Exercise 3. Toric Code and Twisted Bilayer Graphene (Due May 6th. Pdf solutions by email subject " 621 Homework 3" please

FIG. 1: Toric code on a four-plaquet, four star torus.

1. The Toric code is given by

$$
\begin{equation*}
H=-J_{e} \sum_{S} A_{S}-J_{M} \sum_{P} B_{P} \tag{1}
\end{equation*}
$$

where $A_{S}=\prod_{j \in+} X_{j}^{x}$ is the product of x-spins $X_{j} \equiv \sigma_{j}^{x}$ around a "star" while $B_{P}=\prod_{j \in \square} Z_{l}$ is the product of the Pauli-z spin $Z_{j} \equiv \sigma_{j}^{z}$ around a plaquet. Consider the Toric code on a torus with eight sites, four stars and four plaquets as shown in Fig. 1, Denote the state with all spins down by $\Psi_{0}=\left|0_{1} 0_{2} 0_{3} 0_{4}, 0_{5} 0_{6} 0_{7} 0_{8}\right\rangle$, where the labelling of the spins is shown in Fig. 1.
(a) Write down the ground-state wavefunction obtained by summing over all states obtained by flipping even numbers of spins around each star, i.e

$$
\Psi_{g}=\left(1+A_{s}(1)\right)\left(1+A_{s}(2)\right)\left(1+A_{s}(3)\right)\left(1+A_{s}(4)\right)\left(1+\mid \Psi_{0}\right)
$$

What is the ground-state energy of this state?
(b) Construct the three other topologically degenerate ground-states, by acting on the ground-state you have already found with a "magnetic" (product of X operators around torus).
2. (a) The four node, $3 \mathbf{q}$ Bistritzer-MacDonald Hamiltonian is

$$
H(\mathbf{k})=\left(\begin{array}{cccc}
h_{\mathbf{k}}(-\theta / 2) & T_{1} & T_{2} & T_{3} \tag{2}\\
T_{1}^{\dagger} & h_{\mathbf{k}+\mathbf{q}_{1}}(\theta / 2) & & \\
T_{2}^{\dagger} & & h_{\mathbf{k}+\mathbf{q}_{2}}(\theta / 2) & \\
T_{3}^{\dagger} & & & \\
h_{\mathbf{k}+\mathbf{q}_{3}}(\theta / 2)
\end{array}\right)
$$

where, putting

$$
h_{\mathbf{k}}(\theta)=v\binom{\bar{k} e^{i \theta}}{k e^{-i \theta}}, \quad T_{l}=w\left(\begin{array}{cc}
1 & e^{-i(l-1) \phi} \tag{3}\\
e^{i(l-1) \phi} & 1
\end{array}\right),(l=1,2,3 ; \phi=4 \pi / 3) .
$$

where $k=k_{x}+i k_{y} \bar{k}=k^{*}$ and $q_{l}=-i k_{\theta} e^{i(l-1) \phi}$. Set this Hamiltonian up in mathematica, (see example in Fig.2) or your favorite coding language, and plot the velocity of the Dirac cones versus the quantity $\alpha=\left(w / v k_{\theta}\right)$. (You may set $\theta=0$ in the $\mathrm{h}_{\mathbf{k}}$ terms.) Confirm that the results for small α correspond to the perturbation theory. (n.b. $w \sim 110 \mathrm{meV}$ and $v_{D} k_{D} \sim 11.2 \mathrm{eV}$ in graphene). (Hint: Evaluate the eigenvalues for some small momentum, eg $k=0.005$, sort the eigenvalues and select the 5 th one and divide by k.)
(b) Set up the Hamiltonian for the six site (twelve band) Bistritzer Macdonald model with C_{3} symmetry, i.e a six node set-up arranged around the corners of a hexagon. (Hint: the Hamiltonian for the six sites will be $h_{\mathbf{k}-\mathbf{K}_{l}}\left((-1)^{l} \theta / 2\right)$, where in complex notation, $\mathbf{K}_{l}=q_{\theta} e^{(2 l-1) i \alpha}$ is the location of the lth Dirac cone, where $\alpha=\pi / 6$.)
(c) Plot the dispersion across the Brillouin Zone in this simple model.

