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1 INTRODUCTION: ‘ASYMPTOTIC
FREEDOM’ IN A CRYOSTAT

The term heavy fermion was coined by Steglich et al. (1976)
in the late 1970s to describe the electronic excitations in
a new class of intermetallic compound with an electronic
density of states as much as 1000 times larger than copper.
Since the original discovery of heavy-fermion behavior in
CeAl3 by Andres, Graebner and Ott (1975), a diversity of
heavy-fermion compounds, including superconductors, anti-
ferromagnets (AFMs), and insulators have been discovered.
In the last 10 years, these materials have become the focus of
intense interest with the discovery that intermetallic AFMs
can be tuned through a quantum phase transition into a
heavy-fermion state by pressure, magnetic fields, or chemical
doping (von Löhneysen et al., 1994; von Löhneysen, 1996;

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

Mathur et al., 1998). The ‘quantum critical point’ (QCP) that
separates the heavy-electron ground state from the AFM rep-
resents a kind of singularity in the material phase diagram
that profoundly modifies the metallic properties, giving them
a a predisposition toward superconductivity and other novel
states of matter.

One of the goals of modern condensed matter research
is to couple magnetic and electronic properties to develop
new classes of material behavior, such as high-temperature
superconductivity or colossal magnetoresistance materials,
spintronics, and the newly discovered multiferroic materials.
Heavy-electron materials lie at the very brink of magnetic
instability, in a regime where quantum fluctuations of the
magnetic and electronic degrees are strongly coupled. As
such, they are an important test bed for the development of
our understanding about the interaction between magnetic
and electronic quantum fluctuations.

Heavy-fermion materials contain rare-earth or actinide
ions, forming a matrix of localized magnetic moments. The
active physics of these materials results from the immersion
of these magnetic moments in a quantum sea of mobile con-
duction electrons. In most rare-earth metals and insulators,
local moments tend to order antiferromagnetically, but, in
heavy-electron metals, the quantum-mechanical jiggling of
the local moments induced by delocalized electrons is fierce
enough to melt the magnetic order.

The mechanism by which this takes place involves a
remarkable piece of quantum physics called the Kondo
effect (Kondo, 1962, 1964; Jones, 2007). The Kondo effect
describes the process by which a free magnetic ion, with a
Curie magnetic susceptibility at high temperatures, becomes
screened by the spins of the conduction sea, to ultimately
form a spinless scatering center at low temperatures and
low magnetic fields (Figure 1a). In the Kondo effect, this
screening process is continuous, and takes place once the
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Figure 1. (a) In the Kondo effect, local moments are free at high temperatures and high fields, but become ‘screened’ at temperatures and
magnetic fields that are small compared with the ‘Kondo temperature’ TK, forming resonant scattering centers for the electron fluid. The
magnetic susceptibility χ changes from a Curie-law χ ∼ 1

T
at high temperature, but saturates at a constant paramagnetic value χ ∼ 1

TK
at low

temperatures and fields. (b) The resistivity drops dramatically at low temperatures in heavy fermion materials, indicating the development
of phase coherence between the scatering of the lattice of screened magnetic ions. (Reproduced from J.L. Smith and P.S. Riseborough,
J. Mag. Mat. 47–48, 1985, copyright  1985, with permission from Elsevier.)

magnetic field, or the temperature drops below a character-
istic energy scale called the Kondo temperature TK. Such
‘quenched’ magnetic moments act as strong elastic scatter-
ing potentials for electrons, which gives rise to an increase
in resistivity produced by isolated magnetic ions. When the
same process takes place inside a heavy-electron material, it
leads to a spin quenching at every site in the lattice, but now,
the strong scattering at each site develops coherence, lead-
ing to a sudden drop in the resistivity at low temperatures
(Figure 1b).

Heavy-electron materials involve the dense lattice analog
of the single-ion Kondo effect and are often called Kondo
lattice compounds (Doniach, 1977). In the lattice, the Kondo
effect may be alternatively visualized as the dissolution of
localized and neutral magnetic f spins into the quantum
conduction sea, where they become mobile excitations. Once
mobile, these free spins acquire charge and form electrons
with a radically enhanced effective mass (Figure 2). The

net effect of this process is an increase in the volume of
the electronic Fermi surface, accompanied by a profound
transformation in the electronic masses and interactions.

A classic example of such behavior is provided by the
intermetallic crystal CeCu6. Superficially, this material is
copper, alloyed with 14% Cerium. The Cerium Ce3+ ions
in this material are Ce3+ ions in a 4f1 configuration with
a localized magnetic moment with J = 5/2. Yet, at low
temperatures, they lose their spin, behaving as if they were
Ce4+ ions with delocalized f electrons. The heavy electrons
that develop in this material are a thousand times ‘heavier’
than those in metallic copper, and move with a group velocity
that is slower than sound. Unlike copper, which has Fermi
temperature of the order 10 000 K, that of CeCu6 is of the
order 10 K, and above this temperature, the heavy electrons
disintegrate to reveal the underlying magnetic moments of
the Cerium ions, which manifest themselves as a Curie-law
susceptibility χ ∼ 1

T
. There are many hundreds of different
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Figure 2. (a) Single-impurity Kondo effect builds a single
fermionic level into the conduction sea, which gives rise to a reso-
nance in the conduction electron density of states. (b) Lattice Kondo
effect builds a fermionic resonance into the conduction sea in each
unit cell. The elastic scattering of this lattice of resonances leads to
the formation of a heavy-electron band, of width TK.

varieties of heavy-electron material, many developing new
and exotic phases at low temperatures.

This chapter is intended as a perspective on the the current
theoretical and experimental understanding of heavy-electron
materials. There are important links between the material
in this chapter and the proceeding chapter on the Kondo
effect by Jones (2007), the chapter on quantum criticality
by Sachdev (2007), and the perspective on spin fluctuation
theories of high-temperature superconductivity by Norman
(2007). For completeness, I have included references to an
extensive list of review articles spanning 30 years of dis-
covery, including books on the Kondo effect and heavy
fermions (Hewson, 1993; Cox and Zawadowski, 1999), gen-
eral reviews on heavy-fermion physics (Stewart, 1984; Lee
et al., 1986; Ott, 1987; Fulde, Keller and Zwicknagl, 1988;
Grewe and Steglich, 1991), early views of Kondo and mixed
valence physics (Gruner and Zawadowski, 1974; Varma,
1976), the solution of the Kondo impurity model by renor-
malization group and the strong coupling expansion (Wil-
son, 1976; Nozières and Blandin, 1980), the Bethe Ansatz
method (Andrei, Furuya and Lowenstein, 1983; Tsvelik and
Wiegman, 1983), heavy-fermion superconductivity (Sigrist
and Ueda, 1991a; Cox and Maple, 1995), Kondo insula-
tors (Aeppli and Fisk, 1992; Tsunetsugu, Sigrist and Ueda,
1997; Riseborough, 2000), X-ray spectroscopy (Allen et al.,
1986), optical response in heavy fermions (Degiorgi, 1999),
and the latest reviews on non-Fermi liquid behavior and
quantum criticality (Stewart, 2001; Coleman, Pépin, Si and
Ramazashvili, 2001; Varma, Nussinov and van Saarlos, 2002;
von Löhneysen, Rosch, Vojta and Wolfe, 2007; Miranda
and Dobrosavljevic, 2005; Flouquet, 2005). There are
inevitable apologies, for this chapter is highly selective and,
partly owing to lack of space, it neither covers dynamical

mean-field theory (DMFT) approaches to heavy-fermion
physics (Georges, Kotliar, Krauth and Rozenberg, 1996; Cox
and Grewe, 1988; Jarrell, 1995; Vidhyadhiraja, Smith, Logan
and Krishnamurthy, 2003) nor the extensive literature on the
order-parameter phenomenology of heavy-fermion supercon-
ductors (HFSCs) reviewed in Sigrist and Ueda (1991a).

1.1 Brief history

Heavy-electron materials represent a frontier in a journey of
discovery in electronic and magnetic materials that spans
more than 70 years. During this time, the concepts and
understanding have undergone frequent and often dramatic
revision.

In the early 1930s, de Haas, de Boer and van der
Berg (1933) in Leiden, discovered a ‘resistance minimum’
that develops in the resistivity of copper, gold, silver,
and many other metals at low temperatures (Figure 3). It
took a further 30 years before the purity of metals and
alloys improved to a point where the resistance minimum
could be linked to the presence of magnetic impurities
(Clogston et al., 1962; Sarachik, Corenzwit and Longinotti,
1964). Clogston, Mathias, and collaborators at Bell Labs
(Clogston et al., 1962) found they could tune the conditions
under which iron impurities in Niobium were magnetic, by
alloying with molybdenum. Beyond a certain concentration
of molybdenum, the iron impurities become magnetic and a
resistance minimum was observed to develop.

In 1961, Anderson formulated the first microscopic model
for the formation of magnetic moments in metals. Earlier
work by Blandin and Friedel (1958) had observed that
localized d states form resonances in the electron sea.
Anderson extended this idea and added a new ingredient:
the Coulomb interaction between the d-electrons, which he
modeled by term

HI = Un↑n↓ (1)

Anderson showed that local moments formed once the
Coulomb interaction U became large. One of the unexpected
consequences of this theory is that local moments develop
an antiferromagnetic coupling with the spin density of
the surrounding electron fluid, described by the interaction
(Anderson, 1961; Kondo, 1962, 1964; Schrieffer and Wolff,
1966; Coqblin and Schrieffer, 1969)

HI = J $σ(0) · $S (2)

where $S is the spin of the local moment and $σ(0) is
the spin density of the electron fluid. In Japan, Kondo
(1962) set out to examine the consequences of this result.
He found that when he calculated the scattering rate 1

τ
of
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Figure 3. (a) Resistance minimum in MoxNb1−x . (Reproduced from M. Sarachik, E. Corenzwit, and L.D. Longinotti, Phys. Rev. 135, 1964,
A1041, copyright  by the American Physical Society, with permission of the APS.) (b) Temperature dependence of excess resistivity
produced by scattering off a magnetic ion, showing, universal dependence on a single scale, the Kondo temperature. Original data from
White and Geballe (1979).

electrons of a magnetic moment to one order higher than
Born approximation,

1
τ
∝
[
Jρ + 2(Jρ)2 ln

D

T

]2

(3)

where ρ is the density of state of electrons in the conduction
sea and D is the width of the electron band. As the
temperature is lowered, the logarithmic term grows, and the
scattering rate and resistivity ultimately rises, connecting the
resistance minimum with the antiferromagnetic interaction
between spins and their surroundings.

A deeper understanding of the logarithmic term in this
scattering rate required the renormalization group concept
(Anderson and Yuval, 1969, 1970, 1971; Fowler and Zawad-
owskii, 1971; Wilson, 1976; Nozières, 1976; Nozières and
Blandin, 1980). The key idea here is that the physics of a
spin inside a metal depends on the energy scale at which it
is probed. The ‘Kondo’ effect is a manifestation of the phe-
nomenon of ‘asymptotic freedom’ that also governs quark
physics. Like the quark, at high energies, the local moments
inside metals are asymptotically free, but at temperatures
and energies below a characteristic scale the Kondo tem-
perature,

TK ∼ De−1/(2Jρ) (4)

where ρ is the density of electronic states; they interact so
strongly with the surrounding electrons that they become
screened into a singlet state, or ‘confined’ at low energies,
ultimately forming a Landau–Fermi liquid (Nozières, 1976;
Nozières and Blandin, 1980).

Throughout the 1960s and 1970s, conventional wisdom
had it that magnetism and superconductivity are mutually

exclusive. Tiny concentrations of magnetic impurities pro-
duce a lethal suppression of superconductivity in conven-
tional metals. Early work on the interplay of the Kondo effect
and superconductivity by Maple et al. (1972) did suggest that
the Kondo screening suppresses the pair-breaking effects of
magnetic moments, but the implication of these results was
only slowly digested. Unfortunately, the belief in the mutual
exclusion of local moments and superconductivity was so
deeply ingrained that the first observation of superconductiv-
ity in the ‘local moment’ metal UBe13 (Bucher et al., 1975)
was dismissed by its discoverers as an artifact produced by
stray filaments of uranium. Heavy-electron metals were dis-
covered by Andres, Graebner and Ott (1975), who observed
that the intermetallic CeAl3 forms a metal in which the Pauli
susceptibility and linear specific heat capacity are about 1000
times larger than in conventional metals. Few believed their
speculation that this might be a lattice version of the Kondo
effect, giving rise to a narrow band of ‘heavy’ f electrons in
the lattice. The discovery of superconductivity in CeCu2Si2
in a similar f-electron fluid, a year later by Steglich et al.
(1976), was met with widespread disbelief. All the measure-
ments of the crystal structure of this material pointed to the
fact that the Ce ions were in a Ce3+ or 4f1 configuration. Yet,
this meant one local moment per unit cell – which required
an explanation of how these local moments do not destroy
superconductivity, but, rather, are part of its formation.

Doniach (1977), made the visionary proposal that a heavy-
electron metal is a dense Kondo lattice (Kasuya, 1956), in
which every single local moment in the lattice undergoes
the Kondo effect (Figure 2). In this theory, each spin is
magnetically screened by the conduction sea. One of the great
concerns of the time, raised by Nozières (1985), was whether
there could ever be sufficient conduction electrons in a dense
Kondo lattice to screen each local moment.
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Theoretical work on this problem was initially stalled for
want of any controlled way to compute properties of the
Kondo lattice. In the early 1980s, Anderson (1981) proposed
a way out of this log-jam. Taking a cue from the success
of the 1/S expansion in spin-wave theory, and the 1/N

expansion in statistical mechanics and particle physics, he
noted that the large magnetic spin degeneracy N = 2j + 1
of f moments could be used to generate an expansion in the
small parameter 1/N about the limit where N →∞. Ander-
son’s idea prompted a renaissance of theoretical development
(Ramakrishnan, 1981; Gunnarsson and Schönhammer, 1983;
Read and Newns, 1983a,b; Coleman, 1983, 1987a; Auerbach
and Levin, 1986), making it possible to compute the X-ray
absorption spectra of these materials and, for the first time,
examine how heavy f bands form within the Kondo lattice.
By the mid-1980s, the first de Haas van Alphen experiments
(Reinders et al., 1986; Taillefer and Lonzarich, 1988) had
detected cyclotron orbits of heavy electrons in CeCu6 and
UPt3. With these developments, the heavy-fermion concept
was cemented.

On a separate experimental front, in Ott, Rudigier, Fisk
and Smith (1983), and Ott et al. (1984) returned to the mate-
rial UBe13, and, by measuring a large discontinuity in the
bulk specific heat at the resistive superconducting transition,
confirmed it as a bulk heavy-electron superconductor. This
provided a vital independent confirmation of Steglich’s dis-
covery of heavy electron superconductivity, assuaging the
old doubts and igniting a huge new interest in heavy-electron
physics. The number of heavy-electron metals and supercon-
ductors grew rapidly in the mid-1980s (Sigrist and Ueda,
1991b). It became clear from specific heat, NMR, and ultra-
sound experiments on HFSCs that the gap is anisotropic, with
lines of nodes strongly suggesting an electronic, rather than
a phonon mechanism of pairing. These discoveries prompted
theorists to return to earlier spin-fluctuation-mediated models
of anisotropic pairing. In the early summer of 1986, three
new theoretical papers were received by Physical Review,
the first by Monod, Bourbonnais and Emery (1986) working
in Orsay, France, followed closely (6 weeks later) by papers
from Scalapino, Loh and Hirsch (1986) at UC Santa Barbara,
California, and Miyake, Rink and Varma (1986) at Bell Labs,
New Jersey. These papers contrasted heavy-electron super-
conductivity with superfluid He-3. Whereas He-3 is domi-
nated by ferromagnetic interactions, which generate triplet
pairing, these works showed that, in heavy-electron sys-
tems, soft antiferromagnetic spin fluctuations resulting from
the vicinity to an antiferromagnetic instability would drive
anisotropic d-wave pairing (Figure 4). The almost coinci-
dent discovery of high-temperature superconductivity the
very same year, 1986, meant that these early works on
heavy-electron superconductivity were destined to exert huge
influence on the evolution of ideas about high-temperature

(a) (b) (c) (d)

Figure 4. Figure from Monod, Bourbonnais and Emery (1986), one
of three path-breaking papers in 1986 to link d-wave pairing to
antiferromagnetism. (a) The bare interaction, (b), (c), and (d), the
paramagnon-mediated interaction between antiparallel or parallel
spins. (Reproduced from M.T.B. Monod, C. Bourbonnais, and
V. Emery, Phys. Rev. B. 34, 1986, 7716, copyright  1986 by the
American Physical Society, with permission of the APS.)

superconductivity. Both the resonating valence bond (RVB)
and the spin-fluctuation theory of d-wave pairing in the
cuprates are, in my opinion, close cousins, if not direct
descendents of these early 1986 papers on heavy-electron
superconductivity.

After a brief hiatus, interest in heavy-electron physics
reignited in the mid-1990s with the discovery of QCPs in
these materials. High-temperature superconductivity intro-
duced many important new ideas into our conception of
electron fluids, including

• Non-Fermi liquid behavior: the emergence of metallic
states that cannot be described as fluids of renormalized
quasiparticles.

• Quantum phase transitions and the notion that zero tem-
perature QCPs might profoundly modify finite tempera-
ture properties of metal.

Both of these effects are seen in a wide variety of heavy-
electron materials, providing an vital alternative venue for
research on these still unsolved aspects of interlinked,
magnetic, and electronic behavior.

In 1994 Hilbert von Löhneysen and collaborators discov-
ered that by alloying small amounts of gold into CeCu6, one
can tune CeCu6−xAux through an antiferromagnetic QCP,
and then reverse the process by the application of pressure
(von Löhneysen, 1996; von Löhneysen et al., 1994). These
experiments showed that a heavy-electron metal develops
‘non-Fermi liquid’ properties at a QCP, including a linear
temperature dependence of the resistivity and a logarith-
mic dependence of the specific heat coefficient on tempera-
ture. Shortly thereafter, Mathur et al. (1998), at Cambridge
showed that when pressure is used to drive the AFM CeIn3
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through a quantum phase transition, heavy-electron supercon-
ductivity develops in the vicinity of the quantum phase tran-
sition. Many new examples of heavy-electron system have
come to light in the last few years which follow the same
pattern. In one fascinating development, (Monthoux and Lon-
zarich, 1999) suggested that if quasi-two-dimensional ver-
sions of the existing materials could be developed, then the
superconducting pairing would be less frustrated, leading to
a higher transition temperature. This led experimental groups
to explore the effect of introducing layers into the material
CeIn3, leading to the discovery of the so-called 1 − 1− 5
compounds, in which an XIn2 layer has been introduced
into the original cubic compound. (Petrovic et al., 2001;
Sidorov et al., 2002). Two notable members of this group are
CeCoIn5 and, most recently, PuCoGa5 (Sarrao et al., 2002).
The transition temperature rose from 0.5 to 2.5 K in moving
from CeIn3 to CeCoIn5. Most remarkably, the transition tem-
perature rises to above 18 K in the PuCoGa5 material. This
amazing rise in Tc, and its close connection with quantum
criticality, are very active areas of research, and may hold

important clues (Curro et al., 2005) to the ongoing quest to
discover room-temperature superconductivity.

1.2 Key elements of heavy-fermion metals

Before examining the theory of heavy-electron materials, we
make a brief tour of their key properties. Table 1 shows a
selective list of heavy fermion compounds

1.2.1 Spin entropy: a driving force for new physics

The properties of heavy-fermion compounds derive from
the partially filled f orbitals of rare-earth or actinide ions
(Stewart, 1984; Lee et al., 1986; Ott, 1987; Fulde, Keller
and Zwicknagl, 1988; Grewe and Steglich, 1991). The large
nuclear charge in these ions causes their f orbitals to collapse
inside the inert gas core of the ion, turning them into localized
magnetic moments.

Moreover, the large spin-orbit coupling in f orbitals com-
bines the spin and angular momentum of the f states into a

Table 1. Selected heavy-fermion compounds.

Type Material T ∗ (K) Tc, xc, Bc Properties ρ m J mol−1K−2 References
γ n

Metal CeCu6 10 – Simple HF
metal

T 2 1600 Stewart, Fisk and Wire (1984a)
and Onuki and Komatsubara
(1987)

Super-
conductors

CeCu2Si2 20 Tc = 0.17 K First HFSC T 2 800–1250 Steglich et al. (1976) and
Geibel et al. (1991a,b)

UBe13 2.5 Tc = 0.86 K Incoherent
metal→HFSC

ρc ∼
150 µ& cm

800 Ott, Rudigier, Fisk and Smith
(1983, 1984)

CeCoIn5 38 Tc = 2.3 Quasi 2D
HFSC

T 750 Petrovic et al. (2001) and
Sidorov et al. (2002)

Kondo
insulators

Ce3Pt4Bi3 Tχ ∼ 80 – Fully gapped
KI

∼e'/T – Hundley et al. (1990) and
Bucher, Schlessinger,
Canfield and Fisk (1994)

CeNiSn Tχ ∼ 20 – Nodal KI Poor metal – Takabatake et al. (1990, 1992)
and Izawa et al. (1999)

Quantum
critical

CeCu6−xAux T0 ∼ 10 xc = 0.1 Chemically
tuned QCP

T ∼ 1
T0

ln
(

T0
T

)
von Löhneysen et al. (1994) and

von Löhneysen (1996)

YbRh2Si2 T0 ∼ 24 B⊥ = 0.06 T
B‖ = 0.66 T

Field-tuned
QCP

T ∼ 1
T0

ln
(

T0
T

)
Trovarelli et al. (2000), Paschen

et al. (2004), Custers et al.
(2003) and Gegenwart et al.
(2005)

SC + other
order

UPd2Al3 110 TAF = 14 K,
Tsc = 2 K

AFM + HFSC T 2 210 Geibel et al. (1991a), Sato et al.
(2001) and Tou et al. (1995)

URu2Si2 75 T1 = 17.5 K,
Tsc = 1.3 K

Hidden order
and HFSC

T 2 120/65 Palstra et al. (1985) and Kim
et al. (2003)

Unless otherwise stated, T ∗ denotes the temperature of the maximum in resistivity. Tc , xc , and Bc denote critical temperature, doping, and field. ρ denotes
the temperature dependence in the normal state. γ n = CV /T is the specific heat coefficient in the normal state.
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state of definite J , and it is these large quantum spin degrees
of freedom that lie at the heart of heavy-fermion physics.

Heavy-fermion materials display properties which change
qualitatively, depending on the temperature, so much so, that
the room-temperature and low-temperature behavior almost
resembles two different materials. At room temperature, high
magnetic fields, and high frequencies, they behave as local
moment systems, with a Curie-law susceptibility

χ = M2

3T
M2 = (gJ µB)2J (J + 1) (5)

where M is the magnetic moment of an f state with
total angular momentum J and the gyromagnetic ratio gJ .
However, at temperatures beneath a characteristic scale,
we call T ∗ (to distinguish it from the single-ion Kondo
temperature TK), the localized spin degrees of freedom melt
into the conduction sea, releasing their spins as mobile,
conducting f electrons.

