6.5 Molecules with Internal Mohon (see also, Pelin sechai 4. 6, pl16).

We shall study the stahshcal mechancos of molecules in the limit chere the trasolatunal mohoin is classical, 1.e

$$
n \lambda_{1}^{3}=\left(\frac{\lambda_{1}}{a}\right)^{3} \ll 1
$$

Boltzmarion in its trewlahonal degrees of frection.

Two aopecto un mut conodes

- $E_{\text {Rot }} \sim k_{B} T$ We must cossider the exatahoin of the (quantinam mechanical) rotabonel degreus of freedom.
- Electroni \& nudear degress of freedon become intertwined Lhen wre are dealing vit idestical ations $A-A$ molecules

$$
\begin{aligned}
& \Psi_{\sigma_{1} \sigma_{2}}(\vec{r})=X_{\sigma_{1} \sigma_{2}} \Psi(\vec{r}) \\
& \qquad \begin{array}{|l|lll|}
\hline \text { Fermions } & \pm s=1, & - & e_{\text {odd }} \\
\hline \text { Boous } & \pm s=0 & \pm & e_{\text {even }} \\
\hline & \begin{array}{l}
\text { even } \\
s=0
\end{array} & \pm & e_{\text {oodl }} \\
\hline
\end{array}
\end{aligned}
$$

To make progress us taler advarlage of the Bord-Oppenteimer approximation: for the electrons un can consider the nuclear argroess of friedan t br frozen (R), giving anise to an electronic energy $\epsilon_{n}(R)$ that is a function of the nuclear coordinates R. This quality then serves as on effective potential for the nuclear motions

$$
\begin{aligned}
& \left.Q_{N}(V, T)=\frac{1}{N!} \int Q_{1}(V, T)\right]^{N} \\
& Q_{1}(V, T)=\frac{V}{\lambda_{T}^{3}} j(T) \text { PARTNON Fuverin of } \\
& J(T)=\sum g_{n \nu} e^{-\epsilon_{n \nu} \beta}
\end{aligned}
$$

$$
\begin{aligned}
j(T) & =\sum g_{n \sigma} \exp \left[-\frac{\epsilon_{n \sigma}}{k_{B} T}\right] \\
& =g_{0,0} \exp \left[-\frac{\epsilon_{0,0}}{k_{B} T}\right] \sum \exp \left[-\frac{\left(\epsilon_{n, \psi}-\epsilon_{0,0}\right)}{k_{B} T}\right]
\end{aligned}
$$

Very important to keep in mind that the differenurs in energy that appear in this expresowin are uondly much lager than les T. (le va $10^{4} \mathrm{~K}$) We can ignore all be the vibrational \& rotational (v) degrees of freedom.
Uonally possible to comider the vibrated \& relational degrees of freedom as independent.

$$
\begin{aligned}
& J(T) \approx g_{0} \exp \left[-\frac{\epsilon_{\infty}}{k_{s} T}\right] \sum \exp \left[-\frac{\left(\epsilon_{0 v}-\epsilon_{0}\right)}{k_{B} T}\right] \\
& \Delta \epsilon_{r}=\epsilon_{0 v}-\epsilon_{\infty}=\left(n+\frac{1}{2}\right) \hbar \omega+e(l+1) \frac{\hbar^{2}}{27} \\
& \tau_{(2 e+1) \text { fold deg. }}
\end{aligned}
$$

ω is the vibration frequaray around the Borr-Oppenceemer. minimum

$$
\omega^{2}=\left.\left(\frac{1}{m_{A}}+\frac{1}{m_{B}}\right) \frac{\partial^{2} \epsilon_{0}(R)}{\partial R^{2}}\right|_{R_{0}}
$$

In the classical limit

$$
\sigma_{A B}=\text { symmely factor }= \begin{cases}1 . & A \neq B \\ 2 . & A=B\end{cases}
$$

$$
\text { EItic } \quad \text { Jio }=\sum_{n=0}^{\infty} \exp \left[-\frac{\left(n+\frac{1}{2}\right) \hbar u}{k_{3} T}\right]=\exp \left[-\frac{1}{2} \frac{\hbar u}{\operatorname{len}_{3} T}\right]\left(1-\exp \left(-\frac{\hbar v}{k_{s} T}\right)\right)^{-1}
$$

$$
\begin{aligned}
-\quad \text { jrot } & =\sum_{e=0}^{\infty}(2 e+ \\
\theta_{r} & =\hbar^{2} / 2 \text { Ilees }
\end{aligned}
$$

Approx:

$$
\begin{aligned}
& \text { Jrot } \approx \int d l(2 e+1) \exp \left[-\frac{e(e+1) \theta_{r}}{T}\right]=\frac{T}{\theta_{\text {rot }}} \\
& \frac{-\partial h) \text { rot }}{\partial \beta}=\frac{\partial}{\partial \beta} h\left(\beta \theta_{\text {rot }} k_{3}\right)=k_{3} T . \quad C_{\text {UROt }}=N k_{3} .
\end{aligned}
$$