First set up the sub - matrices
$\operatorname{In}[\rho]:=h\left[k_{-}, \theta_{-}\right]:=\{\{0, \operatorname{Conjugate}[k] \operatorname{Exp}[I \theta]\},\{k \operatorname{Exp}[-I \theta], 0\}\} ;$
MatrixForm[h[kx + I ky, ϕ]]
$\phi=2 \pi / 3 ; q=\{-I,-I \operatorname{Exp}[I \phi],-I \operatorname{Exp}[2 I \phi]\} ;$
$\mathrm{T}\left[\alpha_{-}\right]=\alpha \operatorname{Table}\left[\left(\begin{array}{cc}1 & \operatorname{Exp}[-\mathrm{Il} \phi] \\ \operatorname{Exp}[\mathrm{I} l \phi] & 1\end{array}\right),\{l, 0,2\}\right] ;$
Table[MatrixForm[T[a][[i]]], \{i, 1, 3\}]
Out[0]/MatrixForm=

$$
\left.\begin{array}{c}
0 \\
e^{\frac{2 i \pi}{3}}(\text { Conjugate }[k x]-\text { ì Conjugate }[k y]) \\
e^{-\frac{2 i \pi}{3}}(k x+\dot{i} k y)
\end{array}\right)
$$

Now build the Full Hamiltonian, making use of the command "ArrayFlatten"
$\ln [\rho]:=\mathbf{H H}\left[\mathbf{k}_{-}, \Theta_{-}, \alpha_{-}\right]=$

$$
\begin{aligned}
& \text { ArrayFlatten }\left[\left(\begin{array}{cccc}
\mathrm{h} 1 & \mathrm{~T} 1 & \mathrm{~T} 2 & \mathrm{~T} 3 \\
\mathrm{~T} 1 & \mathrm{~h} 2 & 0 & 0 \\
\mathrm{~T} 2 & 0 & \mathrm{~h} 3 & 0 \\
\mathrm{~T} 3 & 0 & 0 & \mathrm{~h} 4
\end{array}\right)\right. \\
& \mathrm{h} 3->\mathrm{h}[\mathrm{k}+\mathrm{q}[[2]], \Theta / 2], \mathrm{h} 1->\mathrm{h}[\mathrm{k},-\Theta / 2], \mathrm{h} 2->\mathrm{h}[\mathrm{k}+\mathrm{q}[[1]], \Theta / 2], \\
& \mathrm{h}[\mathrm{k}+\mathrm{q}[[3]]-\mathrm{q}[[2]],-\Theta / 2], \mathrm{T} 1->\mathrm{T}[\alpha][[1]], \mathrm{T} 2 \rightarrow \mathrm{~T}[\alpha][[2]], \mathrm{T} 3->\mathrm{T}[\alpha][[3]]\}]
\end{aligned}
$$

$\ln [\mathrm{f}]:=\mathrm{w} 0=0.110 ;$ hbar $=1.054 \times 10^{\wedge}-34$;
$\mathrm{ee}=1.602 \times 10^{\wedge}-19$;
$a \mathrm{a}=1.42 \times 10^{\wedge}-10 ; \mathrm{kD}=4 \pi /(3 \sqrt{3} \mathrm{aa}) ; \mathrm{vF}=10^{\wedge} 6 ; \mathrm{tt}=\mathrm{hbar} \mathrm{vF} \mathrm{kD} / \mathrm{ee}$
$\alpha 0=w 0 / t t$
($3 \mathrm{w} 0 / \mathrm{tt}$) $360 /(2 \pi)$;
Out [0]= 11.2052
Out $0=0.00981691$
Now calculate the velocity as a function of inverse twist angle.

FIG. 2: Example set up of mathematica code.