A Curie susceptibility is the hallmark of the decoupled,
rotational dynamics of the f moments, associated with an
unquenched entropy of S = kB ln N per spin, where N =
2J + 1 is the spin degeneracy of an isolated magnetic
moment of angular momentum J . For example, in a Cerium-
heavy electron material, the 4f1 (L = 3) configuration of
the Ce3+ ion is spin-orbit coupled into a state of definite
J = L− S = 5/2 with N = 6. Inside the crystal, the full
rotational symmetry of each magnetic f ion is often reduced
by crystal fields to a quartet (N = 4) or a Kramer’s doublet
N = 2. At the characteristic temperature T ∗, as the Kondo
effect develops, the spin entropy is rapidly lost from the
material, and large quantities of heat are lost from the
material. Since the area under the specific heat curve
determines the entropy,

S(T ) =
∫ T

0

CV

T ′
dT ′ (6)

a rapid loss of spin entropy at low temperatures forces a sud-
den rise in the specific heat capacity. Figure 5 illustrates this
phenomenon with the specific heat capacity of UBe13. Notice
how the specific heat coefficient CV /T rises to a value of
order 1 J mol−1K2, and starts to saturate at about 1 K, indicat-
ing the formation of a Fermi liquid with a linear specific heat
coefficient. Remarkably, just as the linear specific heat starts
to develop, UBe13 becomes superconducting, as indicated by
the large specific heat anomaly.

1.2.2 ‘Local’ Fermi liquids with a single scale

The standard theoretical framework for describing metals is
Landau–Fermi liquid theory (Landau, 1957), according to
which the excitation spectrum of a metal can be adiabatically
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C
ej

 / 
T

 (
JK

–2
 m

ol
)

Cv
T ′ dT ′ = Spin entropy (T)

T

0

UBe13 
Specific heat

Figure 5. Showing the specific heat coefficient of UBe13 after (Ott,
Rudigier, Fisk and Smith, 1985). The area under the CV /T curve up
to a temperature T provides a measure of the amount of unquenched
spin entropy at that temperature. The condensation entropy of
HFSCs is derived from the spin-rotational degrees of freedom of
the local moments, and the large scale of the condensation entropy
indicates that spins partake in the formation of the order parameter.
(Reproduced from H.R. Ott, H. Rudigier, Z. Fisk, and J.L. Smith,
in W.J.L. Buyers (ed.): Proceedings of the NATO Advanced Study
Institute on Moment Formation in Solids, Vancouver Island, August
1983, Valence Fluctuations in Solids (Plenum, 1985), p. 309. with
permission of Springer Science and Business Media.)

connected to those of a noninteracting electron fluid. Heavy-
fermion metals are extreme examples of Landau–Fermi
liquids which push the idea of adiabaticity into an regime
where the bare electron interactions, on the scale of electron
volts, are hundreds, even thousands of times larger than
the millivolt Fermi energy scale of the heavy-electron
quasiparticles. The Landau–Fermi liquid that develops in
these materials shares much in common with the Fermi
liquid that develops around an isolated magnetic impurity
(Nozières, 1976; Nozières and Blandin, 1980), once it is
quenched by the conduction sea as part of the Kondo effect.
There are three key features of this Fermi liquid:

• Single scale: T ∗ The quasiparticle density of states ρ∗ ∼
1/T ∗ and scattering amplitudes Akσ ,k′σ ′ ∼ T ∗ scale
approximately with a single scale T ∗.

• Almost incompressible: Heavy-electron fluids are ‘almost
incompressible’, in the sense that the charge suscepti-
bility χc = dNe/dµ- ρ∗ is unrenormalized and typi-
cally more than an order of magnitude smaller than the
quasiparticle density of states ρ∗. This is because the
lattice of spins severely modifies the quasiparticle den-
sity of states, but leaves the charge density of the fluid
ne(µ), and its dependence on the chemical potential µ

unchanged.



102 Strongly correlated electronic systems

• Local: Quasiparticles scatter when in the vicinity of a
local moment, giving rise to a small momentum depen-
dence to the Landau scattering amplitudes (Yamada,
1975; Yoshida and Yamada, 1975; Engelbrecht and
Bedell, 1995).

Landau–Fermi liquid theory relates the properties of a
Fermi liquid to the density of states of the quasiparticles and
a small number of interaction parameters (Baym and Pethick,
1992). If Ekσ is the energy of an isolated quasiparticle, then
the quasiparticle density of states ρ∗ =

∑
kσ δ(Ekσ − µ)

determines the linear specific heat coefficient

γ = LimT→0

(
CV

T

)
= π2k2

B

3
ρ∗ (7)

In conventional metals, the linear specific heat coefficient is
of the order 1–10 mJ mol−1 K−2. In a system with quadratic
dispersion, Ek = !2k2

2m∗ , the quasiparticle density of states and
effective mass m∗ are directly proportional

ρ∗ =
(

kF

π2!2

)
m∗ (8)

where kF is the Fermi momentum. In heavy-fermion com-
pounds, the scale of ρ∗ varies widely, and specific heat
coefficients in the range 100–1600 mJ mol−1 K−2 have been
observed. From this simplified perspective, the quasiparticle
effective masses in heavy-electron materials are two or three
orders of magnitude ‘heavier’ than in conventional metals.

In Landau–Fermi liquid theory, a change δnk′σ ′ in the
quasiparticle occupancies causes a shift in the quasiparticle
energies given by

δEkσ =
∑

k′σ ′
fkσ ,kσ ′δnk′σ ′ (9)

In a simplified model with a spherical Fermi surface, the
Landau interaction parameters only depend on the relative
angle θk,k′ between the quasiparticle momenta, and are
expanded in terms of Legendre Polynomials as

fkσ ,kσ ′ = 1
ρ∗

∑

l

(2l + 1)Pl(θk,k′)[F s
l + σσ ′Fa

l ] (10)

The dimensionless ‘Landau parameters’ F s,a
l parameterize

the detailed quasiparticle interactions. The s-wave (l = 0)
Landau parameters that determine the magnetic and charge
susceptibility of a Landau–Fermi liquid are given by Landau
(1957), and Baym and Pethick (1992)

χs = µ2
B
ρ∗

1 + Fa
0

= µ2
Bρ

∗ [1− Aa
0

]

χc = e2 ρ∗

1 + F s
0

= e2ρ∗
[
1− As

0

]
(11)

where the quantities

As,a
0 =

F s,a
0

1 + F s,a
0

(12)

are the s-wave Landau scattering amplitudes in the charge
(s) and spin (a) channels, respectively (Baym and Pethick,
1992).

The assumption of local scattering and incompressibility
in heavy electron fluids simplifies the situation, for, in this
case, only the l = 0 components of the interaction remain
and the quasiparticle scattering amplitudes become

Akσ ,k′σ ′ = 1
ρ∗
(
As

0 + σσ ′Aa
0

)
(13)

Moreover, in local scattering, the Pauli principle dictates that
quasiparticles scattering at the same point can only scatter
when in opposite spin states, so that

A
(0)
↑↑ = As

0 + Aa
0 = 0 (14)

and hence As
0 = −Aa

0. The additional assumption of incom-
pressibility forces χc/(e

2ρ∗)- 1, so that now As
0 = −Aa

0 ≈
1 and all that remains is a single parameter ρ∗.

This line of reasoning, first developed for the single
impurity Kondo model by Nozières and Blandin (1980) and,
Nozières (1976) and later extended to a bulk Fermi liquid by
Engelbrecht and Bedell (1995), enables us to understand two
important scaling trends amongst heavy-electron systems.
The first consequence, deduced from equation (11), is that
the dimensionless Sommerfeld ratio, or ‘Wilson ratio’ W =(
π2k2

B
µ2

B

)
χs
γ
≈ 2. Wilson (1976) found that this ratio is almost

exactly equal to 2 in the numerical renormalization group
treatment of the impurity Kondo model. The connection
between this ratio and the local Fermi liquid theory was
first identified by Nozières (1976), and Nozières and Blandin
(1980). In real heavy-electron systems, the effect of spin-orbit
coupling slightly modifies the precise numerical form for this
ratio, nevertheless, the observation that W ∼ 1 over a wide
range of materials in which the density of states vary by more
than a factor of 100 is an indication of the incompressible
and local character of heavy Fermi liquids (Figure 6).

A second consequence of locality appears in the trans-
port properties. In a Landau–Fermi liquid, inelastic electron–
electron scattering produces a quadratic temperature depen-
dence in the resistivity

ρ(T ) = ρ0 + AT 2 (15)
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Figure 6. Plot of linear specific heat coefficient versus Pauli susceptibility to show approximate constancy of the Wilson ratio. (Reproduced
from P.A. Lee, T.M. Rice, J.W. Serene, L.J. Sham, and J.W. Wilkins, Comments Condens. Matt. Phys. 9212, (1986) 99, with permission
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In conventional metals, resistivity is dominated by electron–
phonon scattering, and the ‘A’ coefficient is generally too
small for the electron–electron contribution to the resis-
tivity to be observed. In strongly interacting metals, the
A coefficient becomes large, and, in a beautiful piece of
phenomenology, Kadowaki and Woods (1986), observed
that the ratio of A to the square of the specific heat
coefficient γ 2

αKW = A

γ 2 ≈ (1× 10−5)µ&cm(mol K2mJ−1) (16)

is approximately constant, over a range of A spanning four
orders of magnitude. This can also be simply understood
from the local Fermi-liquid theory, where the local scattering
amplitudes give rise to an electron mean-free path given by

1
kFl∗

∼ constant + T 2

(T ∗)2 (17)

The ‘A’ coefficient in the electron resistivity that results
from the second term satisfies A ∝ 1

(T ∗)2 ∝ γ̃ 2. A more
detailed calculation is able to account for the magnitude of
the Kadowaki–Woods constant, and its weak residual depen-
dence on the spin degeneracy N = 2J + 1 of the magnetic
ions (see Figure 7).

The approximate validity of the scaling relations

χ

γ
≈ cons,

A

γ 2 ≈ cons (18)

for a wide range of heavy-electron compounds constitutes
excellent support for the Fermi-liquid picture of heavy
electrons.

A classic signature of heavy-fermion behavior is the
dramatic change in transport properties that accompanies
the development of a coherent heavy-fermion band structure
(Figure 6). At high temperatures, heavy-fermion compounds
exhibit a large saturated resistivity, induced by incoherent
spin-flip scattering of the conduction electrons of the local
f moments. This scattering grows as the temperature is
lowered, but, at the same time, it becomes increasingly
elastic at low temperatures. This leads to the development of
phase coherence. the f-electron spins. In the case of heavy-
fermion metals, the development of coherence is marked by
a rapid reduction in the resistivity, but in a remarkable class
of heavy fermion or ‘Kondo insulators’, the development
of coherence leads to a filled band with a tiny insulating
gap of the order TK. In this case, coherence is marked
by a sudden exponential rise in the resistivity and Hall
constant.

The classic example of coherence is provided by metallic
CeCu6, which develops ‘coherence’ and a maximum in
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its resistivity around T = 10 K. Coherent heavy-electron
propagation is readily destroyed by substitutional impurities.
In CeCu6, Ce3+ ions can be continuously substituted with
nonmagnetic La3+ ions, producing a continuous crossover
from coherent Kondo lattice to single impurity behavior
(Figure 8).

One of the important principles of the Landau–Fermi liq-
uid is the Fermi surface counting rule, or Luttinger’s theorem
(Luttinger, 1960). In noninteracting electron band theory, the
volume of the Fermi surface counts the number of conduction
electrons. For interacting systems, this rule survives (Martin,
1982; Oshikawa, 2000), with the unexpected corollary that
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Figure 8. Development of coherence in Ce1−xLaxCu6. (Repro-
duced from Y. Onuki and T. Komatsubara, J. Mag. Mat. 63–64,
1987, 281, copyright  1987, with permission of Elsevier.)

the spins of the screened local moments are also included in
the sum

2VFS

(2π)3 = [ne + nspins] (19)

Remarkably, even though f electrons are localized as mag-
netic moments at high temperatures, in the heavy Fermi
liquid, they contribute to the Fermi surface volume.

The most direct evidence for the large heavy f-Fermi sur-
faces derives from de Haas van Alphen and Shubnikov de
Haas experiments that measure the oscillatory diamagnetism
or and resistivity produced by coherent quasiparticle orbits
(Figure 9). These experiments provide a direct measure of
the heavy-electron mass, the Fermi surface geometry, and
volume. Since the pioneering measurements on CeCu6 and
UPt3 by Reinders and Springford, Taillefer, and Lonzarich
in the mid-1980s (Reinders et al., 1986; Taillefer and Lon-
zarich, 1988; Taillefer et al., 1987), an extensive number of
such measurements have been carried out (Onuki and Komat-
subara, 1987; Julian, Teunissen and Wiegers, 1992; Kimura
et al., 1998; McCollam et al., 2005). Two key features are
observed:

• A Fermi surface volume which counts the f electrons as
itinerant quasiparticles.

• Effective masses often in excess of 100 free electron
masses. Higher mass quasiparticle orbits, though inferred
from thermodynamics, cannot be observed with current
measurement techniques.

• Often, but not always, the Fermi surface geometry is in
accord with band theory, despite the huge renormaliza-
tions of the electron mass.

Additional confirmation of the itinerant nature of the f
quasiparticles comes from the observation of a Drude peak in
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Figure 9. (a) Fermi surface of UPt3 calculated from band theory assuming itinerant 5f electrons (Oguchi and Freeman, 1985; Wang et al.,
1987; Norman, Oguchi and Freeman, 1988), showing three orbits (σ , ω and τ ) that are identified by dHvA measurements. (After Kimura
et al., 1998.) (b) Fourier transform of dHvA oscillations identifying σ , ω, and τ orbits shown in (a). (Kimura et al., 1998.)

the optical conductivity. At low temperatures, in the coherent
regime, an extremely narrow Drude peak can be observed in
the optical conductivity of heavy-fermion metals. The weight
under the Drude peak is a measure of the plasma frequency:
the diamagnetic response of the heavy-fermion metal. This
is found to be extremely small, depressed by the large mass
enhancement of the quasiparticles (Millis and Lee, 1987a;
Degiorgi, 1999).

∫

|ω| <
˜

TK

dω
π
σqp(ω) = ne2

m∗
(20)

Both the optical and dHvA experiments indicate that the
presence of f spins depresses both the spin and diamagnetic
response of the electron gas down to low temperatures.

2 LOCAL MOMENTS AND THE KONDO
LATTICE

2.1 Local moment formation

2.1.1 The Anderson model

We begin with a discussion of how magnetic moments form
at high temperatures, and how they are screened again at low
temperatures to form a Fermi liquid. The basic model for
local moment formation is the Anderson model (Anderson,
1961)

H =

Hresonance︷ ︸︸ ︷∑

k,σ

εknkσ +
∑

k,σ

V (k)
[
c†
kσ fσ + f †

σ ckσ

]

+ Efnf + Unf↑nf↓︸ ︷︷ ︸
Hatomic

(21)

where Hatomic describes the atomic limit of an isolated
magnetic ion and Hresonance describes the hybridization of
the localized f electrons in the ion with the Bloch waves of
the conduction sea. For pedagogical reasons, our discussion
initially focuses on the case where the f state is a Kramer’s
doublet.

There are two key elements to the Anderson model:

• Atomic limit: The atomic physics of an isolated ion with
a single f state, described by the model

Hatomic = Ef nf + Unf↑nf↓ (22)

Here Ef is the energy of the f state and U is the
Coulomb energy associated with two electrons in the
same orbital. The atomic physics contains the basic
mechanism for local moment formation, valid for f
electrons, but also seen in a variety of other contexts,
such as transition-metal atoms and quantum dots.
The four quantum states of the atomic model are

|f 2〉
|f 0〉

E(f 2) = 2Ef + U

E(f 0) = 0

}
nonmagnetic

|f 1 ↑〉 |f 1 ↓〉 E(f 1) = Ef magnetic

(23)

In a magnetic ground state, the cost of inducing a
‘valence fluctuation’ by removing or adding an electron
to the f1 state is positive, that is,

removing: E(f 0)− E(f 1)

= −Ef > 0 ⇒ U

2
> Ef + U

2
(24)

adding: E(f 2)− E(f 1)

= Ef + U > 0 ⇒ Ef + U

2
> −U

2
(25)
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or (Figure 10).

U

2
> Ef + U

2
> −U

2
(26)

Under these conditions, a local moment is well defined,
provided the temperature is lower than the valence fluc-
tuation scale TVF = max(Ef + U,−Ef). At lower tem-
peratures, the atom behaves exclusively as a quantum
top.

• Virtual bound-state formation. When the magnetic ion is
immersed in a sea of electrons, the f electrons within
the core of the atom hybridize with the Bloch states of
surrounding electron sea (Blandin and Friedel, 1958) to
form a resonance described by

Hresonance =
∑

k,σ

εknkσ

+
∑

k,σ

[
V (k)c†

kσ fσ + V (k)∗f †
σ ckσ

]
(27)

where the hybridization matrix element V (k) =
〈k|Vatomic|f 〉 is the overlap of the atomic potential
between a localized f state and a Bloch wave. In the
absence of any interactions, the hybridization broadens
the localized f state, producing a resonance of width

' = π
∑

k

|V (k)|2δ(εk − µ) = πV 2ρ (28)

where V 2 is the average of the hybridization around the
Fermi surface.

There are two complementary ways to approach the
physics of the Anderson model:

Local
moments

Ef  + U/2 = −U

f 1f 2

f 0

Charge Kondo effect

U

Ef  + U/2

Ef  + U/2 = U

Figure 10. Phase diagram for Anderson impurity model in the
atomic limit.

• The ‘atomic picture’, which starts with the interacting,
but isolated atom (V (k) = 0), and considers the effect
of immersing it in an electron sea by slowly dialing up
the hybridization.

• The ‘adiabatic picture’, which starts with the noninter-
acting resonant ground state (U = 0), and then considers
the effect of dialing up the interaction term U .

These approaches paint a contrasting and, at first sight,
contradictory picture of a local moment in a Fermi sea. From
the adiabatic perspective, the ground state is always a Fermi
liquid (see 1.2.2), but from atomic perspective, provided the
hybridization is smaller than U , one expects a local magnetic
moment, whose low-lying degrees of freedom are purely
rotational. How do we resolve this paradox?

Anderson’s original work provided a mean-field treatment
of the interaction. He found that at interactions larger than
Uc ∼ π' local moments develop with a finite magnetization
M = 〈n↑〉 − 〈n↓〉. The mean-field theory provides an approx-
imate guide to the conditions required for moment formation,
but it does not account for the restoration of the singlet sym-
metry of the ground state at low temperatures. The resolution
of the adiabatic and the atomic picture derives from quantum
spin fluctuations, which cause the local moment to ‘tunnel’
on a slow timescale τ sf between the two degenerate ‘up’ and
‘down’ configurations.

e−↓ + f 1
↑ ! e−↑ + f 1

↓ (29)

These fluctuations are the origin of the Kondo effect. From
the energy uncertainty principle, below a temperature TK,
at which the thermal excitation energy kBT is of the order
of the characteristic tunneling rate !

τ sf
, a paramagnetic state

with a Fermi-liquid resonance forms. The characteristic
width of the resonance is then determined by the Kondo
energy kBTK ∼ !

τ sf
. The existence of this resonance was first

deduced by Abrikosov (1965), and Suhl (1965), but it is more
frequently called the Kondo resonance. From perturbative
renormalization group reasoning (Haldane, 1978) and the
Bethe Ansatz solution of the Anderson model (Wiegmann,
1980; Okiji and Kawakami, 1983), we know that, for large
U 3 ', the Kondo scale depends exponentially on U . In the
symmetric Anderson model, where Ef = −U/2,

TK =
√

2U'

π2 exp
(
−πU

8'

)
(30)

The temperature TK marks the crossover from a a high-
temperature Curie-law χ ∼ 1

T
susceptibility to a low-

temperature paramagnetic susceptibility χ ∼ 1/TK.
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2.1.2 Adiabaticity and the Kondo resonance

A central quantity in the physics of f-electron systems is the
f-spectral function,

Af (ω) = 1
π

ImGf (ω − iδ) (31)

where Gf (ω) = −i
∫∞
−∞ dt〈Tfσ (t)f

†
σ (0)〉eiωt is the Fourier

transform of the time-ordered f-Green’s function. When
an f electron is added, or removed from the f state, the
final state has a distribution of energies described by the
f-spectral function. From a spectral decomposition of the
f-Green’s function, the positive energy part of the f-spectral
function determines the energy distribution for electron
addition, while the negative energy part measures the energy
distribution of electron removal:

Af (ω)=






Energy distribution of state formed by adding one f electron︷ ︸︸ ︷∑

λ

∣∣〈λ|f †
σ |φ0〉

∣∣2 δ(ω−[Eλ−E0]), (ω>0)

∑

λ

∣∣〈λ|fσ |φ0〉
∣∣2 δ(ω−[E0−Eλ]),

︸ ︷︷ ︸
Energy distribution of state formed by removing an f electron

(ω<0)
(32)

where E0 is the energy of the ground state, and Eλ is
the energy of an excited state λ, formed by adding or
removing an f electron. For negative energies, this spectrum
can be measured by measuring the energy distribution of
photoelectrons produced by X-ray photoemission, while for
positive energies, the spectral function can be measured from
inverse X-ray photoemission (Allen et al., 1986; Allen, Oh,
Maple and Torikachvili, 1983). The weight beneath the Fermi
energy peak determines the f charge of the ion

〈nf 〉 = 2
∫ 0

−∞
dωAf (ω) (33)

In a magnetic ion, such as a Cerium atom in a 4f1 state, this
quantity is just a little below unity.

Figure 11 illustrates the effect of the interaction on the
f-spectral function. In the noninteracting limit (U = 0), the
f-spectral function is a Lorentzian of width '. If we turn on
the interaction U , being careful to shifting the f-level position
beneath the Fermi energy to maintain a constant occupancy,
the resonance splits into three peaks, two at energies ω = Ef

and ω = Ef + U corresponding to the energies for a valence
fluctuation, plus an additional central ‘Kondo resonance’
associated with the spin fluctuations of the local moment.

At first sight, once the interaction is much larger than
the hybridization width ', one might expect there to be no
spectral weight left at low energies. But this violates the idea
of adiabaticity. In fact, there are always certain adiabatic

U

0

w

∆

Kondo

Infinite U Anderson

Af (w)

e− + f 1 → f 2
TK

 f 1 → f 0 + e−

w = Ef

w = Ef  + U

Figure 11. Schematic illustration of the evaluation of the f-spectral
function Af (ω) as interaction strength U is turned on continuously,
maintaining a constant f occupancy by shifting the bare f-level
position beneath the Fermi energy. The lower part of diagram is the
density plot of f-spectral function, showing how the noninteracting
resonance at U = 0 splits into an upper and lower atomic peak at
ω = Ef and ω = Ef + U .

invariants that do not change, despite the interaction. One
such quantity is the phase shift δf associated with the
scattering of conduction electrons of the ion; another is the
height of the f-spectral function at zero energy, and it turns
out that these two quantities are related. A rigorous result
owing to (Langreth, 1966) tells us that the spectral function
at ω = 0 is directly determined by the f-phase shift, so that
its noninteracting value

Af (ω = 0) = sin2 δf

π'
(34)

is preserved by adiabaticity. Langreth’s result can be heuris-
tically derived by noting that δf is the phase of the
f-Green’s function at the Fermi energy, so that Gf (0−
iε)−1 = |G−1

f (0)|e−iδf . Now, in a Fermi liquid, the scatter-
ing at the Fermi energy is purely elastic, and this implies
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that ImG−1
f (0− iε) = ', the bare hybridization width.