Better

$$
\begin{aligned}
& \sum f(n)=\int f(x) d x+\frac{1}{2} f(0)=\frac{1}{12} f^{\prime}(0)+\frac{1}{720} 4^{\prime \prime \prime}(0)+\ldots \\
& f(x)=(2 x+1) \exp [-x(x+1) \theta / 2], \\
& \operatorname{Jar}(1)=\frac{7}{\theta_{r}}+\frac{1}{2}-\left[\frac{1}{6}+\frac{1}{12} \theta_{T}\right]+\ldots \\
& f^{\prime \prime \prime}(0)=-2(2 x+1 \\
& =\frac{7}{\theta_{r}}+\frac{1}{3}+ \\
& \frac{1}{15} \theta_{r}+\frac{4}{315}\left(\frac{\theta_{r}}{7}\right)^{2}+. \\
& \left.U=-\frac{N}{\partial \beta} \ln \operatorname{jrot}(T)=N k_{\Omega} T^{2} \frac{\partial}{\partial \tau} \ln \right) \operatorname{rot}(T) \\
& \left.=k_{g} T T-\frac{\theta}{3}-\frac{\theta^{2}}{45 T}-\frac{8 \theta^{3}}{945 T^{2}}\right] \\
& c_{v}=\frac{\partial u}{\partial T}=N \text { les }\left\{1+\frac{1}{45}\left(\frac{\theta_{1}}{T}\right)^{2}+\frac{16}{945}\left(\frac{\theta}{T}\right)^{3}+. .\right\}
\end{aligned}
$$

Wen $T \ll \theta \quad$ Jot $=1+3 e^{-2 \theta / 7}+5 e^{-6 \theta / 7}$

$$
C_{v}=12 N e_{3}\left(\frac{\theta_{r}}{2}\right)^{\prime} e^{-2 \theta_{r} / 7}
$$

e.g HD, UT, DT

Diatomi gares C_{U} as ofn of T.

$$
C_{P}^{0}=\frac{5}{2} \text { Nkes. } \quad C_{\nu}=\frac{3}{2} \text { Nies }
$$

$$
V=\frac{C P}{C_{V}}=\frac{5}{3}
$$

Tum on Roletind \quad bes $T>\theta_{\text {rot }}$

$$
C_{p}=\frac{7}{2} \text { Nus }
$$

$$
C_{v}=\frac{5}{2} \text { Nees }
$$

$$
\gamma=\frac{7}{5}
$$

Tum or Vib. degm of fr

$$
C_{P}=\frac{9}{7} \text { Nas } \quad C_{u}=\frac{7}{2} \text { Nas }
$$

$$
\gamma=\frac{9}{7}
$$

Ortwo + Para Hydrogen

$I=1$ PARA

$I=0$ ortho.

$$
\begin{aligned}
& \psi_{\sigma_{1} \sigma_{2}}(r)=-\psi_{\sigma_{2} \sigma_{1}}(-r) \quad \text { Since nudeii are fermions. } \\
& \psi_{\sigma_{1} \sigma_{2}}(r)=X_{\sigma_{1}, \sigma_{2}} \phi(r) \\
& \phi(\vec{r})=\psi_{(r)} Y_{e_{m}}(\hat{r}) \\
& Y_{e_{m}}(r) \rightarrow(-1)^{e} Y_{e_{m}}(-\hat{r}) \\
& X_{\sigma_{1} \sigma_{2}}=\left\{\begin{array}{ll}
-X_{\sigma_{\sigma} \sigma,} & s=0 \\
+X_{\sigma_{2} \sigma_{1}} & s=1
\end{array}\right\} \Rightarrow \begin{array}{l}
s=0 \\
l=1,3,5
\end{array}
\end{aligned}
$$

(CTP
www.ictp.it

$$
\begin{aligned}
J_{\text {rot }}= & \sum_{e \in o d d}(2 l+1) e^{-t^{1} / 21 k_{0} \eta e(l+1)} \\
& +\sum_{e \in e n}(2 e+1) e^{-t^{1} / 2 z k \tau} e(e+1)
\end{aligned}
$$

$$
C_{\text {rol }}=\operatorname{Nan}^{7}\left(\frac{\partial^{2} T e \rho}{\partial \tau^{2}}\right)
$$

$$
\begin{aligned}
&-r e \rho=A \\
& S=-\frac{\partial}{\partial r} A=+\frac{\partial n t e \rho}{\partial r} \\
& N T \frac{d s}{d T}=C=T \frac{\partial^{2} r e \rho}{\partial r^{2}}
\end{aligned}
$$

c

Farcure!

