edu/en/simulation/photoelectric

http://phet.colorado.edu/en/simulation/photoelectric

The Photoelectric Effect

10-6

Potassium - 2.0 eV needed to eject electron

Photoelectric effect

Quantum theory of photoelectric effect: Einstein 1905 (his Nobel Prize)

Q: What is velocity of e⁻ (for Na next page) $\frac{1}{2}mv^2 = K$

energy in

2
$$v = \sqrt{\frac{2(K)}{m}} = \sqrt{\frac{2(1.19)(10)^{-19}}{9.1(10)^{-31}}}$$

$$v = 0.511(10)^6 \frac{m}{s}$$
 $v << c OK!$

even 1 photon or will give i!!

 $hf_0 = \phi_0$

10-8

Photoelectric Effect

Example: Na: metal Work function=2.28eV

$$f = 7.31(10)^{14} \frac{1}{s}$$

$$\lambda = 410nm \frac{\text{e}^{-1} \text{K}}{1}$$

KE electron =?

$$E_f = hf = [6.63(10)^{-34}]7.31(10)^{14} [Js]/s$$

$$E_f = 4.84(10)^{-19}J = \frac{4.84(10)^{-19}J}{1.6(10)^{-19}\frac{J}{ev}} = 3.02eV$$

$$E_f = W + KE$$

$$3.02eV = 2.28eV + KE$$

 $KE = 1.19(10)^{-19}J$

$$KE = .74eV = .74eV1.6(10)^{-19} \frac{J}{eV}$$

$$c = \lambda f$$

$$f = \frac{c}{\lambda} = \frac{3(10)^8 \frac{m}{S}}{410(10)^{-9} m}$$

$$=7.31(10)^{-3}10^8 10^9$$

$$f = 7.31(10)^{14} \frac{1}{s}$$

Rutherford back scattering

Thomson Model: Plum Pudding

- -J.J. Thomson-cathode rays- particles (e⁻)much smaller than the atom
- -the plum-pudding model of an atom
 - e⁻ are embedded in the atom like raisins in the pudding
 - positive charge is equally and uniformly distributed inside the atom

Picture of the Atom ~1900

Thompson plum pudding model of the atom

What Rutherford Expected

Projectiles (very fast He nuclei called *alpha particles*) will be slightly deflected by gold atoms

Occasionally (rarely)
the projectile scattered
at huge angles!

Picture of the Atom Thompson plum LOOQ model of the atom Negative electron plums Positive pudding

http://phet.colorado.edu/en/simulation/rutherford-scattering

...like firing a 16" shell at a piece of tissue paper and seeing it bounce back. - E Rutherford.

Rutherford Atom

- An atom's mass must be concentrated in a **small positively charged nucleus** as only a very small number of alpha particles either deflected or rebounded off the foil.
 - Atom:Yankee Stadium :: Nucleus:grain of sand.
- Most of the atom must be **empty space**. This space must contain the electrons.
 - The electrons orbit the nucleus like planets around the sun.

Gigantic problem

- e^- in circular orbit $\Rightarrow e^-$ accelerating
 - ⇒ should emit EM radiation !!!!
 - ⇒ e⁻ should lose kinetic energy !!!!
 - \Rightarrow e⁻ should spiral into the nucleus !!!!

Atoms should <u>not exist</u> except briefly

There must exist some new physical "stationary state" for e in its orbit.

New physics needed.