From this, it follows that ImG−1
f (0) = |G−1

f (0)| sin δf = ',
so that Gf (0) = eiδf /(' sin δf ), and the preceding result
follows.

The phase shift δf is set via the Friedel sum rule, according
to which the sum of the up-and-down scattering phase shifts,
gives the total number of f-bound electrons, or

∑

σ

δf σ

π
= 2
δf

π
= nf (35)

for a twofold degenerate f state. At large distances, the wave
function of scattered electrons ψf (r) ∼ sin(kFr + δf )/r is
‘shifted inwards’ by a distance δl/kF = (λF/2)× (δl/π).
This sum rule is sometimes called a node counting rule
because, if you think about a large sphere enclosing the
impurity, then each time the phase shift passes through π , a
node crosses the spherical boundary and one more electron
per channel is bound beneath the Fermi sea. Friedel’s sum
rule holds for interacting electrons, provided the ground state
is adiabatically accessible from the noninteracting system
(Langer and Ambegaokar, 1961; Langreth, 1966). Since
nf = 1 in an f1 state, the Friedel sum rule tells us that
the phase shift is π/2 for a twofold degenerate f state. In
other words, adiabaticity tell us that the electron is resonantly
scattered by the quenched local moment.

Photoemission studies do reveal the three-peaked structure
characteristic of the Anderson model in many Ce systems,
such as CeIr2 and CeRu2 (Allen, Oh, Maple and Torikachvili,
1983) (see Figure 12). Materials in which the Kondo
resonance is wide enough to be resolved are more ‘mixed
valent’ materials in which the f valence departs significantly
from unity. Three-peaked structures have also been observed
in certain U 5f materials such as UPt3 and UAl2 (Allen et al.,
1985) materials, but it has not yet been resolved in UBe13.
A three-peaked structure has recently been observed in 4f
Yb materials, such as YbPd3, where the 4f13 configuration
contains a single f hole, so that the positions of the three
peaks are reversed relative to Ce (Liu et al., 1992).

2.2 Hierarchies of energy scales

2.2.1 Renormalization concept

To understand how a Fermi liquid emerges when a local
moment is immersed in a quantum sea of electrons, theorists
had to connect physics on several widely spaced energy
scales. Photoemission shows that the characteristic energy
to produce a valence fluctuation is of the order of volts, or
tens of thousands of Kelvin, yet the characteristic physics
we are interested in occurs at scales hundreds or thousands
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Figure 12. Showing spectral functions for three different Cerium
f-electron materials, measured using X-ray photoemission (below
the Fermi energy ) and inverse X-ray photoemission (above the
Fermi energy). CeAl is an AFM and does not display a Kondo
resonance. (Reproduced from J.W. Allen, S.J. Oh, M.B. Maple and
M.S. Torikachvili: Phys. Rev. 28, 1983, 5347, copyright  1983 by
the American Physical Society, with permission of the APS.)

of times smaller. How can we distill the essential effects of
the atomic physics at electron volt scales on the low-energy
physics at millivolt scales?

The essential tool for this task is the ‘renormalization
group’ (Anderson and Yuval, 1969, 1970, 1971; Anderson,
1970, 1973; Wilson, 1976; Nozières and Blandin, 1980;
Nozières, 1976), based on the idea that the physics at low-
energy scales only depends on a small subset of ‘relevant’
variables from the original microscopic Hamiltonian. The
extraction of these relevant variables is accomplished by
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‘renormalizing’ the Hamiltonian by systematically eliminat-
ing the high-energy virtual excitations and adjusting the
low-energy Hamiltonian to take care of the interactions that
these virtual excitations induce in the low energy Hilbert
space. This leads to a family of Hamiltonian’s H(1), each
with a different high-energy cutoff 1, which share the same
low-energy physics.

The systematic passage from a Hamiltonian H(1) to
a renormalized Hamiltonian H(1′) with a smaller cutoff
1′ = 1/b is accomplished by dividing the eigenstates of
H into a a low-energy subspace {L} and a high-energy
subspace {H}, with energies |ε| < 1′ = 1/b and a |ε| ∈
[1′,1] respectively. The Hamiltonian is then broken up into
terms that are block-diagonal in these subspaces,

H =
[

HL

V

∣∣∣∣
V †

HH

]
(36)

where V and V † provide the matrix elements between {L}
and {H}. The effects of the V are then taken into account by
carrying out a unitary (canonical) transformation that block-
diagonalizes the Hamiltonian,

H(1)→ UH(1)U† =
[

H̃L

0

∣∣∣∣∣
0

H̃H

]

(37)

The renormalized Hamiltonian is then given by H(1′) =
H̃L = HL + δH . The flow of key parameters in the Hamil-
tonian resulting from this process is called a renormalization
group flow.

At certain important crossover energy scales, large tracts
of the Hilbert space associated with the Hamiltonian are

projected out by the renormalization process, and the char-
acter of the Hamiltonian changes qualitatively. In the Ander-
son model, there are three such important energy scales,
(Figure 13)

• 1I = Ef + U , where valence fluctuations e− + f 1 !
f 2 into the doubly occupied f2 state are eliminated.
For 1- 1I , the physics is described by the infinite
U Anderson model

H =
∑

k,σ

εknkσ +
∑

k,σ

V (k)
[
c†
kσX0σ + Xσ0ckσ

]

+Ef

∑

σ

Xσσ , (38)

where Xσσ = |f 1 : σ 〉〈f 1 : σ |, X0σ = |f 0〉〈f 1σ | and
Xσ0 = |f 1 : σ 〉〈f 0| are ‘Hubbard operators’ that con-
nect the states in the projected Hilbert space with no
double occupancy.

• 1II ∼ |Ef | = −Ef , where valence fluctuations into the
empty state f 1 ! f 0 + e− are eliminated to form a local
moment. Physics below this scale is described by the
Kondo model.

• 1 = TK, the Kondo temperature below which the local
moment is screened to form a resonantly scattering local
Fermi liquid.

In the symmetric Anderson model, 1I = 1II , and the
transition to local moment behavior occurs in a one-step
crossover process.

2.2.2 Schrieffer–Wolff transformation

The unitary or canonical transformation that eliminates
the charge fluctuations at scales 1I and 1II was first

H(Λ)

FP

ΛI  = Ef  + U

ΛII ~ −Ef

ΛIII  =  −TK

Λ

Local Fermi liquid

Infinite U Anderson model

Kondo model

Anderson model

Hamiltonian

(a) (b)

Valence fluctuations

Local moments

Moment formation

Quasiparticles

Flows Excitations

f 0 f 1

f 0 f 1 f 2

f 1 f 1

Figure 13. (a) Crossover energy scales for the Anderson model. At scales below 1I , valence fluctuations into the doubly occupied state
are suppressed. All lower energy physics is described by the infinite U Anderson model. Below 1II , all valence fluctuations are suppressed,
and the physics involves purely the spin degrees of freedom of the ion, coupled to the conduction sea via the Kondo interaction. The Kondo
scale renormalizes to strong coupling below 1III , and the local moment becomes screened to form a local Fermi liquid. (b) Illustrating
the idea of renormalization group flows toward a Fermi liquid fixed point.
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carried out by Schrieffer and Wolff (1966), and Coqblin
and Schrieffer (1969), who showed how this model gives
rise to a residual antiferromagnetic interaction between the
local moment and conduction electrons. The emergence
of this antiferromagnetic interaction is associated with a
process called superexchange: the virtual process in which
an electron or hole briefly migrates off the ion, to be
immediately replaced by another with a different spin. When
these processes are removed by the canonical transformation,
they induce an antiferromagnetic interaction between the
local moment and the conduction electrons. This can be seen
by considering the two possible spin-exchange processes

e−↑ + f 1
↓ ↔ f 2 ↔ e−↓ + f 1

↑ 'EI ∼ U + Ef

h+
↑ + f 1

↓ ↔ f 0 ↔ h+
↓ + f 1

↑ 'EII ∼ −Ef (39)

Both processes require that the f electron and incoming
particle are in a spin-singlet. From second-order perturbation
theory, the energy of the singlet is lowered by an amount
−2J , where

J = V 2
[

1
'E1

+ 1
'E2

]
(40)

and the factor of two derives from the two ways a singlet
can emit an electron or hole into the continuum [1] and
V ∼ V (kF) is the hybridization matrix element near the
Fermi surface. For the symmetric Anderson model, where
'E1 = 'EII = U/2, J = 4V 2/U .

If we introduce the electron spin-density operator $σ(0) =
1
N
∑

k,k′ c
†
kα $σαβck′β , where N is the number of sites in the

lattice, then the effective interaction has the form

HK = −2JPS=0 (41)

where PS=0 =
[

1
4 −

1
2 $σ(0) · $Sf

]
is the singlet projection

operator. If we drop the constant term, then the effective
interaction induced by the virtual charge fluctuations must
have the form

HK = J $σ(0) · $Sf (42)

where $Sf is the spin of the localized moment. The complete
‘Kondo Model’, H = Hc + HK describing the conduction
electrons and their interaction with the local moment is

H =
∑

kσ

εkc
†
$kσ c$kσ + J $σ(0) · $Sf (43)

2.2.3 The Kondo effect

The antiferromagnetic sign of the superexchange interac-
tion J in the Kondo Hamiltonian is the origin of the

spin-screening physics of the Kondo effect. The bare inter-
action is weak, but the spin fluctuations it induces have
the effect of antiscreening the interaction at low ener-
gies, renormalizing it to larger and larger values. To see
this, we follow an Anderson’s ‘Poor Man’s’ scaling pro-
cedure (Anderson, 1973, 1970), which takes advantage of
the observation that at small J the renormalization in the
Hamiltonian associated with the block-diagonalization pro-
cess δH = H̃L −HL is given by second-order perturbation
theory:

δHab = 〈a|δH |b〉 = 1
2

[Tab(Ea) + Tab(Eb)] (44)

where

Tab(ω) =
∑

|1〉∈{H }

[
V †

a1V1b

ω − E1

]

(45)

is the many-body ‘t-matrix’ associated with virtual transi-
tions into the high-energy subspace {H }. For the Kondo
model,

V = PHJ $S(0) · $SdPL (46)

where PH projects the intermediate state into the high-
energy subspace, while PL projects the initial state into
the low-energy subspace. There are two virtual scatter-
ing processes that contribute to the antiscreening effect,
involving a high-energy electron (I) or a high-energy
hole (II).

Process I is denoted by the diagram

s′s′′

ka

k ′′l

s

k ′b

and starts in state |b〉 = |kα, σ 〉, passes through a virtual
state |1〉 = |c†

k′′ασ
′′〉 where εk′′ lies at high energies in the

range εk′′ ∈ [1/b,1] and ends in state |a〉 = |k′β, σ ′〉. The
resulting renormalization

〈k′β, σ ′|T I (E)|kα, σ 〉

=
∑

εk′′ ∈[1−δ1,1]

[
1

E−εk′′

]
J 2×(σ a

βλσ
b
λα)(S

a
σ ′σ ′′S

b
σ ′′σ )

≈ J 2ρδ1

[
1

E −1

]
(σ aσ b)βα(S

aSb)σ ′σ (47)

In Process II, denoted by
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ka

s

s ′′

s ′

k ′b

k ′′l

the formation of a virtual hole excitation |1〉 = ck′′λ|σ ′′〉
introduces an electron line that crosses itself, introducing
a negative sign into the scattering amplitude. The spin
operators of the conduction sea and AFM reverse their
relative order in process II, which introduces a relative minus
sign into the T-matrix for scattering into a high-energy hole-
state,

〈k′βσ ′|T (II)(E)|kασ 〉

= −
∑

εk′′ ∈[−1,−1+δ1]

[
1

E − (εk + εk′ − εk′′)

]

×J 2(σ bσ a)βα(S
aSb)σ ′σ

= −J 2ρδ1

[
1

E −1

]
(σ aσ b)βα(S

aSb)σ ′σ (48)

where we have assumed that the energies εk and εk′ are
negligible compared with 1.

Adding equations (47 and 48) gives

δH int
k′βσ ′;kασ = T̂ I + T II = −J 2ρδ1

1
[σa, σ b]βαSaSb

= 2
J 2ρδ1

1
$σβα · $Sσ ′σ (49)

so the high-energy virtual spin fluctuations enhance or
‘antiscreen’ the Kondo coupling constant

J (1′) = J (1) + 2J 2ρ
δ1

1
(50)

If we introduce the coupling constant g = ρJ , recognizing
that d ln1 = − δ1

1
, we see that it satisfies

∂g

∂ ln1
= β(g) = −2g2 + O(g3) (51)

This is an example of a negative β function: a signature of
an interaction that grows with the renormalization process.
At high energies, the weakly coupled local moment is
said to be asymptotically free. The solution to the scaling
equation is

g(1′) = go

1− 2go ln(1/1′)
(52)

and if we introduce the ‘Kondo temperature’

TK = D exp
[
− 1

2go

]
(53)

we see that this can be written

2g(1′) = 1
ln(1/TK)

(54)

so that once 1′ ∼ TK, the coupling constant becomes of the
order one – at lower energies, one reaches ‘strong coupling’
where the Kondo coupling can no longer be treated as a
weak perturbation. One of the fascinating things about this
flow to strong coupling is that, in the limit TK - D, all
explicit dependence on the bandwidth D disappears and the
Kondo temperature TK is the only intrinsic energy scale in the
physics. Any physical quantity must depend in a universal
way on ratios of energy to TK, thus the universal part of the
free energy must have the form

F(T ) = TK4
T

TK
(55)

where 4(x) is universal. We can also understand the resis-
tance created by spin-flip scattering of a magnetic impurity in
the same way. The resistivity is given by ρi = ne2

m
τ(T , H),

where the scattering rate must also have a scaling form

τ (T , H) = ni

ρ
42

(
T

TK
,

H

TK

)
(56)

where ρ is the density of states (per spin) of electrons
and ni is the concentration of magnetic impurities and
the function 42(t, h) is universal. To leading order in the
Born approximation, the scattering rate is given by τ =
2πρJ 2S(S + 1) = 2πS(S+1)

ρ
(g0)

2 where g0 = g(10) is the
bare coupling at the energy scale that moments form. We
can obtain the behavior at a finite temperature by replacing
g0 → g(1 = 2πT ), where upon

τ (T ) = 2πS(S + 1)

ρ

1

4 ln2(2πT/TK)
(57)

gives the leading high-temperature growth of the resistance
associated with the Kondo effect.

The kind of perturbative analysis we have gone through
here takes us down to the Kondo temperature. The physics at
lower energies corresponds to the strong coupling limit of the
Kondo model. Qualitatively, once Jρ 3 1, the local moment
is bound into a spin-singlet with a conduction electron. The
number of bound electrons is nf = 1, so that by the Friedel
sum rule (equation (35)) in a paramagnet the phase shift
δ↑ = δ↓ = π/2, the unitary limit of scattering. For more
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details about the local Fermi liquid that forms, we refer the
reader to the accompanying chapter on the Kondo effect by
Jones (2007).

2.2.4 Doniach’s Kondo lattice concept

The discovery of heavy-electron metals prompted Doniach
(1977) to make the radical proposal that heavy-electron
materials derive from a dense lattice version of the Kondo
effect, described by the Kondo Lattice model (Kasuya,
1956)

H =
∑

kσ

εkc
†
kσ ckσ + J

∑

j

$Sj · c
†
kα $σαβck′βei(k′−k)·Rj (58)

In effect, Doniach was implicitly proposing that the key
physics of heavy-electron materials resides in the interaction
of neutral local moments with a charged conduction electron
sea.

Most local moment systems develop an antiferromagnetic
order at low temperatures. A magnetic moment at location
x0 induces a wave of ‘Friedel’ oscillations in the electron
spin density (Figure 14)

〈$σ(x)〉 = −Jχ(x− x0)〈$S(x0)〉 (59)

where

χ(x) = 2
∑

k,k′

(
f (εk)− f (εk′)

εk′ − εk

)
ei(k−k′)·x (60)

is the nonlocal susceptibility of the metal. The sharp dis-
continuity in the occupancies f (εk) at the Fermi surface is
responsible for Friedel oscillations in induced spin density
that decay with a power law

〈$σ(r)〉 ∼ −Jρ
cos 2kFr

|kFr|3
(61)

where ρ is the conduction electron density of states and r is
the distance from the impurity. If a second local moment is
introduced at location x, it couples to this Friedel oscillation
with energy J 〈$S(x) · $σ(x)〉, giving rise to the ‘RKKY’

(Ruderman and Kittel, 1954; Kasuya, 1956; Yosida, 1957)
magnetic interaction,

HRKKY =

JRKKY(x−x′)︷ ︸︸ ︷
−J 2χ(x− x′) $S(x) · $S(x′) (62)

where

JRKKY(r) ∼ −J 2ρ
cos 2kFr

kFr
(63)

In alloys containing a dilute concentration of magnetic
transition-metal ions, the oscillatory RKKY interaction gives
rise to a frustrated, glassy magnetic state known as a spin
glass. In dense systems, the RKKY interaction typically
gives rise to an ordered antiferromagnetic state with a Néel
temperature TN of the order J 2ρ. Heavy-electron metals
narrowly escape this fate.

Doniach argued that there are two scales in the Kondo
lattice, the single-ion Kondo temperature TK and TRKKY,
given by

TK = De−1/(2Jρ)

TRKKY = J 2ρ (64)

When Jρ is small, then TRKKY is the largest scale and an
antiferromagnetic state is formed, but, when the Jρ is large,
the Kondo temperature is the largest scale so a dense Kondo
lattice ground state becomes stable. In this paramagnetic
state, each site resonantly scatters electrons with a phase shift
∼π/2. Bloch’s theorem then insures that the resonant elastic
scattering at each site acts coherently, forming a renormalized
band of width ∼TK (Figure 15).

As in the impurity model, one can identify the Kondo
lattice ground state with the large U limit of the Anderson
lattice model. By appealing to adiabaticity, one can then
link the excitations to the small U Anderson lattice model.
According to this line of argument, the quasiparticle Fermi
surface volume must count the number of conduction and f
electrons (Martin, 1982), even in the large U limit, where it
corresponds to the number of electrons plus the number of
spins

2
VFS

(2π)3 = ne + nspins (65)

Figure 14. Spin polarization around magnetic impurity contains Friedel oscillations and induces an RKKY interaction between the spins.
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Jr Jrc

TK<TRKKY TK<TRKKY

T

?

AFM

Fermi
liquid

TK ~ Dexp[−1/Jr]

TN ~ J2r

Figure 15. Doniach diagram, illustrating the antiferromagnetic
regime, where TK < TRKKY and the heavy-fermion regime, where
TK > TRKKY. Experiment has told us in recent times that the tran-
sition between these two regimes is a quantum critical point. The
effective Fermi temperature of the heavy Fermi liquid is indicated
as a solid line. Circumstantial experimental evidence suggests that
this scale drops to zero at the antiferromagnetic quantum critical
point, but this is still a matter of controversy.

Using topology, and certain basic assumptions about the
response of a Fermi liquid to a flux, Oshikawa (2000) was
able to short circuit this tortuous path of reasoning, proving
that the Luttinger relationship holds for the Kondo lattice
model without reference to its finite U origins.

There are, however, aspects to the Doniach argument that
leave cause for concern:

• It is purely a comparison of energy scales and does
not provide a detailed mechanism connecting the heavy-
fermion phase to the local moment AFM.

• Simple estimates of the value of Jρ required for heavy-
electron behavior give an artificially large value of the
coupling constant Jρ ∼ 1. This issue was later resolved
by the observation that large spin degeneracy 2j + 1 of
the spin-orbit coupled moments, which can be as large
as N = 8 in Yb materials, enhances the rate of scaling
to strong coupling, leading to a Kondo temperature
(Coleman, 1983)

TK = D(NJρ)
1
N exp

[
− 1

NJρ

]
(66)

Since the scaling enhancement effect stretches out across
decades of energy, it is largely robust against crystal
fields (Mekata et al., 1986).

• Nozières’ exhaustion paradox (Nozières, 1985). If one
considers each local moment to be magnetically screened
by a cloud of low-energy electrons within an energy
TK of the Fermi energy, one arrives at an ‘exhaus-
tion paradox’. In this interpretation, the number of
electrons available to screen each local moment is of
the order TK/D - 1 per unit cell. Once the concen-
tration of magnetic impurities exceeds TK

D
∼ 0.1% for

(TK = 10 K, D = 104 K), the supply of screening elec-
trons would be exhausted, logically excluding any sort of
dense Kondo effect. Experimentally, features of single-
ion Kondo behavior persist to much higher densities.
The resolution to the exhaustion paradox lies in the more
modern perception that spin screening of local moments
extends up in energy, from the Kondo scale TK out to the
bandwidth. In this respect, Kondo screening is reminis-
cent of Cooper pair formation, which involves electron
states that extend upward from the gap energy to the
Debye cutoff. From this perspective, the Kondo length
scale ξ ∼ vF/TK is analogous to the coherence length of
a superconductor (Burdin, Georges and Grempel, 2000),
defining the length scale over which the conduction spin
and local moment magnetization are coherent without
setting any limit on the degree to which the correlation
clouds can overlap (Figure 16).

2.3 The large N Kondo lattice

2.3.1 Gauge theories, large N, and strong correlation

The ‘standard model’ for metals is built upon the expansion
to high orders in the strength of the interaction. This
approach, pioneered by Landau, and later formulated in the
language of finite temperature perturbation theory by Landau
(1957), Pitaevskii (1960), Luttinger and Ward (1960), and
Nozières and Luttinger (1962), provides the foundation for
our understanding of metallic behavior in most conventional
metals.

The development of a parallel formalism and approach
for strongly correlated electron systems is still in its infancy,
and there is no universally accepted approach. At the heart
of the problem are the large interactions, which effectively
remove large tracts of Hilbert space and impose strong
constraints on the low-energy electronic dynamics. One way
to describe these highly constrained Hilbert spaces is through
the use of gauge theories. When written as a field theory,
local constraints manifest themselves as locally conserved
quantities. General principles link these conserved quantities



114 Strongly correlated electronic systems

Overlap?

Exhaustion
N(0)TK << 1 ?

