INTRODUCTION TO MANY BODY PHYSICS: 620. Fall 2025
Answers to Questions III. Oct. 20th

1. (a) The eigenvalues are as follows:

’1i<> = b |0), &1, = €k
2i) = ﬁ(ka)ﬂO}, Eop = 2ex
|3k> = (ka)3’0>7 531( =3ex +U
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Notice that the excitation energies are ex = &1, = &, — &1, and ex + U = &3, — &y,

(b) If we can ignore occupancies higher than three, then the partition function is

7 = H(l + e—ﬁﬁk + 6—265k + 6_5(3€k+U))
k

so that the free energy is

F = ZFk = —k;BTZln [1 + e P 4 gm2Bex 4 o= FBactl)
k k

(c) The occupancy of the k state is

aFk efﬁek + 2672ﬁ6k + 367B(36k+U)
8u - 1+ e Bex + e—2Bex + e—BBex+U)

ng = (ni) = —

(d) Let us plot nk at low temperatures. There are three regions to consider:
o ¢, >0, ng =0.
o ¢ <0, but e +U >0, ng =2.
o cx + U < 0 and ng = 3. so that there are two “Fermi surfaces” (see Fig. 1).

In(61):= num[x_, U_y A1 t= (EXp[-4 X] + 2. EXp[-2 8 x] + 3EXp[-4 ((3. x) + U)] +4Exp[-4 ((4x) +4U)]) /
(1+ Exp[-4 x] + Exp[-2 8 x] + EXp[-/ ((3x) +U)] +Exp[-4 ((4x) +4U)1);
B=80.;

Plot[num[x, 1., B], {x, -3, 1.}, PlotRange - All, AxesLabel » {e, n[e]}]

n(e)
3.5

out[61]=

Figure 1: The occupancy versus €y, showing two Fermi surfaces.



2.

(a)

We may estimate the Bose Einstein transition temperature from

3.31 [ h2n?/3 3.31 K2(1021m—3)2/3
Tpg = i = — (0% m~) ~6.9uK.
kg m 1.38 x 10-23 23m,

These tiny temperatures are attained by “evaporative cooling” . Sodium atoms are held in
a “magneto-optic” trap. Radio waves are used to “evaporate” the most energetic atoms in
the trap, leaving behind the cold ones.

In Helium-4, we may estimate the Bose Einstein transition temperature as

Ty 331 <h2n2/3> _ 331 <h2((122/(4mp)))2/3> o

k:B MHe 1.38 x 10—23 4mp

The actual condensation temperature is 2.21K. The difference in condensation temperatures
is due to the repulsive interaction between atoms.

If the interaction has the form

vo-{5  (Im @

then in second-quantized form, the interaction Hamiltonian is

5 SIT T/SU/ /.f/ Z)|.
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(i) Inverting the Fourier transform, we have ¢;_ = [ d*zy,(Z)e —k¥ 50 that

R / B d [y (), V1o ()] we 1 EFF )

= 05 o dgi’e_i(E_El)'f
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(iii) In momentum space, we may write
1 [ d3kd*K d3q
V=3 / g V@ [CTEWO—CTE/_qa/C;;’fafCTzza]’ (5)
where
5 gz _ 4nU [ AT R3U
V(q) = [ &2V (Z)e'?" = . drrsin(qr) = 3 F(qR) (6)
0
and
F(z) = 3 [sine cos (7)
2| x '

The form of the interaction in momentum space is sketched above. The hard core in real
space is manifested as a long-range oscillatory component in momentum space.
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Figure 2: Fourier transformed potential V(q) for “hard sphere” potential.
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