Nuden spi \& Rult deem of finl ure nol i: equ

$$
\begin{gathered}
C_{v}=\text { Nhes }
\end{gathered}\left[\begin{array}{c}
\frac{N_{0}}{N} \frac{\partial^{2} \tau h \rho_{0}}{\partial \tau^{2}}+\frac{N_{1}}{N} \frac{\partial^{2} \tau h \rho_{1}}{\partial \tau^{2}}
\end{array}\right]
$$

Chemical Equili brium

$$
\begin{array}{ll}
\text { e.g } \quad 2 \mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{On}^{-} \\
\mathrm{CH}_{4}+2 \mathrm{O}_{2} & \rightleftharpoons \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
\end{array}
$$

$$
\begin{aligned}
& V_{A} A+V_{B} B \rightleftharpoons V_{C} C+V_{D} D \\
& N_{\alpha}^{0} \rightarrow N_{\alpha}^{0}-V_{\alpha} \Delta N \quad \alpha=A, B \\
& N_{\alpha}^{0} \rightarrow N_{\alpha}^{0}+V_{\alpha} \Delta N \quad \alpha=C, D
\end{aligned}
$$

Choose

$$
\bar{\nu}_{\alpha}= \begin{cases}-v_{\alpha} & \text { reactats } \\ +v_{\alpha} & \text { products. }\end{cases}
$$

$$
\frac{\Delta N_{\alpha}}{\widetilde{V}_{\alpha}}=\text { coniat }=\Delta N^{0}
$$

Fixed prossuve, temperation

$$
\begin{aligned}
& \Rightarrow \quad G=E-T S+P V=\operatorname{Ng}(T, P)=+N \mu . \\
& d C=-S d T+V d P+M d N \\
& \Delta G=\sum \Delta N_{\alpha} \mu_{\alpha}=\sum \Delta N^{0} \widetilde{\nu}_{\alpha} \mu_{\alpha}=0 \\
& \Rightarrow \quad \sum \tilde{v}_{\alpha} \mu_{\alpha}=. \nu_{C} \mu_{C}+\nu_{B} \mu_{B}-\nu_{A} \mu_{A}-\nu_{B} \mu_{B}=0 \\
& A(N, V, T)=N E+N e_{s} T h \frac{N \lambda^{3}}{v}-N e_{s} T-N k_{s} T h j(\tau) . \\
& \mu_{A}=\left(\frac{\partial f}{\partial N_{A}}\right)_{T, V}=\epsilon_{A}+\operatorname{kes}_{s} \tau h\left(\frac{N_{A}}{V} \lambda_{A}^{3}\right)-k_{3} \tau h j(\tau)
\end{aligned}
$$

$$
2 \mathrm{CO}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{CO}_{2}
$$

CAR Exnaust

$$
\frac{\left[\mathrm{co}_{2}\right]^{2}}{\left[\mathrm{co}^{2}\left[\mathrm{O}_{2}\right]\right.}=k \quad \Rightarrow \frac{\mathrm{co}^{2}}{\left[\mathrm{co}_{2}\right]}=\frac{1}{\sqrt{k\left[\mathrm{o}_{2}\right]}}
$$

$$
T=1500 k \quad K=10^{10}
$$

$$
\tau=600 k \quad k \sim 10^{40} \quad \Rightarrow \text { no } \quad \text { co! }
$$

Bot verctorn inworplets. Reasonfor cotaybi converters

$$
\begin{aligned}
& \ln \left[\prod_{\alpha}\left(\frac{N_{\alpha}}{V_{n}}\right)^{\alpha}\right]+\frac{\tilde{\nu}_{\alpha} M_{\alpha}^{(0)}}{\operatorname{les} T}=0 \\
& \mu_{\alpha}^{(0)}=\epsilon_{A}+k_{B} \tau h n_{0} \lambda_{A}^{3}-k_{S} T h j(t) \\
& \Rightarrow \prod_{\alpha}\left(\frac{N_{\alpha}}{V_{n_{0}}}\right)^{\tilde{\nu}_{\alpha}}=\prod_{\alpha}[\alpha]^{\tilde{v}_{\alpha}}=e^{-\Delta \mu / \operatorname{les} T}=K(T) \\
& \frac{[C]^{v_{C}}(D)^{r_{0}}}{[A]^{\gamma_{A}}(B]^{r_{B}}}=k(J) \\
& \text { e.g } \quad 2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \\
& \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{Mn}^{\circ}\right]}{\left[\mathrm{n}_{2}\right]^{2}}=k(\tau) \\
& \left\{\begin{array}{l}
{\left[n_{3} 0^{+}\right]\left[\mathrm{On}^{-}\right]=\stackrel{\text { conlar }}{=}=10^{-14} \mathrm{~mol}^{2} / \mathrm{L}^{3} \quad \begin{array}{l}
L=10^{3} \mathrm{~cm}^{3} \\
=10^{-3} \mathrm{~m}^{3} \\
-\log _{10}\left[n_{3} 0^{+}\right]=p H .
\end{array} \quad[\quad}
\end{array}\right.
\end{aligned}
$$