Screening cloud

Composite heavy
fermion

New states injected
into fermi sea

(a)

(b)

TK

−TK

−D

D

E

TK

−TK

−D

D

E

vF / TK

Figure 16. Contrasting (a) the ‘screening cloud’ picture of the
Kondo effect with (b) the composite fermion picture. In (a),
low-energy electrons form the Kondo singlet, leading to the
exhaustion problem. In (b), the composite heavy electron is a highly
localized bound-state between local moments and high-energy
electrons, which injects new electronic states into the conduction
sea at the chemical potential. Hybridization of these states with
conduction electrons produces a singlet ground state, forming a
Kondo resonance in the single impurity, and a coherent heavy
electron band in the Kondo lattice.

with a set of gauge symmetries. For example, in the Kondo
lattice, if a spin S = 1/2 operator is represented by fermions,

$Sj = f
†
jα

( $σ
2

)

αβ

fjβ (67)

then the representation must be supplemented by the con-
straint nf (j) = 1 on the conserved f number at each site.
This constraint means one can change the phase of each f
fermion at each site arbitrarily

fj → eiφj fj (68)

without changing the spin operator $Sj or the Hamiltonian.
This is the local gauge symmetry.

Similar issues also arise in the infinite U Anderson or
Hubbard models where the ‘no double occupancy’ constraint
can be established by using a slave boson representation
(Barnes, 1976; Coleman, 1984) of Hubbard operators:

Xσ0(j) = f †
jσ bj , X0σ (j) = b†

j fjσ (69)

where f †
jσ creates a singly occupied f state, f †

jσ |0〉 ≡
|f 1, jσ 〉, while b† creates an empty f 0 state, b†

j |0〉 = |f 0, j〉.

In the slave boson, the gauge charges

Qj =
∑

σ

f †
jσ fjσ + b†

j bj (70)

are conserved and the physical Hilbert space corresponds to
Qj = 1 at each site. The gauge symmetry is now fjσ →
eiθj fjσ , bj → eiθj bj . These two examples illustrate the link
between strong correlation and gauge theories.

Strong correlation ↔ Constrained Hilbert space

↔ Gauge theories (71)

A key feature of these gauge theories is the appearance of
‘fractionalized fields’, which carry either spin or charge, but
not both. How, then, can a Landau–Fermi liquid emerge
within a Gauge theory with fractional excitations?

Some have suggested that Fermi liquids cannot reconsti-
tute themselves in such strongly constrained gauge theories.
Others have advocated against gauge theories, arguing that
the only reliable way forward is to return to ‘real-world’
models with a full fermionic Hilbert space and a finite inter-
action strength. A third possibility is that the gauge theory
approach is valid, but that heavy quasiparticles emerge as
bound-states of gauge particles. Quite independently of one’s
position on the importance of gauge theory approaches, the
Kondo lattice poses a severe computational challenge, in no
small part, because of the absence of any small parameter
for resumed perturbation theory. Perturbation theory in the
Kondo coupling constant J always fails below the Kondo
temperature. How, then, can one develop a controlled com-
putational tool to explore the transition from local moment
magnetism to the heavy Fermi liquid?

One route forward is to seek a family of models that
interpolates between the models of physical interest, and a
limit where the physics can be solved exactly. One approach,
as we shall discuss later, is to consider Kondo lattices in
variable dimensions d, and expand in powers of 1/d about
the limit of infinite dimensionality (Georges, Kotliar, Krauth
and Rozenberg, 1996; Jarrell, 1995). In this limit, electron
self-energies become momentum independent, the basis of
the DMFT. Another approach, with the advantage that it
can be married with gauge theory, is the use of large N

expansions. The idea here is to generalize the problem to a
family of models in which the f-spin degeneracy N = 2j + 1
is artificially driven to infinity. In this extreme limit, the
key physics is captured as a mean-field theory, and finite N

properties are obtained through an expansion in the small
parameter 1/N . Such large N expansions have played an
important role in the context of the spherical model of
statistical mechanics (Berlin and Kac, 1952) and in field
theory (Witten, 1978). The next section discusses how the
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gauge theory of the Kondo lattice model can be treated in a
large N expansion.

2.3.2 Mean-field theory of the Kondo lattice

Quantum large N expansions are a kind of semiclassical
limit, where 1/N ∼ ! plays the role of a synthetic Planck’s
constant. In a Feynman path integral

〈xf (t)|xi, 0〉 =
∫

D[x] exp
[

i

!
S[x, ẋ]

]
(72)

where S is the classical action and the quantum action
A = 1

!S is ‘extensive’ in the variable 1
! . When 1

! →∞,
fluctuations around the classical trajectory vanish and the
transition amplitude is entirely determined by the classical
action to go from i to f . A large N expansion for the partition
function Z of a quantum system involves a path integral in
imaginary time over the fields φ

Z =
∫

D[φ]e−NS[φ,φ̇] (73)

where NS is the action (or free energy) associated with the
field configuration in space and time. By comparison, we see
that the large N limit of quantum systems corresponds to
an alternative classical mechanics, where 1/N ∼ ! emulates
Planck’s constant and new types of collective behavior not
pertinent to strongly interacting electron systems start to
appear.

Our model for a Kondo lattice of spins localized at sites
j is

H =
∑

kσ

εkc
†
kσ ckσ +

∑

j

HI (j) (74)

where

HI (j) = J

N
Sαβ(j)c

†
jβcjα (75)

is the Coqblin Schrieffer form of the Kondo interaction
Hamiltonian (Coqblin and Schrieffer, 1969) between an f
spin with N = 2j + 1 spin components and the conduction
sea. The spin of the local moment at site j is represented as
a bilinear of Abrikosov pseudofermions

Sαβ(j) = f †
jαfjβ −

nf

N
δαβ (76)

and

c†
jσ = 1√

N

∑

k

c†
kσ e−ik· $Rj (77)

creates an electron localized at site j , where N is the number
of sites.

Although this is a theorists’ idealization – a ‘spherical
cow approximation’, it nevertheless captures key aspects
of the physics. This model ascribes a spin degeneracy of
N = 2j + 1 to both the f electrons and the conduction
electrons. While this is justified for a single impurity, a more
realistic lattice model requires the introduction of Clebsch–
Gordon coefficients to link the spin-1/2 conduction electrons
with the spin-j conduction electrons.

To obtain a mean-field theory, each term in the Hamil-
tonian must scale as N . Since the interaction contains two
sums over the spin variables, this criterion is met by rescaling
the coupling constant replacing J → J̃

N
. Another important

aspect to this model is the constraint on charge fluctuations,
which in the Kondo limit imposes the constraint nf = 1.
Such a constraint can be imposed in a path integral with a
Lagrange multiplier term λ(nf − 1). However, with nf = 1,
this is not extensive in N , and cannot be treated using a
mean-field value for λ. The resolution is to generalize the
constraint to nf = Q, where Q is an integer chosen so that as
N grows, q = Q/N remains fixed. Thus, for instance, if we
are interested in N = 2, this corresponds to q = nf /N = 1

2 .
In the large N limit, it is then sufficient to apply the con-
straint on the average 〈nf 〉 = Q through a static Lagrange
multiplier coupled to the difference (nf −Q).

The next step is to carry out a ‘Hubbard–Stratonovich’
transformation on the interaction

HI(j) = − J

N

(
c†
jβfjβ

) (
f †

jαcjα

)
(78)

Here, we have absorbed the term − J
N

nf c†
jαcjα derived

from the spin-diagonal part of (equation (76)) by a shift
µ→ µ− Jnf

N2 in the chemical potential. This interaction has
the form −gA†A, with g = J

N
and A = f †

jαcjα, which we
factorize using a Hubbard–Stratonovich transformation,

−gA†A→ A†V + V A + V V

g
(79)

so that (Lacroix and Cyrot, 1979; Read and Newns, 1983a)

HI (j)→ HI [V, j ] = V j

(
c†
jσ fjσ

)
+
(
f †

jσ cjσ

)
Vj

+N
V jVj

J
(80)

This is an exact transformation, provided the Vj (τ ) are
treated as fluctuating variables inside a path integral. The Vj

can be regarded as a spinless exchange boson for the Kondo
effect. In the parallel treatment of the infinite Anderson
model (Coleman, 1987a), Vj = V bj is the ‘slave boson’ field
associated with valence fluctuations.
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In diagrams:

J/N

J
N

(c†
s fs) ( f†s ′cs ′)−

J
N d (t − t′)

c†
s fs f †

s′cs′

(81)

The path integral for the Kondo lattice is then

Z =
∫

D[V, λ]

=Tr
[
T exp

(
−
∫ β

0 H [V,λ]dτ
)]

︷ ︸︸ ︷
∫

D[c, f ] exp



−
∫ β

0




∑

kσ

c†
kσ ∂τ ckσ +

∑

jσ

f †
jσ ∂τ fjσ + H [V, λ]







 (82)

where

H [V, λ] =
∑

kσ

εkc
†
kσ ckσ

+
∑

j

(
HI [Vj , j ] + λj [nf (j)−Q]

)
(83)

This is the ‘Read–Newns’ path integral formulation (Read
and Newns, 1983a; Auerbach and Levin, 1986) of the Kondo
lattice model. The path integral contains an outer integral∫
D[V, λ] over the gauge fields Vj and λj (τ), and an inner

integral
∫
D[c, f ] over the fermion fields moving in the

environment of the gauge fields. The inner path integral
is equal to a trace over the time-ordered exponential of
H [V, λ].

Since the action in this path integral grows extensively
with N , the large N limit is saturated by the saddle point
configurations of V and λ, eliminating the the outer integral
in equation (83). We seek a translationally invariant, static,
saddle point, where λj (τ ) = λ and Vj (τ ) = V . Since the
Hamiltonian is static, the interior path integral can be written
as the trace over the Hamiltonian evaluated at the saddle
point,

Z = Tre−βHMFT (N →∞) (84)

where

HMFT =H [V, λ]=
∑

kσ

εkc
†
kσ ckσ+

∑

j,σ

(
V c†

jσ fjσ+Vf †
jσ cjσ

+λf †
jσ fjσ

)
+ Nn

(
V V

J
− λoq

)

(85)

The saddle point is determined by the condition that
the Free energy F = −T ln Z is stationary with respect to
variations in V and λ. To impose this condition, we need
to diagonalize HMFT and compute the Free energy. First we
rewrite the mean-field Hamiltonian in momentum space,

HMFT =
∑

kσ

(
c†

kσ , f †
kσ

) [
εk V

V λ

](
ckσ
fkσ

)

+Nn

(
V V

J
− λq

)

(86)

where

f †
$kσ = 1√

N

∑

j

f †
jσ ei$k· $Rj (87)

is the Fourier transform of the f-electron field. This Hamil-
tonian can then be diagonalized in the form

HMFT =
∑

kσ

(
a†

kσ , b†
kσ

) [
Ek+ 0

0 Ek−

](
akσ
bkσ

)

+NNs

( |V |2

J
− λq

)
(88)

where a†
kσ and b†

kσ are linear combinations of c†
kσ and

f
†
$kσ , which describe the quasiparticles of the theory. The

momentum state eigenvalues E = E $k± are the roots of the
equation

Det
[
E1−

(
εk V

V λ

)]
= (E − εk)(E − λ)− |V |2

= 0 (89)

so

Ek± = εk + λ
2

±
[(
εk − λ

2

)2

+ |V |2
] 1

2

(90)

are the energies of the upper and lower bands. The dispersion
described by these energies is shown in Figure 17. Notice
that:
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Figure 17. (a) Dispersion produced by the injection of a composite fermion into the conduction sea. (b) Renormalized density of states,
showing ‘hybridization gap’ ('g).

• hybridization between the f-electron states and the con-
duction electrons builds an upper and lower Fermi band,
separated by an indirect ‘hybridization gap’ of width
'g = Eg(+)− Eg(−) ∼ TK, where

Eg(±) = λ± V 2

D∓
(91)

and ±D± are the top and bottom of the conduction band.
The ‘direct’ gap between the upper and lower bands is
2|V |.

• From (89), the relationship between the energy of the
heavy electrons (E) and the energy of the conduc-
tion electrons (ε) is given by ε = E − |V |2/(E − λ),
so that the density of heavy-electron states ρ∗(E) =∑

k,± δ(E − E
(±)
k ) is related to the conduction electron

density of states ρ(ε) by

ρ∗(E) = ρ dε
dE

= ρ(ε)
(

1 + |V |2

(E − λ)2

)

∼
{
ρ
(

1+ |V |2
(E−λ)2

)
outside hybridization gap,

0 inside hybridization gap,

(92)
so the ‘hybridization gap’ is flanked by two sharp peaks

of approximate width TK.
• The Fermi surface volume expands in response to the

injection of heavy electrons into the conduction sea,

NaD VFS

(2π)3 =
〈

1
Ns

∑

kσ

nkσ

〉

= Q + nc (93)

where aD is the unit cell volume, nkσ = a
†
kσ akσ +

b†
kσ bkσ is the quasiparticle number operator and nc is

the number of conduction electrons per unit cell. More

instructively, if ne = nc/a
D is the electron density,

e− density
︷︸︸︷
ne =

quasi particle density
︷ ︸︸ ︷
N

VFS

(2π)3 − Q

aD
︸︷︷︸

positive background

(94)

so the electron density nc divides into a contribution
carried by the enlarged Fermi sea, whose enlargement is
compensated by the development of a positively charged
background. Loosely speaking, each neutral spin in the
Kondo lattice has ‘ionized’ to produce Q negatively
charged heavy fermions, leaving behind a Kondo singlet
of charge +Qe (Figure 18).

To obtain V and λ, we must compute the free energy

F

N
= −T

∑

k,±
ln
[

1 + e−βEk±

]
+ Ns

( |V |2

J
− λq

)
(95)

+Qe

E(k) −(Q + nc)e

+
+

(a) (b)
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+ +

++ Kondo singlets:
charged background.
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−nce

−
−−

−−

Figure 18. Schematic diagram from Coleman, Paul and Rech
(2005a). (a) High-temperature state: small Fermi surface with a
background of spins; (b) Low-temperature state, where large Fermi
surface develops against a background of positive charge. Each
spin ‘ionizes’ into Q heavy electrons, leaving behind a a Kondo
singlet with charge +Qe. (Reproduced from P. Coleman, I. Paul,
and J. Rech, Phys. Rev. B 72, 2005, 094430, copyright  2005 by
the American Physical Society, with permission of the APS.)
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At T = 0, the free energy converges the ground-state energy
E0, given by

E0

NNs
=
∫ 0

−∞
ρ∗(E)E +

( |V |2

J
− λq

)
(96)

Using equation (92), the total energy is

Eo

NNs
=
∫ 0

−D

dερEdE +
∫ 0

−D

dEρ|V |2 E

(E − λ)2

+
( |V |2

J
− λq

)

=

Ec/(NNs )︷ ︸︸ ︷

−D2ρ

2
+

EK/(NNs )︷ ︸︸ ︷
'

π
ln
(
λe

TK

)
− λq (97)

where we have assumed that the upper band is empty and
the lower band is partially filled. TK = De

− 1
Jρ as before.

The first term in (97) is the conduction electron contribution
to the energy Ec/Nns , while the second term is the lattice
‘Kondo’ energy EK/NNs

. If now we impose the constraint
∂Eo
∂λ

= 〈nf 〉 −Q = 0 then λ = '
πq

so that the ground-state
energy can be written

EK

NNs
= '

π
ln
(
'e

πqTK

)
(98)

This energy functional has a ‘Mexican Hat’ form, with a
minimum at

' = πq

e2 TK (99)

confirming that' ∼ TK. If we now return to the quasiparticle
density of states ρ∗, we find it has the value

ρ∗(0) = ρ + q

TK
(100)

at the Fermi energy so the mass enhancement of the heavy
electrons is then

m∗

m
= 1 + q

ρTK
∼ qD

TK
(101)

2.3.3 The charge of the f electron

How does the f electron acquire its charge? We have
emphasized from the beginning that the charge degrees of
freedom of the original f electrons are irrelevant, indeed,
absent from the physics of the Kondo lattice. So how are
charged f electrons constructed out of the states of the
Kondo lattice, and how do they end up coupling to the
electromagnetic field?

The large N theory provides an intriguing answer. The
passage from the original Hamiltonian equation (75) to the
mean-field Hamiltonian equation (85) is equivalent to the
substitution

J

N
Sαβ(j)c†

jβcjα −→ V f †
jαcjα + V c†

jαfjα (102)

In other words, the composite combination of spin and
conduction electron are contracted into a single Fermi
field

J

N
Sαβ(j)c

†

jβ =



 J

N
f †

jαfjβc

†

jβ



→ Vf †
jα (103)

The amplitude V = J
N fjβc

†

jβ = − J
N
〈c†

jβfjβ〉 involves elec-
tron states that extend over decades of energy out to the
band edges. In this way, the f electron emerges as a compos-
ite bound-state of a spin and an electron. More precisely, in
the long-time correlation functions,

〈
[
Sγα(i)ciγ

]
(t)

[
Sαβ(j)c

†
jβ

]
(t ′)〉

|t−t ′|3!/TK−−−−−−−→ N |V 2|
J 2 〈fiα(t)f

†
jα(t

′)〉 (104)

Such ‘clustering’ of composite operators into a single entity
is well-known statistical mechanics as part of the operator
product expansion (Cardy, 1996). In many-body physics,
we are used to the clustering of fermions pairs into a
composite boson, as in the BCS model of superconductiv-

ity, −gψ↑(x)ψ↓(x ′)→ '(x − x ′). The unfamiliar aspect
of the Kondo effect is the appearance of a composite
fermion.

The formation of these composite objects profoundly mod-
ifies the conductivity and plasma oscillations of the electron
fluid. The Read–Newns path integral has two U(1) gauge
invariances – an external electromagnetic gauge invariance
associated with the conservation of charge and an internal
gauge invariance associated with the local constraints. The f
electron couples to the internal gauge fields rather than the
external electromagnetic fields, so why is it charged?

The answer lies in the broken symmetry associated with
the development of the amplitude V . The phase of V

transforms under both internal and external gauge groups.
When V develops an amplitude, its phase does not actually
order, but it does develop a stiffness which is sufficient to
lock the internal and external gauge fields together so that,
at low frequencies, they become synonymous. Written in a
schematic long-wavelength form, the gauge-sensitive part of
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the Kondo lattice Lagrangian is

L =
∑

σ

∫
dDx

[
c†
σ (x)(−i∂t + e4(x) + εp−e $A)cσ (x)

+f †
σ (x)(−i∂t + λ(x))fσ (x)

+
(

V (x)c†
σ (x)fσ (x) + H.c

)]
(105)

where p = −i $∇. Suppose V (x) = |V (x)|eiφ(x). There are
two independent gauge transformations that increase the
phase φ of the hybridization. In the external, electromagnetic
gauge transformation, the change in phase is absorbed onto
the conduction electron and electromagnetic field, so if
V → V eiα ,

φ → φ + α, c(x)→ c(x)e−iα(x),

e4(x)→ e4(x) + α̇(x), e $A→ e $A− $∇α(x) (106)

where (4, $A) denotes the electromagnetic scalar and vector
potential at site j and α̇ = ∂tα ≡ −i∂τα denotes the deriva-
tive with respect to real time t . By contrast, in the internal
gauge transformation, the phase change of V is absorbed
onto the f fermion and the internal gauge field (Read and
Newns, 1983a), so if V → V eiβ ,

φ → φ + β, f (x)→ f (x)eiβ(x),

λ(x)→ λ(x)− β̇(x) (107)

If we expand the mean-field free energy to quadratic order
in small, slowly varying changes in λ(x), then the change in
the action is given by

δS = −
χQ

2

∫
dDxdτδλ(x)2 (108)

where χQ = −δ2F/δλ2 is the f-electron susceptibility eval-
uated in the mean-field theory. However, δλ(x) is not gauge
invariant, so there must be additional terms. To guarantee
gauge invariance under both the internal and external trans-
formation, we must replace δλ by the covariant combination
δλ+ φ̇ − e4. The first two terms are required for invariance
under the internal gauge group, while the last two terms are
required for gauge invariance under the external gauge group.
The expansion of the action to quadratic order in the gauge
fields must therefore have the form

S ∼ −
χQ

2

∫
dτ
∑

j

(φ̇ + δλ(x)− e4(x))2 (109)

so the phase φ acquires a rigidity in time that generates
a ‘mass’ or energy cost associated with difference of the

external and internal potentials. The minimum energy static
configuration is when

δλ(x) + φ̇(x) = e4(x) (110)

so when the external potential changes slowly, the internal
potential tracks it. It is this effect that keeps the Kondo
resonance pinned at the Fermi surface. We can always choose
the gauge where the phase velocity φ̇ is absorbed into the
local gauge field λ. Recent work by Coleman, Marston and
Schofield (2005b) has extended this kind of reasoning to the
case where RKKY couplings generate a dispersion jp−A for
the spinons, where A is an internal vector potential, which
suppresses currents of the gauge charge nf . In this case, the
long-wavelength action has the form

S = 1
2

∫
d3xdτ

[
ρs

(
e $A + $∇φ − $A

)2

−χQ(e4− φ̇ − δλ)2
]

(111)

In this general form, heavy-electron physics can be seen
to involve a kind of ‘Meissner effect’ that excludes the
difference field e $A− $A from within the metal, locking the
internal field to the external electromagnetic field, so that
the f electrons, which couple to it, now become charged
(Figure 19).

2.3.4 Optical conductivity of the heavy-electron fluid

One of the interesting consequences of the heavy-electron
charge is a complete renormalization of the electronic plasma
frequency (Millis, Lavagna and Lee, 1987b). The electronic

(b)(a)

A(x)A(x)

A(x)
A(x)

Figure 19. (a) Spin liquid, or local moment phase, internal field
A decoupled from electromagnetic field. (b) Heavy-electron phase,
internal gauge field ‘locked’ together with electromagnetic field.
Heavy electrons are now charged and difference field [e $A(x)−
A(x)] is excluded from the material.
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plasma frequency is related via a f-sum rule to the integrated
optical conductivity

∫ ∞

0

dω
π
σ(ω) = f1 = π

2

(
nce

2

m

)
(112)

where ne is the density of electrons [2]. In the absence of
local moments, this is the total spectral weight inside the
Drude peak of the optical conductivity.

When the heavy-electron fluid forms, we need to consider
the plasma oscillations of the enlarged Fermi surface. If the
original conduction sea was less than half filled, then the
renormalized heavy-electron band is more than half filled,
forming a partially filled hole band. The density of electrons
in a filled band is N/aD , so the effective density of hole
carriers is then

nHF = (N −Q−Nc)/a
D = (N −Q)/aD − nc (113)

The mass of the excitations is also renormalized, m→ m∗.
The two effects produce a low-frequency ‘quasiparticle’
Drude peak in the conductivity, with a small total weight

∫ ∼V

0
dωσ(ω) = f2 = π

2
nHFe

2

m∗
∼ f1

× m

m∗

(
nHF

nc

)
- f1 (114)

Optical conductivity probes the plasma excitations of the
electron fluid at low momenta. The direct gap between the
upper and lower bands of the Kondo lattice are separated by
a direct hybridization gap of the order 2V ∼

√
DTK. This

scale is substantially larger than the Kondo temperature, and
it defines the separation between the thin Drude peak of the
heavy electrons and the high-frequency contribution from the
conduction sea.

In other words, the total spectral weight is divided up into a
small ‘heavy fermion’ Drude peak, of total weight f2, where

σ(ω) = nHFe
2

m∗
1

(τ ∗)−1 − iω
(115)

separated off by an energy of the order V ∼
√

TKD from an
‘interband’ component associated with excitations between
the lower and upper Kondo bands (Millis and Lee, 1987a;
Degiorgi, Anders, Gruner and Society, 2001). This second
term carries the bulk ∼f1 of the spectral weight (Figure 20).

Simple calculations, based on the Kubo formula, confirm
this basic expectation, (Millis and Lee, 1987a; Degiorgi,
Anders, Gruner and Society, 2001) showing that the relation-
ship between the original relaxation rate of the conduction
sea and the heavy-electron relaxation rate τ ∗ is

(τ ∗)−1 = m

m∗
(τ )−1 (116)

ne
2 t

m

‘Interband’

w

pne2

2m∗f2 =

pne2

2m
f1 =

∆w~ V~ TKD

m∗(t∗)−1 = t−1 m

s
(w

)

TKD~

Figure 20. Separation of the optical sum rule in a heavy-fermion
system into a high-energy ‘interband’ component of weight f2 ∼
ne2/m and a low-energy Drude peak of weight f1 ∼ ne2/m∗.

Notice that this means that the residual resistivity

ρo = m∗

ne2τ ∗
= m

ne2τ
(117)

is unaffected by the effects of mass renormalization. This
can be understood by observing that the heavy-electron
Fermi velocity is also renormalized by the effective mass,
v∗F = m

m∗ , so that the mean-free path of the heavy-electron
quasiparticles is unaffected by the Kondo effect.

l∗ = v∗Fτ
∗ = vFτ (118)

The formation of a narrow Drude peak, and the presence
of a direct hybridization gap, have been seen in optical
measurements on heavy-electron systems (Schlessinger, Fisk,
Zhang and Maple, 1997; Beyerman, Gruner, Dlicheouch and
Maple, 1988; Dordevic et al., 2001). One of the interesting
features about the hybridization gap of size 2V is that the
mean-field theory predicts that the ratio of the direct to the

indirect hybridization gap is given by 2V
TK
∼ 1√

ρTK
∼
√

m∗
me

,
so that the effective mass of the heavy electrons should scale
as square of the ratio between the hybridization gap and the
characteristic scale T ∗ of the heavy Fermi liquid

m∗

me
∝
(

2V

TK

)2

(119)

In practical experiments, TK is replaced by the ‘coherence
temperature’ T ∗, where the resistivity reaches a maximum.
This scaling law is broadly followed (see Figure 21) in
measured optical data (Dordevic et al., 2001), and provides
further confirmation of the correctness of the Kondo lattice
picture.
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Figure 21. Scaling of the effective mass of heavy electrons with the square of the optical hybridization gap. (Reproduced from
S.V. Dordevic, D.N. Basov, N.R. Dilley, E.D. Bauer, and M.B. Maple, Phys. Rev. Lett. 86, 2001, 684, copyright  by the American
Physical Society, with permission from the APS.)

2.4 Dynamical mean-field theory

The fermionic large N approach to the Kondo lattice provides
an invaluable description of heavy-fermion physics, one that
can be improved upon beyond the mean-field level. For
example, the fluctuations around the mean-field theory can be
used to compute the interactions, the dynamical correlation
functions, and the optical conductivity (Coleman, 1987b;
Millis and Lee, 1987a). However, the method does face a
number of serious outstanding drawbacks:

• False phase transition: In the large N limit, the crossover
between the heavy Fermi liquid and the local moment
physics sharpens into a phase transition where the 1/N

expansion becomes singular. There is no known way of
eliminating this feature in the 1/N expansion.

• Absence of magnetism and superconductivity: The large
N approach, based on the SU(N) group, cannot form
a two-particle singlet for N > 2. The SU(N) group
is fine for particle physics, where baryons are bound-
states of N quarks, but, for condensed matter physics,
we sacrifice the possibility of forming two-particle
or two-spin singlets, such as Cooper pairs and spin-
singlets. Antiferromagnetism and superconductivity are
consequently absent from the mean-field theory.

Amongst the various alternative approaches currently
under consideration, one of particular note is the DMFT. The

idea of DMFT is to reduce the lattice problem to the physics
of a single magnetic ion embedded within a self-consistently
determined effective medium (Georges, Kotliar, Krauth and
Rozenberg, 1996; Kotliar et al., 2006). The effective medium
is determined self-consistently from the self-energies of the
electrons that scatter off the single impurity. In its more
advanced form, the single impurity is replaced by a cluster
of magnetic ions.

Early versions of the DMFT were considered by Kuramoto
and Watanabe (1987), and Cox and Grewe (1988), and others,
who used diagrammatic means to extract the physics of
a single impurity. The modern conceptual framework for
DMFT was developed by Metzner and Vollhardt (1989),
and Georges and Kotliar (1992). The basic idea behind
DMFT is linked to early work of Luttinger and Ward (1960),
and Kotliar et al. (2006), who found a way of writing the
free energy as a variational functional of the full electronic
Green’s function

Gij = −〈Tψi(τ )ψ
†
j (0)〉 (120)

Luttinger and Ward showed that the free energy is a
variational functional of F [G] from which Dyson’s equation
relating the G to the bare Green’s function G0

[G−1
0 − G−1]ij = 6ij [G] (121)
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Figure 22. In the dynamical mean-field theory, the many-body
physics of the lattice is approximated by a single impurity in a self-
consistently determined environment. Each time the electron makes
a sortie from the impurity, its propagation through the environment
is described by a self-consistently determined local propagator G(ω),
represented by the thick gray line.

The quantity 6[G] is a functional, a machine which takes the
full propagator of the electron and outputs the self-energy of
the electron. Formally, this functional is the sum of the one-
particle irreducible Feynman diagrams for the self-energy:
while its output depends on the input Greens function, the
actual the machinery of the functional is determined solely
by the interactions. The only problem is that we do not know
how to calculate it.

DMFT solves this problem by approximating this func-
tional by that of a single impurity or a cluster of magnetic
impurities (Figure 22). This is an ideal approximation for
a local Fermi liquid, where the physics is highly retarded
in time, but local in space. The local approximation is also
asymptotically exact in the limit of infinite dimensions (Met-
zner and Vollhardt, 1989). If one approximates the input
Green function to 6 by its on-site component Gij ≈ Gδij ,
then the functional becomes the local self-energy functional
of a single magnetic impurity,

6ij [Gls] ≈ 6ij [Gδls] ≡ 6impurity[G]δij (122)

DMFT extracts the local self-energy by solving an Ander-
son impurity model embedded in an arbitrary electronic envi-
ronment. The physics of such a model is described by a path
integral with the action

S = −
∫ β

0
dτdτ ′f †

σ (τ )G−1
0 (τ − τ ′)fσ (τ ′)

+U

∫ β

0
dτn↑(τ )n↓(τ ) (123)

where G0(τ ) describes the bare Green’s function of the
f electron, hybridized with its dynamic environment. This

quantity is self-consistently updated by the DMFT. There are,
by now, a large number of superb numerical methods to solve
an Anderson model for an arbitrary environment, including
the use of exact diagonalization, diagrammatic techniques,
and the use of Wilson’s renormalization group (Bulla, 2006).
Each of these methods is able to take an input ‘environment’
Green’s function providing as output the impurity self-energy
6[G0] = 6(iωn).

Briefly, this is how the DMFT computational cycle works.
One starts with an estimate for the environment Green’s
function G0 and uses this as input to the ‘impurity solver’ to
compute the first estimate 6(iωn) of the local self-energy.
The interaction strength is set within the impurity solver. This
local self-energy is used to compute the Green’s functions of
the electrons in the environment. In an Anderson lattice, the
Green’s function becomes

G(k, ω) =
[
ω − Ef −

V 2

ω − εk
−6(ω)

]−1

(124)

where V is the hybridization and εk the dispersion of the
conduction electrons. It is through this relationship that the
physics of the lattice is fed into the problem. From G(k, ω),
the local propagator is computed

G(ω) =
∑

k

[
ω − Ef −

V 2

ω − εk
−6(ω)

]−1

(125)

Finally, the new estimate for the bare environment Green’s
function G0 is then obtained by inverting the equation G−1 =
G−1

0 −6, so that

G0(ω) =
[
G−1(ω) +6(ω)

]
(126)

This quantity is then reused as the input to an ‘impurity
solver’ to compute the next estimate of 6(ω). The whole pro-
cedure is then reiterated to self-consistency. For the Anderson
lattice, Cyzcholl (Schweitzer and Czycholl, 1991) has shown
that remarkably good results are obtained using a perturba-
tive expansion for6 to the order of U 2 (Figure 23). Although
this approach is not sufficient to capture the limiting Kondo
behavior much, the qualitative physics of the Kondo lattice,
including the development of coherence at low temperatures,
is already captured by this approach. However, to go to the
strongly correlated regime, where the ratio of the interaction
to the impurity hybridization width U/(π') is much larger
than unity, one requires a more sophisticated solver.

There are many ongoing developments under way using
this powerful new computational tool, including the incor-
poration of realistic descriptions of complex atoms, and the
extension to ‘cluster DMFT’ involving clusters of magnetic
moments embedded in a self-consistent environment. Let me
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Figure 23. Resistivity for the Anderson lattice, calculated using
the DMFT, computing the self-energy to order U2. (1), (2),
(3), and (4) correspond to a sequence of decreasing electron
density corresponding to nTOT = (0.8, 0.6, 0.4, 0.2) respectively.
(Reproduced from H. Schweitzer and G. Czycholl, Phys. Rev. Lett.
67, 1991, 3724 copyright  by the American Physical Society, with
permission of the APS.)

end this brief summary with a list of a few unsolved issues
with this technique

• There is, at present, no way to relate the thermodynamics
of the bulk to the impurity thermodynamics.

• At present, there is no natural extension of these methods
to the infinite U Anderson or Kondo models that
incorporates the Green’s functions of the localized f-
electron degrees of freedom as an integral part of the
DMFT.

• The method is largely a numerical black box, making
it difficult to compute microscopic quantities beyond
the electron-spectral functions. At the human level,
it is difficult for students and researchers to separate
themselves from the ardors of coding the impurity
solvers, and make time to develop new conceptual and
qualitative understanding of the physics.

3 KONDO INSULATORS

3.1 Renormalized silicon

The ability of a dense lattice of local moments to transform
a metal into an insulator, a ‘Kondo insulator’ is one of the
remarkable and striking consequences of the dense Kondo
effect (Aeppli and Fisk, 1992; Tsunetsugu, Sigrist and Ueda,
1997; Riseborough, 2000). Kondo insulators are heavy-
electron systems in which the the liberation of mobile charge
through the Kondo effect gives rise to a filled heavy-electron
band in which the chemical potential lies in the middle
of the hybridization gap. From a quasiparticle perspective,

s = 1/2
g = 3.92
∆ = 750°K
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Figure 24. Schematic band picture of Kondo insulator, illustrating
how a magnetic field drives a metal-insulator transition. Modified
from Aeppli and Fisk (1992). (Reproduced from V. Jaccarino,
G.K. Wertheim, J.H. Wernick, C.R. Walker and S. Arajs, Phys. Rev.
160, 1967, 476 copyright  1967 by the American Physical Society,
with permission of the APS.)

Kondo insulators are highly renormalized ‘band insulators’
(Figure 24). The d-electron Kondo insulator FeSi has been
referred to as renormalized silicon. However, like Mott–
Hubbard insulators, the gap in their spectrum is driven by
interaction effects, and they display optical and magnetic
properties that cannot be understood with band theory.

There are about a dozen known Kondo insulators, includ-
ing the rare-earth systems SmB6 (Menth, Buehler and
Geballe, 1969), YB12 (Iga, Kasaya and Kasuya, 1988),
CeFe4P12 (Meisner et al., 1985), Ce3Bi4Pt3 (Hundley et al.,
1990), CeNiSn (Takabatake et al., 1992, 1990; Izawa et al.,
1999) and CeRhSb (Takabatake et al., 1994), and the d-
electron Kondo insulator FeSi. At high temperatures, Kondo
insulators are local moment metals, with classic Curie sus-
ceptibilities, but, at low temperatures, as the Kondo effect
develops coherence, the conductivity and the magnetic sus-
ceptibility drop toward zero. Perfect insulating behavior is,
however, rarely observed due to difficulty in eliminating
impurity band formation in ultranarrow gap systems. One of
the cleanest examples of Kondo-insulating behavior occurs
in the d-electron system FeSi (Jaccarino et al., 1967; DiTusa
et al., 1997). This ‘flyweight’ heavy-electron system provides
a rather clean realization of the phenomena seen in other
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Figure 25. Temperature-dependent susceptibility in FeSi (after Jaccarino et al., 1967), fitted to the activated Curie form χ(T ) =
(C/T )e−'/(kBT ), with C = (gµB)2j (j + 1), and g = 3.92, ' = 750 K. The Curie tail has been subtracted. (Reproduced from G. Aeppli
and Z. Fisk, Comm. Condens. Matter Phys. 16 (1992) 155, with permission from Taylor & Franics Ltd, www/.nformaworld.com.)

Kondo insulators, with a spin and charge gap of about 750 K
(Schlessinger, Fisk, Zhang and Maple, 1997). Unlike its
rare-earth counterparts, the small spin-orbit coupling in this
materials eliminates the Van Vleck contribution to the sus-
ceptibility at T = 0, giving rise to a susceptibility which
almost completely vanishes at low temperatures (Jaccarino
et al., 1967) (Figure 25).

Kondo insulators can be understood as ‘half-filled’ Kondo
lattices in which each quenched moment liberates a nega-
tively charged heavy electron, endowing each magnetic ion
an extra unit of positive charge. There are three good pieces
of support for this theoretical picture:

• Each Kondo insulator has its fully itinerant semiconduct-
ing analog. For example, CeNiSn is isostructural and
isoelectronic with the semiconductor TiNiSi containing
Ti4+ ions, even though the former contains Ce3+ ions
with localized f moments. Similarly, Ce3Bi4Pt3, with a
tiny gap of the order 10 meV is isolectronic with semi-
conducting Th3Sb4Ni3, with a 70 meV gap, in which the
5f-electrons of the Th4+ ion are entirely delocalized.

• Replacing the magnetic site with isoelectronic nonmag-
netic ions is equivalent to doping, thus in Ce1−xLaxBi4
Pt3, each La3+ ion behaves as an electron donor in a lat-
tice of effective Ce4+ ions. Ce3−xLaxPt4Bi3 is, in fact,
very similar to CePd3, which contains a pseudogap in
its optical conductivity, with a tiny Drude peak (Bucher
et al., 1995).

• The magnetoresistance of Kondo insulators is large and
negative, and the ‘insulating gap’ can be closed by the
action of physically accessible fields. Thus, in Ce3Bi4Pt3,
a 30 T field is sufficient to close the indirect hybridization
gap.

These equivalences support the picture of the Kondo effect
liberating a composite fermion.

Figure 26(a) shows the sharp rise in the resistivity of
Ce3Bi4Pt3 as the Kondo-insulating gap forms. In Kondo
insulators, the complete elimination of carriers at low tem-
peratures is also manifested in the optical conductivity.
Figure 26(b) shows the temperature dependence of the opti-
cal conductivity in Ce3Bi4Pt3, showing the emergence of a
gap in the low-frequency optical response and the loss of
carriers at low energies.

The optical conductivity of the Kondo insulators is of
particular interest. Like the heavy-electron metals, the devel-
opment of coherence is marked by the formation of a direct
hybridization gap in the optical conductivity. As this forms, a
pseudogap develops in the optical conductivity. In a noninter-
acting band gap, the lost f-sum weight inside the pseudogap
would be deposited above the gap. In heavy-fermion metals,
a small fraction of this weight is deposited in the Drude peak
– however, most of the weight is sent off to energies com-
parable with the bandwidth of the conduction band. This is
one of the most direct pieces of evidence that the formation
of Kondo singlets involves electron energies that spread out
to the bandwidth. Another fascinating feature of the heavy-
electron ‘pseudogap’ is that it forms at a temperature that is
significantly lower than the pseudogap. This is because the
pseudogap has a larger width given by the geometric mean of
the coherence temperature and the bandwidth 2V ∼

√
TKD.

The extreme upward transfer of spectral weight in Kondo
insulators has not yet been duplicated in detailed theoretical
models. For example, while calculations of the optical con-
ductivity within the DMFT do show spectral weight transfer,
it is not yet possible to reduce the indirect band gap to the
point where it is radically smaller than the interaction scale U

(Rozenberg, Kotliar and Kajueter, 1996). It may be that these
discrepancies will disappear in future calculations based on
the more extreme physics of the Kondo model, but these
calculations have yet to be carried out.
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Figure 26. (a) Temperature-dependent resistivity of Ce3Pt4Bi3
showing the sharp rise in resistivity at low temperatures. (Repro-
duced from M.F. Hundley, P.C. Canfield, J.D. Thompson, Z. Fisk,
and J.M. Lawrence, Phys. Rev. B. 42, 1990, 6842, copyright 
1990 by the American Physical Society, with permission of the
APS.) Replacement of local moments with spinless La ions acts
like a dopant. (b) Real part of optical conductivity σ 1(ω) for Kondo
insulator Ce3Pt4Bi3. (Reproduced from B. Bucher, Z. Schlessinger,
P.C. Canfield, and Z. Fisk 03/04/2007 Phys. Rev. Lett 72, 1994,
522, copyright  1994 by the American Physical Society, with
permission of the APS.) The formation of the pseudogap associ-
ated with the direct hybridization gap leads to the transfer of f-sum
spectral weight to high energies of order the bandwidth. The pseu-
dogap forms at temperatures that are much smaller than its width
(see text). Insert shows σ 1(ω) in the optical range.

There are, however, a number of aspects of Kondo
insulators that are poorly understood from the the simple
hybridization picture, in particular,

• The apparent disappearance of RKKY magnetic interac-
tions at low temperatures.

• The nodal character of the hybridization gap that devel-
ops in the narrowest gap Kondo insulators CeNiSn and
CeRhSb.

• The nature of the metal-insulator transition induced by
doping.

3.2 Vanishing of RKKY interactions

There are a number of experimental indications that the low-
energy magnetic interactions vanish at low frequencies in a
Kondo lattice. The low-temperature product of the suscepti-
bility and temperature χT reported (Aeppli and Fisk, 1992)
to scale with the inverse Hall constant 1/RH , representing
the exponentially suppressed density of carriers, so that

χ ∼ 1
RHT

∼ e−'/T

T
(127)

The important point here is that the activated part of the
susceptibility has a vanishing Curie–Weiss temperature. A
similar conclusion is reached from inelastic neutron scatter-
ing measurements of the magnetic susceptibility χ ′(q, ω) ∼
in CeNiSn and FeSi, which appears to lose all of its momen-
tum dependence at low temperatures and frequencies. There
is, to date, no theory that can account for these vanishing
interactions.

3.3 Nodal Kondo insulators

The narrowest gap Kondo insulators, CeNiSn and CeRhSb,
are effectively semimetals, for although they do display
tiny pseudogaps in their spin and charge spectra, the purest
samples of these materials develop metallic behavior (Izawa
et al., 1999). What is particularly peculiar (Figure 27) about
these two materials is that the NMR relaxation rate 1/(T1)

shows a T 3 temperature dependence from about 10 to 1 K,
followed by a linear Korringa behavior at lower temperatures.
The usual rule of thumb is that the NMR relaxation rate is
proportional to a product of the temperature and the thermal
average of the electronic density of states N∗(ω)

1
T1
∼ T N(ω)2 ∼ T [N(ω ∼ T )]2 (128)

where N(ω)2 =
∫

dε
(
− ∂f (ω)

∂ω

)
N(ω)2 is the thermally smea-

red average of the squared density of states. This suggests
that the electronic density of states in these materials has
a ‘V ’ shaped form, with a finite value at ω = 0. Ikeda
and Miyake (1996) have proposed that the Kondo-insulating
state in these materials develops in a crystal-field state with
an axially symmetric hybridization vanishing along a single
crystal axis. In such a picture, the finite density of states
does not derive from a Fermi surface, but from the angular
average of the coherence peaks in the density of states. The
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Figure 27. (a) NMR relaxation rate 1/T1 in CeRhSb and CeNiSn, showing a T 3 relaxation rate sandwiched between a low- and a
high-temperature T -linear Korringa relaxation rate, suggesting a V -shaped density of states. (Reproduced from K. Nakamura, Y. Kitaoka,
K. Asayama, T. Takabatake, H. Tanaka, and H. Fujii, J. Phys. Soc Japan 63, 1994, 33, with permission of the Physical Society of Japan.) (b)
Contour plot of the ground-state energy in mean-field theory for the narrow gap Kondo insulators, as a function of the two first components
of the unit vector b̂ (the third one is taken as positive). The darkest regions correspond to lowest values of the free energy. Arrows point
to the three global and three local minima that correspond to nodal Kondo insulators. (Reproduced from J. Moreno and P. Coleman, Phys.
Rev. Lett. 84, 2000, 342, copyright  2000 by the American Physical Society, with permission of the APS.) (c) Density of states of Ikeda
and Miyake (1996) state that appears as the global minimum of the Kinetic energy. (Reproduced from H. Ikeda, and K. Miyake J. Phys.
Soc. Jpn. 65, 1996, 1769, with permission of the Physical Society of Japan.) (d) Density of states of the MC state (Moreno and Coleman,
2000) that appears as a local minimum of the Kinetic energy, with more pronounced ‘V’-shaped density of states.

odd thing about this proposal is that CeNiSn and CeRhSb are
monoclinic structures, and the low-lying Kramers doublet of
the f state can be any combination of the | ± 1

2 〉, | ± 3
2 〉, or

| ± 5
2 〉 states:

|± = b1| ± 1/2〉 + b2| ± 5/2〉 + b3| ∓ 3/2〉 (129)

where b̂ = (b1, b2, b3) could, in principle, point anywhere
on the unit sphere, depending on details of the monoclinic
crystal field. The Ikeda Miyake model corresponds to three
symmetry-related points in the space of crystal-field ground
states,

b̂ =
{

(∓
√

2
4 ,−

√
5

4 , 3
4 )

(0, 0, 1)
(130)

where a node develops along the x, y, or z axis, respectively.
But the nodal crystal-field states are isolated ‘points’ amidst
a continuum of fully gapped crystal-field states. Equally
strangely, neutron scattering results show no crystal-field
satellites in the dynamical spin susceptibility of CeNiSn,
suggesting that the crystal electric fields are quenched
(Alekseev et al., 1994), and that the nodal physics is a many-
body effect (Kagan, Kikoin and Prokof’ev, 1993; Moreno and
Coleman, 2000). One idea is that Hund’s interactions provide
the driving force for this selection mechanism. Zwicknagl,
Yaresko and Fulde (2002) have suggested that Hund’s

couplings select the orbitals in multi f electron heavy-electron
metals such as UPt3. Moreno and Coleman (2000) propose a
similar idea in which virtual valence fluctuations into the
f2 state generate a many-body or a Weiss effective field
that couples to the orbital degrees of freedom, producing an
effective crystal field that adjusts itself in order to minimize
the kinetic energy of the f electrons. This hypothesis is
consistent with the observation that the Ikeda Miyake state
corresponds to the Kondo-insulating state with the lowest
kinetic energy, providing a rational for the selection of
the nodal configurations. Moreno and Coleman also found
another nodal state with a more marked V -shaped density
of states that may fit the observed properties more precisely.
This state is also a local minimum of the electron Kinetic
energy. These ideas are still in their infancy, and more work
needs to be done to examine the controversial idea of a Weiss
crystal field, both in the insulators and in the metals.

4 HEAVY-FERMION
SUPERCONDUCTIVITY

4.1 A quick tour

Since the discovery (Steglich et al., 1976) of superconduc-
tivity in CeCu2Si2, the list of known HFSCs has grown to
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include more than a dozen (Sigrist and Ueda, 1991b) mate-
rials with a great diversity of properties (Sigrist and Ueda,
1991a; Cox and Maple, 1995). In each of these materials,
the jump in the specific heat capacity at the superconducting
phase transition is comparable with the normal state specific
heat

(Cs
v − Cn

v )

CV
∼ 1− 2 (131)

and the integrated entropy beneath the Cv/T curve of the
superconductor matches well with the corresponding area for
the normal phase obtained when superconductivity is sup-
pressed by disorder or fields

∫ Tc

0
dT

(Cs
v − Cn

v )

T
= 0 (132)

Since the normal state entropy is derived from the f moments,
it follows that these same degrees of freedom are involved
in the development of the superconucting state. With the
exception of a few anomalous cases, (UBe13, PuCoGa5, and
CeCoIn5), heavy-fermion superconductivity develops out of
the coherent, paramagnetic heavy Fermi liquid, so heavy
fermion superconductivity can be said to involve the pairing
of heavy f electrons.

Independent confirmation of the ‘heavy’ nature of the pair-
ing electrons comes from observed size of the London pen-
etration depth λL and superconducting coherence length ξ in
these systems, both of which reflect the enhanced effective
mass. The large mass renormalization enhances the penetra-
tion depth, whilst severely contracting the coherence length,
making these extreme type-II superconductors. The Lon-
don penetration depth of HFSCs agree well with the value
expected on the assumption that only spectral weight in the
quasiparticle Drude peak condenses to form a superconduc-
tor by

1

µoλ
2
L

= ne2

m∗
=
∫

ω∈D.P

dω
π
σ(ω)- ne2

m
(133)

London penetration depths in these compounds are a factor of
20–30 times longer (Broholm et al., 1990) than in supercon-
ductors, reflecting the large enhancement in effective mass.
By contrast, the coherence lengths ξ ∼ vF/' ∼ hkF/(m

∗')

are severely contracted in a HFSC. The orbitally limited
upper critical field is determined by the condition that an area
ξ 2 contains a flux quantum ξ 2Bc ∼ h

2e
. In UBe13, a super-

conductor with 0.9 K transition temperature, the upper critical
field is about 11 T, a value about 20 times larger than a con-
ventional superconductor of the same transition temperature.

Table 2 shows a selected list of HFSCs. ‘Canonical’
HFSCs, such as CeCu2Si2 and UPt3, develop superconductiv-
ity out of a paramagnetic Landau–Fermi liquid. ‘Preordered’

superconductors, such as UPt2Al3 (Geibel et al., 1991a,b),
CePt3Si, and URu2Si2, develop another kind of order before
going superconducting at a lower temperature. In the case
of URu2Si2, the nature of the upper ordering transition
is still unidentified, but, in the other examples, the upper
transition involves the development of antiferromagnetism.
‘Quantum critical’ superconductors, including CeIn3 and
CeCu2(Si1−xGex)2, develop superconductivity when pressure
is tuned close to a QCP. CeIn3 develops superconductivity at
the pressure-tuned antiferromagnetic quantum critical point
at 2.5 GPa (25 kbar). CeCu2 (Si,Ge)2 has two islands, one
associated with antiferromagnetism at low pressure and a
second at still higher pressure, thought to be associated with
critical valence fluctuations (Yuan et al., 2006).

‘Strange’ superconductors, which include UBe13, the 115
material CeCoIn5, and PuCoGa5, condense into the supercon-
ducting state out of an incoherent or strange metallic state.
UBe13 has a resistance of the order 150 µ&cm at its transi-
tion temperature. CeCoIn5 bears superficial resemblance to
a high-temperature superconductor, with a linear tempera-
ture resistance in its normal state, while its cousin, PuCoGa5

transitions directly from a Curie paramagnet of unquenched
f spins into an anisotropically paired, singlet superconductor.
These particular materials severely challenge our theoretical
understanding, for the heavy-electron quasiparticles appear to
form as part of the condensation process, and we are forced
to address how the f-spin degrees of freedom incorporate into
the superconducting parameter.

4.2 Phenomenology

The main body of theoretical work on heavy-electron sys-
tems is driven by experiment, and focuses directly on the
phenomenology of the superconducting state. For these pur-
poses, it is generally sufficient to assume a Fermi liquid
of preformed mobile heavy electrons, an electronic analog
of superfluid Helium-3, in which the quasiparticles interact
through a phenomenological BCS model. For most purposes,
the Landau–Ginzburg theory is sufficient. I regret that, in this
short review, I do not have time to properly represent and
discuss the great wealth of fascinating phenomenology, the
wealth of multiple phases, and the detailed models that have
been developed to describe them. I refer the interested reader
to reviews on this subject. (Sigrist and Ueda, 1991a).

On theoretical grounds, the strong Coulomb interac-
tions of the f electrons that lead to moment formation in
heavy-fermion compounds are expected to heavily suppress
the formation of conventional s-wave pairs in these sys-
tems. A large body of evidence favors the idea that the
gap function and the anomalous Green function between
paired heavy electrons Fαβ(x) = 〈c†

α(x)c†
β(0)〉 is spatially
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Table 2. Selected HFSCs.

Type Material Tc (K) Knight shift Remarks Gap symmetry References
(singlet)

Canonical CeCu2Si2 0.7 Singlet First HFSC Line nodes Steglich et al. (1976)
UPt3 0.48 ? Double transition to

T-violating state
Line and point

nodes
Stewart, Fisk, Willis and

Smith (1984b)

Preordered
UPd2Al3 2 Singlet Néel AFM

TN = 14 K
Line nodes
' ∼ cos 2χ

Geibel et al. (1991a),
Sato et al. (2001) and
Tou et al. (1995)

URu2Si2 1.3 Singlet Hidden order at
T0 = 17.5 K

Line nodes Palstra et al. (1985) and
Kim et al. (2003)

CePt3Si 0.8 Singlet and
Triplet

Parity-violating
crystal. TN = 3.7 K

Line nodes Bauer et al. (2004)

Quantum
critical

CeIn3 0.2 (2.5 GPa) Singlet First quantum critical
HFSC

Line nodes Mathur et al. (1998)

CeCu2 (Si1−xGex)2 0.4 (P = 0)
0.95 (5.4 GPa)

Singlet Two islands of SC as
function of pressure

Line nodes Yuan et al. (2006)

Quadrupolar PrOs4Sb12 1.85 Singlet Quadrupolar
fluctuations

Point nodes Isawa et al. (2003)

Strange
CeCoIn5 2.3 Singlet Quasi-2D

ρn ∼ T
Line nodes

dx2−y2

Petrovic et al. (2001)

UBe13 0.86 ? Incoherent metal at Tc Line nodes Andres, Graebner and Ott
(1975)

PuCoGa5 18.5 Singlet Direct transition Curie
metal→HFSC

Line nodes Sarrao et al. (2002)

anisotropic, forming either p-wave triplet or d-wave singlet
pairs.

In BCS theory, the superconducting quasiparticle excita-
tions are determined by a one-particle Hamiltonian of the
form

H =
∑

k,σ

εkf
†
kαfkα +

∑

k

[f †
kα'αβ(k)f

†
−kβ

+f−kβ'βα(k)fkα] (134)

where

'αβ(k) =
{

'(k)(iσ 2)αβ (singlet)
$d(k) · (iσ 2 $σ)αβ (triplet)

(135)

For singlet pairing, '(k) is an even parity function of k,
while for triplet pairing, $d(k) is a an odd-parity function of
k with three components.

The excitation spectrum of an anisotropically paired sin-
glet superconductor is given by

Ek =
√
ε2

k + |'k|2 (136)

This expression can also be used for a triplet superconductor
that does not break the time-reversal symmetry by making
the replacement |'k|2 ≡ $d†(k) · $d(k).

Heavy-electron superconductors are anisotropic supercon-
ductors, in which the gap function vanishes at points, or,
more typically, along lines on the Fermi surface. Unlike
s-wave superconductors, magnetic and nonmagnetic impu-
rities are equally effective at pair breaking and suppressing
Tc in these materials. A node in the gap is the result of sign
changes in the underlying gap function. If the gap function
vanishes along surfaces in momentum space, the intersection
of these surfaces with the Fermi surface produces ‘line nodes’
of gapless quasiparticle excitations. As an example, consider
UPt3, where, according to one set of models (Blount, Varma
and Aeppli, 1990; Joynt, 1988; Puttika and Joynt, 1988; Hess,
Tokuyasu and Sauls, 1990; Machida and Ozaki, 1989), pair-
ing involves a complex d-wave gap

'k ∝ kz(k̂x ± iky), |'k|2 ∝ k2
z (k

2
x + k2

y) (137)

Here 'k vanishes along the basal plane kz = 0, producing a
line of nodes around the equator of the Fermi surface, and
along the z axis, producing a point node at the poles of the
Fermi surface.
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One of the defining properties of line nodes on the Fermi
surface is a quasiparticle density of states that vanishes
linearly with energy

N∗(E) = 2
∑

k

δ(E − Ek) ∝ E (138)

The quasiparticles surrounding the line node have a ‘rela-
tivistic’ energy spectrum. In a plane perpendicular to the
node, Ek ∼

√
(vF k1)2 + (αk2)2, where α = d'/dk2 is the

gradient of the gap function and k1 and k2 the momen-
tum measured in the plane perpendicular to the line node.
For a two-dimensional relativistic particle with dispersion
E = ck, the density of states is given by N(E) = |E|

4πc2 . For
the anisotropic case, we need to replace c by the geometric
mean of vF and α, so c2 → vFα. This result must then be
doubled to take account of the spin degeneracy and averaged
over each line node:

N(E) = 2
∑

nodes

∫
dk‖
2π

|E|
4πvFα

= |E|

×
∑

nodes

(∫
dk‖

4π2vFα

)
(139)

In the presence of pair-breaking impurities and in a vortex
state, the quasiparticle nodes are smeared, adding a small
constant component to the density of states at low energies.

This linear density of states is manifested in a variety of
power laws in the temperature dependence of experimental
properties, most notably

• Quadratic temperature dependence of specific heat CV ∝
T 2, since the specific heat coefficient is proportional to
the thermal average of the density of states

CV

T
∝

∝T︷ ︸︸ ︷
N(E) ∼ T (140)

where N(E) denotes the thermal average of N(E).
• A ubiquitous T 3 temperature dependence in the nuclear

magnetic relaxation (NMR) and nuclear quadrupole
relaxation (NQR) rates 1/T1. The nuclear relaxation rate
is proportional to the thermal average of the squared
density of states, so, for a superconductor with line
nodes,

1
T1
∝ T

∝T 2
︷ ︸︸ ︷
N(E)2 ∼ T 3 (141)

Figure 28 shows the T 3 NMR relaxation rate of the
Aluminum nucleus in UPd2Al3.
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Figure 28. Temperature dependence of the 27Al NQR relaxation
rate 1/T1 for UPd2Al3 (after Tou et al., 1995) showing T 3 depen-
dence associated with lines of nodes. Inset showing nodal struc-
ture ' ∝ cos(2θ) proposed from analysis of anisotropy of ther-
mal conductivity in Won et al. (2004). (Reproduced from H. Tou,
Y. Kitaoka, K. Asayama, C. Geibel, C. Schank, and F. Steglich,
1995, J. Phys. Soc. Japan 64, 1995 725, with permission of the
Physical Society of Japan.)

Although power laws can distinguish line and point nodes,
they do not provide any detailed information about the triplet
or singlet character of the order parameter or the location
of the nodes. The observation of upper critical fields that
are ‘Pauli limited’ (set by the spin coupling, rather than the
diamagnetism), and the observation of a Knight shift in most
HFSCs, indicates that they are anisotropically singlet paired.
Three notable exceptions to this rule are UPt3, UBe13, and
UNi2Al3, which do not display either a Knight shift or a
Pauli-limited upper critical field, and are the best candidates
for odd-parity triplet pairing. In the special case of CePt3Sn,
the crystal structure lacks a center of symmetry and the
resulting parity violation must give a mixture of triplet and
singlet pairs.

Until comparatively recently, very little was known
about the positions of the line nodes in heavy-electron
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superconductors. In one exception, experiments carried out
almost 20 years ago on UPt3 observed marked anisotropies in
the ultrasound attenuation length and the penetration depth
(Bishop et al., 1984; Broholm et al., 1990) that appear to
support a line of nodes in the basal plane. The ultrasonic
attenuation αs(T )/αn in single crystals of UPt3 has a T lin-
ear dependence when the polarization lies in the basal plane
of the gap nodes, but a T 3 dependence when the polarization
is along the c axis.

An interesting advance in the experimental analysis of
nodal gap structure has recently occurred, owing to new
insights into the behavior of the nodal excitation spectrum
in the flux phase of HFSCs. In the 1990s, Volovik (1993)
observed that the energy of heavy-electron quasiparticles in
a flux lattice is ‘Doppler shifted’ by the superflow around the
vortices, giving rise to a finite density of quasiparticle states
around the gap nodes. The Doppler shift in the quasiparticle
energy resulting from superflow is given by

Ek → Ek + $p · $vs = Ek + $vF · !
2
$∇φ (142)

where $vs is the superfluid velocity and φ the superfluid
phase. This has the effect of shifting quasiparticle states

by an energy of the order 'E ∼ ! vF
2R

, where R is the
average distance between vortices in the flux lattice. Writing
πHR2 ∼ 40, and πHc2ξ

2 ∼ 40 where 40 = h
2e

is the flux
quantum, Hc2 is the upper critical field, and ξ is the
coherence length, it follows that 1

R
∼ 1
ξ

√
H

Hc2
. Putting ξ ∼

vF/', where ' is the typical size of the gap, the typical
shift in the energy of nodal quasiparticles is of the order
EH ∼ '

√
H

Hc2
. Now since the density of states is of the

order N(E) = |E|
'

N(0), where N(0) is the density of states
in the normal phase, it follows that the smearing of the nodal
quasiparticle energies will produce a density of states of the
order

N∗(H) ∼ N(0)

√
H

Hc2
(143)

This effect, the ‘Volovik effect’, produces a linear component
to the specific heat CV /T ∝

√
H

Hc2
. This enhancement of

the density of states is largest when the group velocity $VF

at the node is perpendicular to the applied field $H , and
when the field is parallel to $vF at a particular node, the
node is unaffected by the vortex lattice (Figure 29). This
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Figure 29. Schematic showing how the nodal quasiparticle density of states depends on field orientation (after Vekhter, Hirschfield, Carbotte
and Nicol, 1999). (a) Four nodes are activated when the field points toward an antinode, creating a maximum in density of states. (b) Two
nodes activated when the field points toward a node, creating a minimum in the density of states. (c) Theoretical dependence of density
of states on angle. (After Vekhter, Hirschfield, Carbotte and Nicol, 1999.) (d) Measured angular dependence of Cv/T (after Aoki et al.,
2004) is 45◦ out of phase with prediction. This discrepancy is believed to be due to vortex scattering, and is expected to vanish at lower
fields. (Reproduced from I. Vekhter, P. Hirschfield, J.P. Carbotte, and E.J. Nicol, Phys. Rev. B 59, 1998, R9023, copyright  1998 by the
American Physical Society, with permission of the APS.)
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gives rise to an angular dependence in the specific heat
coefficient and thermodynamics that can be used to measure
the gap anisotropy. In practice, the situation is complicated at
higher fields where the Andreev scattering of quasiparticles
by vortices becomes important. The case of CeCoIn5 is of
particular current interest. Analyses of the field-anisotropy
of the thermal conductivity in this material was interpreted
early on in terms of a gap structure with dx2−y2 , while
the anisotropy in the specific heat appears to suggest a
dxy symmetry. Recent theoretical work by Vorontsov and
Vekhter (2006) suggests that the discrepancy between the
two interpretations can be resolved by taking into account
the effects of the vortex quasiparticle scattering that were
ignored in the specific heat interpretation. They predict that,
at lower fields, where vortex scattering effects are weaker,
the sign of the anisotropic term in the specific heat reverses,
accounting for the discrepancy

It is clear that, despite the teething problems in the inter-
pretation of field-anisotropies in transport and thermodynam-
ics, this is an important emerging tool for the analysis of gap
anisotropy, and, to date, it has been used to give tentative
assignments to the gap anisotropy of UPd2Al3, CeCoIn5, and
PrOs4Sb12.

4.3 Microscopic models

4.3.1 Antiferromagnetic fluctuations as a pairing
force

The classic theoretical models for heavy-fermion supercon-
ductivity treat the heavy-electron fluids as a Fermi liquid
with antiferromagnetic interactions amongst their quasipar-
ticles (Monod, Bourbonnais and Emery, 1986; Scalapino,
Loh and Hirsch, 1986; Monthoux and Lonzarich, 1999).
UPt3 provided the experimental inspiration for early theories
of heavy-fermion superconductivity, for its superconduct-
ing state forms from within a well-developed Fermi liquid.
Neutron scattering on this material shows signs of antifer-
romagnetic spin fluctuations (Aeppli et al., 1987), making it
natural to presuppose that these might be the driving force
for heavy-electron pairing.

Since the early 1970s, theoretical models had predicted
that strong ferromagnetic spin fluctuations, often called para-
magnons, could induce p-wave pairing, and this mechanism
was widely held to be the driving force for pairing in super-
fluid He–3. An early proposal that antiferromagnetic interac-
tions could provide the driving force for anisotropic singlet
pairing was made by Hirsch (1985). Shortly thereafter, three
seminal papers, by Monod, Bourbonnais and Emery (1986)
(BBE), Scalapino, Loh and Hirsch (1986) (SLH) and by
Miyake, Miyake, Rink and Varma (1986) (MSV), solidified

this idea with a concrete demonstration that antiferromag-
netic interactions drive an attractive BCS interaction in the
d-wave pairing channel. It is a fascinating thought that at the
same time that this set of authors was forging the foundations
of our current thoughts on the link between antiferromag-
netism and d-wave superconductivity, Bednorz and Mueller
were in the process of discovering high-temperature super-
conductivity.

The BBE and SLH papers develop a paramagnon theory
for d-wave pairing in a Hubbard model with a contact
interaction I , having in mind a system, which in the modern
context, would be said to be close to an antiferromagnetic
QCP. The MSV paper starts with a model with a preexisting
antiferromagnetic interaction, which, in the modern context,
would be associated with the ‘t–J’ model. It is this approach
that I sketch here. The MSV model is written

H =
∑
εka

†
kσ akσ + Hint (144)

where

Hint = 1
2

∑

k,k′

∑

q

J (k− k′)$σαβ · $σγ δ

×
(
a†

k+q/2αa
†
−k+q/2γ

) (
a−k′+q/2δak′+q/2β

)
(145)

describes the antiferromagnetic interactions. There are a
number of interesting points to be made here:

• The authors have in mind a strong coupled model,
such as the Hubbard model at large U , where the
interaction cannot be simply derived from paramagnon
theory. In a weak-coupled Hubbard model, a contact
interaction I and bare susceptibility χ0(q), the induced
magnetic interaction can be calculated in a random phase
approximation (RPA) (Miyake, Rink and Varma, 1986)
as

J (q) = − I

2[1 + Iχ0(q)]
(146)

MSV make the point that the detailed mechanism that
links the low-energy antiferromagnetic interactions to
the microscopic interactions is poorly described by a
weak-coupling theory, and is quite likely to involve other
processes, such as the RKKY interaction, and the Kondo
effect that lie outside this treatment.

• Unlike phonons, magnetic interactions in heavy-fermion
systems cannot generally be regarded as retarded inter-
actions, for they extend up to an energy scale ω0 that is
comparable with the heavy-electron bandwidth T ∗. In a
classic BCS treatment, the electron energy is restricted
to lie within a Debye energy of the Fermi energy. But
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here, ω0 ∼ T ∗, so all momenta are involved in magnetic
interactions, and the interaction can transformed to real
space as

H =
∑
εka

†
kσ akσ+ 1

2

∑

i,j

J (Ri − Rj )$σ i · $σj (147)

where J (R) =
∑

q eiq·RJ (q) is the Fourier transform of
the interaction and $σ i = a†

iα $σαβaiβ is the spin density at
site i. Written in real space, the MSV model is seen to be
an early predecessor of the t –J model used extensively
in the context of high-temperature superconductivity.

To see that antiferromagnetic interactions favor d-wave
pairing, one can use the ‘let us decouple the interaction’ in
real space in terms of triplet and singlet pairs. Inserting the
identity [3]

$σαβ · $σγδ = −3
2
(σ 2)αγ (σ 2)βδ + 1

2
($σσ 2)αγ · (σ 2 $σ)βδ

(148)
into equation (147) gives

Hint = −1
4

∑

i,j

Jij

[
37†

ij7ij − $7†
ij · $7ij

]
(149)

where

7
†
ij =

(
a

†
iα(−iσ )αγ a

†
jγ

)

$7†
ij =

(
a†

iα(−i $σσ 2)αγ a†
jγ

)
(150)

create singlet and triplet pairs with electrons located at sites
i and j respectively. In real space, it is thus quite clear that
an antiferromagnetic interaction Jij > 0 induces attraction
in the singlet channel, and repulsion in the triplet channel.
Returning to momentum space, substitution of equation (148)
into (145) gives

Hint = −
∑

k,k′,q

J (k− k′)
[
37†

k, q7k′, q − $7†
k, q · $7k′, q

]

(151)

where 7†
k,q = 1

2

(
a†

k+q/2 α(−iσ 2)αγ a†
−k−q/2 γ

)
and $7†

k,q =
1
2

(
a†

k+q/2 α(−i $σσ 2)αγ a†
−k−q/2 γ

)
create singlet and triplet

pairs at momentum q respectively. Pair condensation is
described by the zero momentum component of this inter-
action, which gives

Hint =
∑

k,k′

[
V

(s)
k,k′7

†
k7k′ + V

(t)
k,k′
$7†

k · $7k′
]

(152)

where 7†
k = 1

2

(
a†

kα(−iσ 2)αβ a†
−kβ

)
and $7†

k,q = 1
2

(
a†

kα

(−i $σσ 2)αβ a†
−kβ

)
create Cooper pairs and

V
(s)
k,k′ = −3[J (k− k′) + J (k + k′)]/2

V
(t)
k,k′ = [J (k− k′)− J (k + k′)]/2 (153)

are the BCS pairing potentials in the singlet and triplet chan-
nel, respectively. (Notice how the even/odd-parity symmetry
of the triplet pairs pulls out the corresponding symmetrization
of J (k− k′).)

For a given choice of J (q), it now becomes possible to
decouple the interaction in singlet and triplet channels. For
example, on a cubic lattice of side length, if the magnetic
interaction has the form

J (q) = 2J (cos(qxa) + cos(qya) + cos(qza)) (154)

which generates soft antiferromagnetic fluctuations at the
staggered Q vector Q = (π/a, π/a, π/a), then the pairing
interaction can be decoupled into singlet and triplet compo-
nents,

V s
k,k′ = −3J

2

[
s(k)s(k′) + dx2−y2(k)dx2−y2(k′)

+d2z2−r2(k)d2z2−r2(k′)
]

V t
k,k′ = J

2

∑

i=x,y,z

pi(k)pi(k′) (155)

where

s(k) =
√

2
3 (cos(kxa)

+ cos(kya) + cos(kza)) (extended s-wave)
dx2−y2(k) = (cos(kxa)− cos(kya)

d2z2−r2(k) = 1√
3
(cos(kxa)

+ cos(kya)−2 cos(kza))




 (d-wave)

(156)
are the gap functions for singlet pairing and

pi(q) =
√

2 sin(qia), (i = x, y, z), (p-wave) (157)

describe three triplet gap functions. For J > 0, this particular
BCS model then gives rise to extended s- and d-wave
superconductivity with approximately the same transition
temperatures, given by the gap equation

∑

k

tanh
(
εk

2Tc

)
1
εk

{
s(k)2

dx2−y2(k)2

}
= 2

3J
(158)



Heavy fermions: electrons at the edge of magnetism 133

4.3.2 Toward a unified theory of HFSC

Although the spin-fluctuation approach described provides a
good starting point for the phenomenology of heavy-fermion
superconductivity (HFSC), it leaves open a wide range of
questions that suggest this problem is only partially solved:

• How can we reconcile heavy-fermion superconductivity
with the local moment origins of the heavy-electron
quasiparticles?

• How can the incompressibility of the heavy-electron
fluid be incorporated into the theory? In particular,
extended s-wave solutions are expected to produce a
large singlet f-pairing amplitude, giving rise to a large
Coulomb energy. Interactions are expected to signifi-
cantly depress, if not totally eliminate such extended
s-wave solutions.

• Is there a controlled limit where a model of heavy-
electron superconductivity can be solved?

• What about the ‘strange’ HFSCs UBe13, CeCoIn5, and
PuCoGa5, where Tc is comparable with the Kondo tem-
perature? In this case, the superconducting order parame-
ter must involve the f spin as a kind of ‘composite’ order
parameter. What is the nature of this order parameter,
and what physics drives Tc so high that the Fermi liquid
forms at much the same time as the superconductivity
develops?

One idea that may help understand the heavy-fermion
pairing mechanism is Anderson’s RVB theory (Anderson,

1987) of high-temperature superconductivity. Anderson pro-
posed (Anderson, 1987; Baskaran, Zou and Anderson, 1987;
Kotliar, 1988) that the parent state of the high-temperature
superconductors is a two-dimensional spin liquid of RVBs
between spins, which becomes superconducting upon doping
with holes. In the early 1990s, Coleman and Andrei (1989)
adapted this theory to a Kondo lattice. Although an RVB
spin liquid is unstable with respect to the antiferromagnetic
order in three dimensions, in situations close to a magnetic
instability, where the energy of the antiferromagnetic state is
comparable with the Kondo temperature, EAFM ∼ TK, con-
duction electrons partially spin-compensate the spin liquid,
stabilizing it against magnetism (Figure 30a). In the Kondo-
stabilized spin liquid, the Kondo effect induces some RVBs
in the f-spin liquid to escape into the conduction fluid where
they pair charged electrons to form a heavy-electron super-
conductor.

A key observation of the RVB theory is that, when charge
fluctuations are removed to form a spin fluid, there is no
distinction between particle and hole (Affleck, Zou, Hsu and
Anderson, 1988). The mathematical consequence of this is
that the the spin-1/2 operator

$Sf = f
†
iα

( $σ
2

)

αβ

f †
α , nf = 1 (159)

is not only invariant under a change of phase fσ → eiφfσ ,
but it also possesses a continuous particle-hole symmetry

f †
σ → cos θf †

σ + sgnσ sin θf−σ (160)
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and N. Andrei, 1989, J. Phys. Cond. Matt. C 1 (1989) 4057, with permission of IOP Publishing Ltd.)
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These two symmetries combine to create a local SU(2)

gauge symmetry. One of the implications is that the constraint
nf = 1 associated with the spin operator is actually part of
a triplet of Gutzwiller constraints

f †
i↑fi↑ − fi↓f

†
i↓ = 0, f †

i↑f
†
i↓ = 0, fi↓fi↑ = 0 (161)

If we introduce the Nambu spinors

f̃i ≡
(

fi↑
f †

i↓

)
, f̃ †

i = (f †
i↑, fi↓) (162)

then this means that all three components of the ‘isospin’ of
the f electrons vanish,

f̃ †
i $τ f̃i = (f †

i↑, fi↓)

[(
0 1
1 0

)
,

(
0 −i

i 0

)
,

(
1 0
0 −1

)]

×
(

fi↑
f †

i↓

)
= 0 (163)

where $τ is a triplet of Pauli spin operators that act on the
f-Nambu spinors. In other words, in the incompressible f
fluid, there can be no s-wave singlet pairing.

This symmetry is preserved in spin-1/2 Kondo models.
When applied to the Heisenberg Kondo model

H =
∑

kσ

εkc
†
kσ ckσ + JH

∑

(i,j)

Si · Sj

+JK

∑

j

c†
jσ $σσσ ′cjσ ′ · Sj (164)

where Si = f †
iα

(
$σ
2

)

αβ
fiβ represents an f spin at site i, it

leads to an SU(2) gauge theory for the Kondo lattice with
Hamiltonian

H =
∑

k

εkc̃
†
kτ 3c̃k +

∑
$λj f̃

†
j $τ f̃j +

∑

(i,j)

[f̃ †
i Uij f̃j + H.c]

+ 1
JH

Tr[U †
ijUij ]+

∑

i

[f̃ †
i Vi c̃i +H.c]+ 1

JK
Tr[V †

i Vi]

(165)
where λj is the Lagrange multiplier that imposes the
Gutzwiller constraint $τ = 0 at each site, c̃k =

( ck↑
c

†
−k↓

)
and

c̃j =
( cj↑

c
†
j↓

)
are Nambu conduction electron spinors in the

momentum and position basis, respectively, while

Uij =
(

hij 'ij

'ij −hij

)
Vi =

(
Vi αi

αi −V i

)
(166)

are matrix order parameters associated with the Heisenberg
and Kondo decoupling, respectively. This model has the local
gauge invariance f̃j → gj f̃j , Vj → gjVj Uij → giUijg

†
j ,

where gj is an SU(2) matrix. In this kind of model, one
can ‘gauge fix’ the model so that the Kondo effect occurs
in the particle-hole channel (αi = 0). When one does so,
however, the spin-liquid instability takes place preferentially
in an anisotropically paired Cooper channel. Moreover, the
constraint on the f electrons not only suppresses singlet
s-wave pairing, it also suppresses extended s-wave pairing
(Figure 30).

One of the initial difficulties with both the RVB and
the Kondo-stabilized spin liquid approaches is that, in its
original formulation, it could not be integrated into a large
N approach. Recent work indicates that both the fermionic
RVB and the Kondo-stabilized spin-liquid picture can be
formulated as a controlled SU(2) gauge theory by carrying
out a large N expansion using the group SP (N) (Read and
Sachdev, 1991), originally introduced by Read and Sachdev
for problems in frustrated magnetism, in place of the group
SU(N). The local particle-hole symmetry associated with
the spin operators in SU(2) is intimately related to the
symplectic property of Pauli spin operators

σ 2 $σT σ 2 = −$σ (167)

where $σT is the transpose of the spin operator. This relation,
which represents the sign reversal of spin operators under
time-reversal, is only satisfied by a subset of the SU(N)

spins for N > 2. This subset defines the generators of the
symplectic subgroup of SU(N), called SP (N).

Concluding this section, I want to briefly mention the
challenge posed by the highest Tc superconductor, PuCoGa5

(Sarrao et al., 2002; Curro et al., 2005). This material, dis-
covered some 4 years ago at Los Alamos, undergoes a direct
transition from a Curie paramagnet into a heavy-electron
superconductor at around Tc = 19 K (Figure 31). The Curie
paramagnetism is also seen in the Knight shift, which scales
with the bulk susceptibility (Curro et al., 2005). The remark-
able feature of this material is that the specific heat anomaly
has the large size (110 mJ mol−1 K2 (Sarrao et al., 2002))
characteristic of heavy-fermion superconductivity, yet there
are no signs of saturation in the susceptibility as a precursor
to superconductivity, suggesting that the heavy quasiparti-
cles do not develop from local moments until the transition.
This aspect of the physics cannot be explained by the spin-
fluctuation theory (Bang, Balatsky, Wastin and Thompson,
2004), and suggests that the Kondo effect takes place simul-
taneously with the pairing mechanism. One interesting possi-
bility here is that the development of coherence between the
Kondo effect in two different channels created by the differ-
ent symmetries of the valence fluctuations into the f 6 and
f 4 states might be the driver of this intriguing new super-
conductor (Jarrell, Pang and Cox, 1997; Coleman, Tsvelik,
Andrei and Kee, 1999).
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Figure 31. Temperature dependence of the magnetic susceptibility
of PuCoGa5. (After Sarrao et al., 2002.) The susceptibility shows a
direct transition from Curie–Weiss paramagnet into HFSC, without
any intermediate spin quenching. (Reproduced from Sarrao, J.L.,
L.A. Morales, J.D. Thompson, B.L. Scott, G.R. Stewart, F. Wastlin,
J. Rebizant, P. Boulet, E. Colineau, and G.H. Lander, 2002, with
permission from Nature Publishing.  2002.)

5 QUANTUM CRITICALITY

5.1 Singularity in the phase diagram

Many heavy electron systems can be tuned, with pres-
sure, chemical doping, or applied magnetic field, to a

point where their antiferromagnetic ordering temperature is
driven continuously to zero to produce a ‘QCP’ (Stewart,
2001, 2006; Coleman, Pépin, Si and Ramazashvili, 2001;
Varma, Nussinov and van Saarlos, 2002; von Löhneysen,
Rosch, Vojta and Wolfe, 2007; Miranda and Dobrosavljevic,
2005). The remarkable transformation in metallic properties,
often referred to as ‘non-Fermi liquid behavior’, which is
induced over a wide range of temperatures above the QCP,
together with the marked tendency to develop supercon-
ductivity in the vicinity of such ‘quantum critical points’
has given rise to a resurgence of interest in heavy-fermion
materials.

The experimental realization of quantum criticality returns
us to central questions left unanswered since the first
discovery of heavy-fermion compounds. In particular:

• What is the fate of the Landau quasiparticle when
interactions become so large that the ground state is
no longer adiabatically connected to a noninteracting
system?

• What is the mechanism by which the AFM transforms
into the heavy-electron state? Is there a breakdown of the
Kondo effect, revealing local moments at the quantum
phase transition, or is the transition better regarded as a
spin-density wave transition?

Figure 32 illustrates quantum criticality in YbRh2Si2 (Custers
et al., 2003), a material with a 90 mK magnetic transition
that can be tuned continuously to zero by a modest magnetic
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field. In wedge-shaped regions, either side of the transition,
the resistivity displays the T 2 dependence ρ(T ) = ρ0 + AT 2

(black) that is the hallmark of Fermi-liquid behavior. Yet, in
a tornado shaped region that stretches far above the QCP to
about 20 K, the resistivity follows a linear dependence over
more than three decades. The QCP thus represents a kind of
‘singularity’ in the material phase diagram.

Experimentally, quantum critical heavy-electron materi-
als fall between two extreme limits that I shall call ‘hard’
and ‘soft’ quantum criticality. ‘Soft’ quantum critical sys-
tems are moderately well described in terms quasiparticles
interacting with the soft quantum spin fluctuations created
by a spin-density wave instability. Theory predicts (Moriya
and Kawabata, 1973) that, in a three-dimensional metal, the
quantum spin-density wave fluctuations give rise to a weak√

T singularity in the low-temperature behavior of the spe-
cific heat coefficient

CV

T
= γ 0 − γ 1

√
T (168)

Examples of such behavior include CeNi2Ge2 (Grosche
et al., 2000; Küchler et al., 2003) chemically doped Ce2−x

LaxRu2Si2 and ‘A’-type antiferromagnetic phases of CeCu2

Si2 at a pressure-tuned QCP.
At the other extreme, in ‘hard’ quantum critical heavy

materials, many aspects of the physics appear consistent
with a breakdown of the Kondo effect associated with
a relocalization of the f electrons into ordered, ordered
local moments beyond the QCP. Some of the most heav-
ily studied examples of this behavior occur in the chem-
ically tuned QCP in CeCu6−xAux (von Löhneysen et al.,
1994; von Löhneysen, 1996; Schroeder et al., 1998, 2000).
and YbRh2Si2−xGex (Custers et al., 2003; Gegenwart et al.,
2005) and the field-tuned QCP of YbRh2Si2 (Trovarelli et al.,
2000) and YbAgGe (Bud’ko, Morosan and Canfield, 2004,
2005; Fak et al., 2005; Niklowitz et al., 2006). Hallmarks of
hard quantum criticality include a logarithmically diverging
specific heat coefficient at the QCP,

Cv

T
∼ 1

T0
ln
(

T0

T

)
(169)

and a quasilinear resistivity

ρ(T ) ∼ T 1+η (170)

where η is in the range 0–0.2. The most impressive results
to date have been observed at field-tuned QCPs in YbRh2Si2
and CeCoIn5, where linear resistivity has been seen to extend
over more than two decades of temperature at the field-tuned
QCP (Steglich et al., 1976; Paglione et al., 2003, 2006; Ron-
ning et al., 2006). Over the range where linear, where the

ratio between the change in the size of the resistivity 'ρ to
the zero temperature (impurity driven) resistivity ρ0

'ρ/ρ0 3 1 (171)

CeCoIn5 is particularly interesting, for, in this case, this resis-
tance ratio exceeds 102 for current flow along the c axis
(Tanatar, Paglione, Petrovic and Taillefer, 2007). This obser-
vation excludes any explanation which attributes the unusual
resistivity to an interplay between spin-fluctuation scatter-
ing and impurity scattering (Rosch, 1999). Mysteriously,
CeCoIn5 also exhibits a T 3/2 resistivity for resistivity for
current flow in the basal plane below about 2 K (Tanatar,
Paglione, Petrovic and Taillefer, 2007). Nakasuji, Pines and
Fisk (2004) have proposed that this kind of behavior may
derive from a two fluid character to the underlying conduc-
tion fluid.

In quantum critical YbRh2Si2−xGex , the specific heat
coefficient develops a 1/T 1/3 divergence at the very lowest
temperature. In the approach to a QCP, Fermi liquid behavior
is confined to an ever-narrowing range of temperature.
Moreover, both the linear coefficient of the specific heat and
the the quadratic coefficient A of the resistivity appear to
diverge (Estrela et al., 2002; Trovarelli et al., 2000). Taken
together, these results suggests that the Fermi temperature
renormalizes to zero and the quasiparticle effective masses
diverge

T ∗F → 0
m∗

m
→∞ (172)

at the QCP of these three-dimensional materials. A central
property of the Landau quasiparticle is the existence of
a finite overlap ‘Z’, or ‘wave function renormalization’
between a single quasiparticle state, denoted by |qp−〉 and
a bare electron state denoted by |e−〉 = c†

kσ |0〉,

Z = |〈e−|qp−〉|2 ∼ m

m∗
(173)

If the quasiparticle mass diverges, the overlap between the
quasiparticle and the electron state from which it is derived
is driven to zero, signaling a complete breakdown in the
quasiparticle concept at a ‘hard’ QCP (Varma, Nussinov and
van Saarlos, 2002).

Table 3 shows a tabulation of selected quantum criti-
cal materials. One interesting variable that exhibits singular
behavior at both hard and soft QCPs is the Grüneisen ratio.
This quantity, defined as the ratio

9 = α

C
= − 1

V

∂ ln T

∂P

∣∣∣∣
S

∝ 1
T ε

(174)
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Table 3. Selected heavy-fermion compounds with quantum critical points.

Compound xc/Hc
Cv
T

ρ ∼ T a 9(T ) = α
CP

Other References

CeCu6−xAux xc = 0.1 1
T0

ln
(

To
T

)
T + c – χ ′′Q0

(ω, T ) =
1

T 0.7 F
[
ω
T

]
von Löhneysen et al. (1994),

von Löhneysen (1996) and
Schroeder et al. (1998, 2000)

Hard YbRh2Si2 Bc‖ = 0.66 T – T – Jump in Hall
constant

Trovarelli et al. (2000) and
Paschen et al. (2004)

YbRh2Si2−xGex xc = 0.1 1
T 1/3 ↔
1
T0

ln
(

To
T

) T T −0.7 – Custers et al. (2003) and
Gegenwart et al. (2005)

YbAgGe Bc| = 9T

Bc⊥ = 5T

1
T0

ln
(

T0
T

)
T – NFL over

range of
fields

Bud’ko, Morosan and Canfield
(2004), Fak et al. (2005) and
Niklowitz et al. (2006)

Soft CeCoIn5 Bc = 5 T 1
T0

ln
(

T0
T

)
T /T 1.5 – ρc ∝ T ,

ρab ∝ T 1.5
Paglione et al. (2003, 2006),

Ronning et al. (2006) and
Tanatar, Paglione, Petrovic
and Taillefer (2007)

CeNi2Ge2 Pc = 0 γ 0 − γ 1

√
T T 1.2−1.5 T −1 – Grosche et al. (2000) and

Küchler et al. (2003)

of the thermal expansion coefficient α = 1
V

dV

dT
to the specific

heat C, diverges at a QCP. The Grüneisen ratio is a sensi-
tive measure of the rapid acquisition of entropy on warming
away from QCP. Theory predicts that ε = 1 at a 3D spin den-
sity wave critical point, as seen in CeNi2Ge2. In the ‘hard’
quantum critical material YbRh2Si2−xGex , ε = 0.7 indicates
a serious departure from a 3D spin-density wave instability
(Küchler et al., 2003).

5.2 Quantum versus classical criticality

Figure 33 illustrates some key distinctions between classical
and quantum criticality (Sachdev, 2007). Passage through a
classical second-order phase transition is achieved by tuning
the temperature. Near the transition, the imminent arrival of
order is signaled by the growth of droplets of nascent order
whose typical size ξ diverges at the critical point. Inside
each droplet, fluctuations of the order parameter exhibit a
universal power-law dependence on distance

〈ψ(x)ψ(0)〉 ∼ 1
xd−2+η , (x - ξ) (175)

Critical matter ‘forgets’ about its microscopic origins: Its
thermodynamics, scaling laws, and correlation exponents
associated with critical matter are so robust and universal
that they recur in such diverse contexts as the Curie point
of iron or the critical point of water. At a conventional
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Figure 33. Contrasting classical and quantum criticality in heavy-
electron systems. At a QCP, an external parameter P , such as
pressure or magnetic field, replaces temperature as the ‘tuning
parameter’. Temperature assumes the new role of a finite size
cutoff lτ ∝ 1/T on the temporal extent of quantum fluctuations.
(a) Quantum critical regime, where lτ < ξ tau probes the interior
of the quantum critical matter. (b) Fermi-liquid regime, where
lτ > ξτ , where like soda, bubbles of quantum critical matter
fleetingly form within a Fermi liquid that is paramagnetic (B1),
or antiferromagnetically ordered (B2).

critical point, order-parameter fluctuations are ‘classical’,
for the characteristic energy of the critical modes !ω(q0),
evaluated at a wave vector q0 ∼ ξ−1, inevitably drops below
the thermal energy !ω(q0)- kBTc as ξ →∞.

In the 1970s, various authors, notably Young (1975) and
Hertz (1976), recognized that, if the transition temperature of
a continuous phase transition can be depressed to zero, the
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critical modes become quantum-mechanical in nature. The
partition function for a quantum phase transition is described
by a Feynman integral over order-parameter configurations
{ψ(x, τ)} in both space and imaginary time (Sachdev, 2007;
Hertz, 1976)

Zquantum =
∑

space–time configurations

e−S[ψ] (176)

where the action

S[ψ] =
∫ !

kBT

0
dτ
∫ ∞

−∞
ddxL[ψ(x, τ )] (177)

contains an integral of the Lagrangian L over an infinite
range in space, but a finite time interval

lτ ≡
!

kBT
(178)

Near a QCP, bubbles of quantum critical matter form within
a metal, with finite size ξx and duration ξτ (Figure 33).
These two quantities diverge as the quantum critical point
is approached, but the rates of divergence are related by a
dynamical critical exponent (Hertz, 1976),

ξτ ∼ (ξx)
z (179)

One of the consequences of this scaling behavior is that time
counts as z spatial dimensions, [τ ] = [Lz] in general.

At a classical critical point, temperature is a tuning
parameter that takes one through the transition. The role of
temperature is fundamentally different at a quantum critical
point: it sets the scale lτ ∼ 1/T in the time direction,
introducing a finite size correction to the QCP. When the
temperature is raised, lτ reduces and the quantum fluctuations
are probed on shorter and shorter timescales. There are then
two regimes to the phase diagram,

(a) Quantum critical: lτ - ξτ (180)

where the physics probes the ‘interior’ of the quantum critical
bubbles, and

(b) Fermi liquid/AFM lτ 3 ξτ (181)

where the physics probes the quantum fluid ‘outside’ the
quantum critical bubbles. The quantum fluid that forms in
this region is a sort of ‘quantum soda’, containing short-
lived bubbles of quantum critical matter surrounded by a
paramagnetic (B1) or antiferromagnetically ordered (B2)
Landau–Fermi liquid. Unlike a classical phase transition,
in which the critical fluctuations are confined to a narrow

region either side of the transition, in a quantum critical
region (a), fluctuations persist up to temperatures where lτ
becomes comparable the with the microscopic short-time
cutoff in the problem (Kopp and Chakravarty, 2005) (which
for heavy-electron systems is most likely, the single-ion
Kondo temperature lτ ∼ !/TK).

5.3 Signs of a new universality

The discovery of quantum criticality in heavy-electron sys-
tems raises an alluring possibility of quantum critical matter,
a universal state of matter that, like its classical counter-
part, forgets its microscopic, chemical, and electronic origins.
There are three pieces of evidence that are particularly fas-
cinating in this respect:

1. Scale invariance, as characterized by E/T scaling in the
quantum-critical inelastic spin fluctuations observed in
CeCu1−xAux (Schroeder et al., 1998, 2000). (x = xc =
0.016),

χ ′′Q0
(E, T ) = 1

T a
F (E/T ) (182)

where a ≈ 0.75 and F [x] ∝ (1− ix)−a . Similar behavior
has also been seen in powder samples of UCu5−xPdx

(Aronson et al., 1995).
2. A jump in the Hall constant of YbRh2Si2 when field

tuned through its QCP (Paschen et al., 2004). (see
Figure 34a).

3. A sudden change in the area of the extremal Fermi
surface orbits observed by de Haas van Alphen at a
pressure-tuned QCP in CeRhin5 (Shishido, Settai, Harima
and Onuki, 2005). (see Figure 34b).

Features 2 and 3 suggest that the Fermi surface jumps from
a ‘small’ to ‘large’ Fermi surface as the magnetic order is
lost, as if the phase shift associated with the Kondo effect
collapses to zero at the critical point, as if the f component of
the electron fluid Mott-localizes at the transition. To reconcile
a sudden change in the Fermi surface with a second-order
phase transition, we are actually forced to infer that the
quasiparticle weights vanish at the QCP.

These features are quite incompatible with a spin-density
wave QCP. In a spin-density wave scenario, the Fermi
surface and Hall constant are expected to evolve continuously
through a QCP. Moreover, in an SDW description, the
dynamical critical exponent is z = 2 so time counts as
z = 2 dimensions in the scaling theory, and the effective
dimensionality Deff = d + 2 > 4 lies above the upper critical
dimension, where mean-field theory is applicable and scale-
invariant behavior is no longer expected.
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These observations have ignited a ferment of theoretical
interest in the nature of heavy-fermion criticality. We con-
clude with a brief discussion of some of the competing ideas
currently under consideration.

5.3.1 Local quantum criticality

One of the intriguing observations (Schroeder et al., 1998)
in CeCu6−xAux is that the uniform magnetic susceptibil-
ity, χ−1 ∼ T a + C, a = 0.75 displays the same power-law
dependence on temperature observed in the inelastic neutron
scattering at the critical wave vector Q0. A more detailed set
of measurements by Schroeder et al. (2000) revealed that the
scale-invariant component of the dynamical spin susceptibil-
ity appears to be momentum independent,

χ−1(q, E) = T a[4(E/T )] + χ−1
0 (q) (183)

This behavior suggests that the critical behavior associated
with the heavy-fermion QCP contains some kind of local
critical excitation (Schroeder et al., 1998; Coleman, 1999).

One possibility is that this local critical excitation is the
spin itself, so that (Coleman, 1999; Sachdev and Ye, 1993;
Sengupta, 2000)

〈S(τ)S(τ ′)〉 = 1
(τ − τ ′)2−ε (184)

is a power law, but where ε ;= 0 signals non-Fermi liquid
behavior. This is the basis of the ‘local quantum criticality’
theory developed by Smith and Si (2000) and Si, Rabello,
Ingersent and Smith (2001, 2003). This theory requires that
the local spin susceptibility χ loc =

∑
q χ(q, ω)ω=0 diverges

at a heavy-fermion QCP. Using an extension of the methods
of DMFT (Georges, Kotliar, Krauth and Rozenberg, 1996;
Kotliar et al., 2006) Si et al. find that it is possible to account
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for the local scaling form of the dynamical susceptibility,
obtaining exponents that are consistent with the observed
properties of CeCu6−xAux (Grempel and Si, 2003).

However, there are some significant difficulties with this
theory. First, as a local theory, the quantum critical fixed
point of this model is expected to possess a finite zero-
point entropy per spin, a feature that is, to date, inconsistent
with thermodynamic measurements (Custers et al., 2003).
Second, the requirement of a divergence in the local spin
susceptibility imposes the requirement that the surrounding
spin fluid behaves as layers of decoupled two-dimensional
spin fluids. By expanding χ−1

0 (q) (183) about the critical
wave vector Q, one finds that the singular temperature
dependence in the local susceptibility is given by

χ loc(T ) ∼
∫

ddq
1

(q−Q)2 + T α
∼ T (d−2)α/2 (185)

requiring that d ≤ 2.
In my judgement, the validity of the original scaling

by Schroeder et al still stands and that these difficulties
stem from a misidentification of the critical local modes
driving the scaling seen by neutrons. One possibility, for
example, is that the right soft variables are not spin per se,
but the fluctuations of the phase shift associated with the
Kondo effect. This might open up the way to an alternative
formulation of local criticality.

5.3.2 Quasiparticle fractionalization and deconfined
criticality

One of the competing sets of ideas under consideration at
present is the idea that, in the process of localizing into
an ordered magnetic moment, the composite heavy electron
breaks up into constituent spin and charge components. In
general,

e−σ ! sσ + h− (186)

where sσ represents a neutral spin-1/2 excitation or ‘spinon’.
This has led to proposals (Coleman, Pépin, Si and Ramaza-
shvili, 2001; Senthil, Vojta, Sachdev and Vojta, 2003; Pépin,
2005) that gapless spinons develop at the QCP. This idea is
faced with a conundrum, for, even if free neutral spin-1/2
excitations can exist at the QCP, they must surely be con-
fined as one tunes away from this point, back into the Fermi
liquid. According to the model of ‘deconfined criticality’ pro-
posed by Senthil et al. (2004), the spinon confinement scale
ξ 2 introduces a second diverging length scale to the phase
transition, where ξ 2 diverges more rapidly to infinity than ξ 1.
One possible realization of this proposal is the quantum melt-
ing of two-dimensional S = 1/2 Heisenberg AFM, where the

smaller correlation length ξ 1 is associated with the transition
from AFM to spin liquid, and the second correlation length
ξ 2 is associated with the confinement of spinons to form a
valence bond solid (Figure 35).

It is not yet clear how this scenario will play out for heavy
electron systems. Senthil, Sachdev and Vojta (2005) have
proposed that, in a heavy-electron system, the intermediate
spin liquid state may involve a Fermi surface of neutral
(fermionic) spinons coexisting with a small Fermi surface
of conduction electrons, which they call an FL∗ state. In
this scenario, the QCP involves an instability of the heavy-
electron fluid to the FL∗ state, which is subsequently unstable
to antiferromagnetism. Recent work suggests that the Hall
constant can indeed jump at such a transition (Coleman,
Marston and Schofield, 2005b).

5.3.3 Schwinger bosons

A final approach to quantum criticality, currently under
development, attempts to forge a kind of ‘spherical model’
for the antiferromagnetic QCP through the use of a large
N expansion in which the spin is described by Schwinger
bosons, rather than fermions (Arovas and Auerbach, 1988;
Parcollet and Georges, 1997),

Sab = b†
abb − δab

nb

N
(187)

where the spin S of the moment is determined by the
constraint nb = 2S on the total number of bosons per
site. Schwinger bosons are well suited to describe low-
dimensional magnetism (Arovas and Auerbach, 1988). How-
ever, unlike fermions, only one boson can enter a Kondo

x2

x1

Valence bond
solid

Spinon Quantum critical

Spin liquid

Figure 35. ‘Deconfined criticality’ (Senthil et al., 2004). The quan-
tum critical droplet is defined by two divergent length scales - ξ 1
governing the spin correlation length, ξ 2 on which the spinons
confine, in the case of the Heisenberg model, to form a valence
bond solid. (Adapted using data from T. Senthil, A. Vishwanath,
L. Balents, S. Sachdev and M.P.A. Fisher, Science 303 (2004)
1490.)
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singlet. To obtain an energy that grows with N , Parcollet and
Georges proposed a new class of large N expansion based
around the multichannel Kondo model with K channels (Cox
and Ruckenstein, 1993; Parcollet and Georges, 1997), where
k = K/N is kept fixed. The Kondo interaction takes the form

Hint = JK

N

∑

ν=1,K,α,β

Sαβc
†
νβµcνα (188)

where the channel index ν runs from one to K . When
written in terms of Schwinger bosons, this interaction can
be factorized in terms of a charged, but spinless exchange
fermion χν (‘holon’) as follows:

Hint →
∑

να

1√
N

[
(c†
ναbα)χ

†
ν + H.c

]
+
∑

ν

χ†
νχν
JK

(189)

Parcollet and Georges originally used this method to study
the overscreened Kondo model (Parcollet and Georges,
1997), where K > 2S.

Recently, it has proved possible to find the Fermi liquid
large N solutions to the fully screened Kondo impurity
model, where the number of channels is commensurate with
the number of bosons (K = 2S) (Rech, Coleman, Parcollet
and Zarand, 2006; Lebanon and Coleman, 2007). One of
the intriguing features of these solutions is the presence of
a gap for spinon excitations, roughly comparable with the
Kondo temperature. Once antiferromagnetic interactions are
introduced, the spinons pair-condense, forming a state with
a large Fermi surface, but one that coexists with gapped
spinon (and holon) excitations (Coleman, Paul and Rech,
2005a).

The gauge symmetry associated with these particles guar-
antees that, if the gap for the spinon goes to zero con-
tinuously, then the gap for the holon must also go to
zero. This raises the possibility that gapless charge degrees
of freedom may develop at the very same time as mag-
netism (Figure 36). In the two impurity model, Rech et al.
have recently shown that the large N solution contains
a ‘Jones–Varma’ QCP where a static valence bond forms
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between the Kondo impurities. At this point, the holon
and spinon excitations become gapless. On the basis of
this result, Lebanon, Rech, Coleman and Parcollet (2006)
have recently proposed that the holon spectrum may
become gapless at the magnetic QCP (Figure 36) in three
dimensions.

6 CONCLUSIONS AND OPEN QUESTIONS

I shall end this chapter with a brief list of open questions in
the theory of heavy fermions.

1. To what extent does the mass enhancement in heavy-
electron materials owe its size to the vicinity to a nearby
quantum phase transitions?

2. What is the microscopic origin of heavy-fermion super-
conductivity and in theextreme cases UBe13 and PuCoGa5

how does the pairing relate to both spin quenching and
the Kondo effect?

3. What is the origin of the linear resistivity and the
logarithmic divergence of the specific heat at a ‘hard’
heavy-electron QCP?

4. What happens to magnetic interactions in a Kondo
insulator, and why do they appear to vanish?

5. In what new ways can the physics of heavy-electron
systems be interfaced with the tremendous current devel-
opments in mesoscopics? The Kondo effect is by now a
well-established feature of Coulomb blockaded quantum
dots (Kouwenhoven and Glazman, 2001), but there may
be many other ways in which we can learn about local
moment physics from mesoscopic experiments. Is it pos-
sible, for example, to observe voltage-driven quantum
phase transitions in a mesoscopic heavy-electron wire?
This is an area grown with potential.

It should be evident that I believe there is tremendous
prospect for concrete progress on many of these issues in
the near future. I hope that, in some ways, I have whet your
appetite enough to encourage you also to try your hand at
their future solution.

NOTES

[1] To calculate the matrix elements associated with valence
fluctuations, take

|f 1c1〉 = 1√
2
(f †
↑ c†
↓ − c†

↑f
†
↓ )|0〉,

|f 2〉 = f †
↑f †
↓ |0〉 and |c2〉 = c†

↑c
†
↓|0〉

then 〈c2|
∑
σ V c†

σ fσ |f 1c1〉 =
√

2V and 〈f 2|
∑
σ Vf †

σ cσ
|f 1c1〉 =

√
2V

[2] The f-sum rule is a statement about the instantaneous, or
short-time diamagnetic response of the metal. At short
times dj/dt = (nce

2/m)E, so the high-frequency limit
of the conductivity is σ(ω) = ne2

m
1

δ−iω
. But using the

Kramer’s Krönig relation

σ(ω) =
∫

dx

iπ

σ (x)

x − ω − iδ

at large frequencies,

ω(ω) = 1
δ − iω

∫
dx

π
σ(x)

so that the short-time diamagnetic response implies the
f-sum rule.

[3] To prove this identity, first note that any two-dimensional
matrix, M , can be expanded as M = m0σ 2 + $m · σ 2 $σ ,
(b=(1, 3)) where m0 = 1

2 Tr[Mσ 2] and $m= 1
2 Tr[M $σσ 2],

so that in index notation

Mαγ = 1
2

Tr[Mσ 2](σ 2)αγ

+1
2

Tr[M $σσ 2] · (σ 2 $σ)αγ

Now, if we apply this relationship to the αγ components
of $σαβ · $σγ δ , we obtain

$σαβ · $σγ δ = 1
2

(
$σT σ 2 $σ

)

δβ
(σ 2)αγ

+1
2

∑

b=1,3

(
$σT σ 2σb $σ

)

δβ
(σ 2σ b)αγ

If we now use the relation $σT σ 2 = −σ 2 $σ , together with
$σ · $σ = 3 and $σσb $σ = −σb, we obtain

$σαβ · $σγ δ = −3
2
(σ 2)αγ (σ 2)δβ + 1

2
($σσ 2)αγ · (σ 2 $σ)δβ
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Pépin, C. (2005). Fractionalization and Fermi-surface volume in
heavy-fermion compounds: the case of YbRh2Si2. Physical
Review Letters, 94, 066402.

Petrovic, C., Pagliuso, P.G., Hundley, M.F., et al. (2001). Heavy-
fermion superconductivity in CeCoIn5 at 2.3 K. Journal of
Physics: Condensed Matter, 13, L337.

Pitaevskii, L.P. (1960). On the superfluidity of liquid He3. Zhurnal
Eksperimentalnoi i Teoreticheskoi Fiziki, 37, 1794.

Puttika, W. and Joynt, R. (1988). Stability of anisotropic supercon-
ducting phases in UPt3. Physical Review B, 37, 2377.

Ramakrishnan, T.V. (1981). In Valence Fluctuations in Solids,
Falicov, L.M., Hanke, W. and Maple, M.P. (Eds.), North Holland:
Amsterdam, p. 13.



Heavy fermions: electrons at the edge of magnetism 147

Read, N. and Newns, D.M. (1983a). A new functional integral
formalism for the degenerate Anderson model. Journal of Physics
C, 29, L1055.

Read, N. and Newns, D.M. (1983b). On the solution of the Coqblin-
Schreiffer Hamiltonian by the large-N expansion technique.
Journal of Physics C, 16, 3274.

Read, N. and Sachdev, S. (1991). Large-N expansion for frustrated
quantum antiferromagnets. Physical Review Letters, 66, 1773.

Rech, J., Coleman, P., Parcollet, O. and Zarand, G. (2006).
Schwinger Boson approach to the fully screened Kondo model.
Physical Review Letters, 96, 016601.

Reinders, P.H.P., Springford, M., Coleridge, P.T., et al. (1986). de
Haas-van Alphen effect in the heavy-electron compound CeCu6.
Physical Review Letters, 57, 1631.

Riseborough, P. (2000). Heavy fermion semiconductors. Advances
in Physics, 49, 257.

Ronning, F., Capan, C., Bauer, E.D., et al. (2006). Pressure study
of quantum criticality in CeCoIn5. Physical Review, 73, 064519.

Rosch, A. (1999). Interplay of disorder and spin fluctuations in the
resistivity near a quantum critical point. Physical Review Letters,
82, 4280.

Rozenberg, M.J., Kotliar, G. and Kajueter, H. (1996). Transfer of
spectral weight in spectroscopies of correlated electron systems.
Physical Review B, 54, 8452.

Ruderman, M.A. and Kittel, C. (1954). Indirect exchange coupling
of nuclear magnetic moments by conduction electrons. Physical
Review, 96, 99–102.

Sachdev, S. (2007). Quantum phase transitions. In Handbook of
Magnetism and Advanced Magnetic Materials, Kronmüller, H.
and Parkin, S. (Eds.), John Wiley & Sons: Chichester, Vol. 1.

Sachdev, S. and Ye, J. (1993). Gapless spin-fluid ground state in
a random quantum Heisenberg magnet. Physical Review Letters,
70, 3339.

Sarachik, M., Corenzwit, E. and Longinotti, L.D. (1964). Resistivity
of Mo-Nb and Mo-Re Alloys Containing 1% Fe. Physical
Review, 135, A1041.

Sarrao, J.L., Morales, L.A., Thompson, J.D., et al. (2002).
Plutonium-based superconductivity with a transition temperature
above 18 K. Nature, 420, 297.

Sato, N., Aso, N., Miyake, K., et al. (2001). Strong coupling
between local moments and superconducting ‘heavy’ electrons
in UPd2Al3. Nature, 410, 340.

Scalapino, D.J., Loh, E. and Hirsch, J.E. (1986). d-wave pairing near
a spin-density-wave instability. Physical Review B, 34, 8190.

Schlessinger, Z., Fisk, Z., Zhang, H.T. and Maple, M.B. (1997).
s FeSi a Kondo insulator? Physica B, 237–238, 460–462.

Schrieffer, J.R. and Wolff, P. (1966). Relation between the Anderson
and Kondo Hamiltonians. Physical Review, 149, 491.

Schroeder, A., Aeppli, G., Bucher, E., et al. (1998). Scaling of
magnetic fluctuations near a quantum phase transition. Physical
Review Letters, 80, 5623.

Schroeder, A., Coldea, G.A.R., Adams, M., et al. (2000). Onset of
antiferromagnetism in heavy-fermion metals. Nature, 407, 351.

Schweitzer, H. and Czycholl, G. (1991). Resistivity and ther-
mopower of heavy-fermion systems. Physical Review Letters,
67, 3724.

Sengupta, A.M. (2000). Spin in a fluctuating field: the Bose
(+ Fermi) Kondo models. Physical Review, 61, 4041.

Senthil, T., Vojta, M., Sachdev, S. and Vojta, M. (2003). Fraction-
alized Fermi liquids. Physical Review Letters, 90, 216403.

Senthil, T., Vishwanath, A., Balents, L., et al. (2004). Deconfined
quantum critical points. Science, 303, 1490.

Senthil, T., Sachdev, S. and Vojta, M. (2005). Deconfined quantum
critical points. Physica B, 9, 359–361.

Shishido, H., Settai, R., Harima, H. and Onuki, Y. (2005). A drastic
change of the Fermi surface at a critical pressure in CeRhIn5:
dHvA study under pressure. Journal of the Physical Society of
Japan, 74, 1103.

Si, Q., Rabello, S., Ingersent, K. and Smith, J.L. (2001). Ocally
critical quantum phase transitions in strongly correlated metals.
Nature, 413, 804.

Si, Q., Rabello, S., Ingersent, K. and Smith, J.L. (2003). Local
fluctuations in quantum critical metals. Physical Review, 68,
115103.

Sidorov, V.A., Nicklas, M., Pagliuso, P.G., et al. (2002). Supercon-
ductivity and quantum criticality in CeCoIn5. Physical Review
Letters, 89, 157004.

Sigrist, M. and Ueda, K. (1991a). Unconventional superconductiv-
ity. Reviews of Modern Physics, 63, 239.

Sigrist, M. and Ueda, K. (1991b). Phenomenological theory of
unconventional superconductivity. Reviews of Modern Physics,
63, 239.

Smith, J.L. and Riseborough, P.S. (1985). Actinides, the narrowest
bands. Journal of Magnetism and Magnetic Materials, 47–48,
545.

Smith, J.L. and Si, Q. (2000). Spatial correlations in dynamical
mean-field theory. Physical Review, 61, 5184.

Steglich, F., Aarts, J., Bredl, C.D., et al. (1976). Superconductiv-
ity in the presence of strong pauli paramagnetism: CeCu2Si2.
Physical Review Letters, 43, 1892.

Stewart, G. (1984). Heavy-fermion systems. Reviews of Modern
Physics, 56, 755.

Stewart, G. (2001). Heavy-fermion systems. Reviews of Modern
Physics, 73, 797.

Stewart, G. (2006). Addendum: non-Fermi-liquid behavior in d-and
f-electron metals. Reviews of Modern Physics, 78, 743.

Stewart, G.R., Fisk, Z. and Wire, M.S. (1984a). New Ce heavy-
fermion system: CeCu6. Physical Review, 30, 482.

Stewart, G.R., Fisk, Z., Willis, J.O. and Smith, J.L. (1984b).
Possibility of coexistence of bulk superconductivity and spin
fluctuations in UPt3. Physical Review Letters, 52, 697.

Suhl, H. (1965). Formation of Local Magnetic Moments in Metals.
Physical Review, 38A, 515.

Taillefer, L. and Lonzarich, G.G. (1988). Heavy-fermion quasipar-
ticles in UPt3. Physical Review Letters, 60, 1570.

Taillefer, L., Newbury, R., Lonzarich, G.G., et al. (1987). Direct
observation of heavy quasiparticles in UPt3 via the dHvA effect.
Journal of Magnetism and Magnetic Materials, 63–64, 372.

Takabatake, T., Teshima, F., Fujii, H., et al. (1990). Formation of
an anisotropic energy gap in the valence-fluctuating system of
CeNiSn. Physical Review B, 41, 9607.



148 Strongly correlated electronic systems

Takabatake, T., Nagasawa, M., Fujii, H., et al. (1992). Anisotropic
suppression of the energy gap in CeNiSn by high magnetic fields.
Physical Review, 45, 5740.

Takabatake, T., Tanaka, H., Bando, Y., et al. (1994). Neling
evidence for the quasiparticle Gap in Kondo semiconductors
CeNiSn and CeRhSb. Physical Review B, 50, 623.

Tanatar, M.A., Paglione, J., Petrovic, C. and Taillefer, L. (2007).
Anisotropic violation of the Wiedemann-Franz law at a quantum
critical point. Science (in press).

Tou, H., Kitaoka, Y., Asayama, K., et al. (1995). d-wave
superconductivity in antiferromagnetic heavy-fermion compound
UPd2Al3-evidence from 27Al NMR/NQR studies. Journal of the
Physical Society of Japan, 64, 725.

Trovarelli, O., Geibel, C. Mederle, S., et al. (2000). YbRh2Si2:
pronounced non-Fermi-liquid effects above a low-lying magnetic
phase transition. Physical Review Letters, 85, 626.

Tsujji, H., Kontani, H. and Yoshimora, K. (2005). Universality in
heavy fermion systems with general degeneracy. Physical Review
Letters, 94, 057201.

Tsunetsugu, H., Sigrist, M. and Ueda, K. (1997). The ground-
state phase diagram of the one-dimensional Kondo lattice model.
Reviews of Modern Physics, 69, 809.

Tsvelik, A. and Wiegman, P. (1983). The exact results for magnetic
alloys. Advances in Physics, 32, 453.

Varma, C.M. (1976). Mixed-valence compounds. Reviews of Mod-
ern Physics, 48, 219.

Varma, C., Nussinov, Z. and van Saarlos, W. (2002). Singular Fermi
liquids. Physics Reports, 361, 267.

Vekhter, I., Hirschfield, P., Carbotte, J.P. and Nicol, E.J. (1998).
Anisotropic thermodynamics of d-wave superconductors in the
vortex state. Physical Review B, 59, R9023.

Vidhyadhiraja, N.S., Smith, V.E., Logan, D.E. and Krishnamurthy,
H.R. (2003). Dynamics and transport properties of Kondo insu-
lators. Journal of Physics: Condensed Matter, 15, 4045.

Volovik, G.E. (1993). Superconductivity with lines of GAP nodes:
density of states in the vortex. Soviet Physics JETP Letters, 58,
469.
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