3. The canonical ensemble

In the micocanorical ensemble, $E \in\left[E_{0}-\frac{1}{2} \Delta, E_{0}+\frac{1}{2} \Delta\right]$.
We saws how we could relate the entropy to the number of micositates $\Omega(N, V, E)$ accessible to the system.

But the use of an ensemble with detriite energy is not very practical. Today we soul examine a new kind of ensemble: the canonical ensemble, choraterined by a deflate temperature. In the canonical ensemble, the energy of the state is variable. We need ts understand what governs the probability P_{r} b be in a micostate of energy E_{r}.
3.1 EQUMBRIMM BETUEN A SYSTEM AND A heat reservoir.

VAST SYSTEM A^{\prime}
(HEAT BATH
$\left(E_{r}^{\prime}, T\right)$

$$
E_{r}+E_{r}^{\prime}=E^{(0)}=\text { con star }
$$

$\frac{E_{r}}{E_{0}} \ll 1$ a tiny fraction

$$
\begin{aligned}
& \operatorname{Pr} \alpha \Omega^{\prime}\left(E_{0}-E_{r}\right) \\
& \ln \Omega^{\prime}\left(E_{0}-E_{r}\right)=\ln \Omega^{\prime}\left(E_{0}\right)-\frac{\partial h \Omega^{\prime}(E)}{\partial E} E_{r}+O\left(\frac{\delta E_{r}^{2}}{E_{0}^{2}}\right) \\
& \quad=\text { const }-\beta^{\prime} E_{r}
\end{aligned}
$$

$$
\begin{aligned}
& \qquad\left(\frac{\partial \ell_{n} \Omega}{\partial E}\right)_{N, V} \equiv \beta \\
& \Rightarrow P_{r} \alpha \exp \left[-\beta E_{r}\right] \quad P_{r}=\frac{e^{-\beta E_{r}}}{\sum_{r} e^{-\beta E_{r}}}
\end{aligned}
$$

3.2.

Wed like to reexamine the Boltzmann distribution from the pout of view of on ensemble. We consider N identical systems with the same energy level structure.
$E_{r} r$

E, \square
E, O
constrain

$$
\begin{aligned}
\text { The total \# of members in ta evemide } & =N=\sum n_{r} \\
\text { The total Energy of the ensemble } & =N U=\sum n_{r} E_{r}
\end{aligned}
$$

U is the average energy per ensemble member
The probability of the distribution $\left\{n_{r}\right\}$ will be proportional to the number of ways that this distribtan con occur

$$
\left.P \int\left\{n_{r}\right\}\right] \propto W\left[\left\{n_{r}\right\}\right\}=\frac{N!}{n_{0}!n!!\cdots \cdot}
$$

It turns out that this probcbility distribstion is extremely tigntly pealeed aound the most pobable distributian. We'll begin by lookerig of the most porbable distratation.

From $W\left[\left\{N_{n}\right\}\right]$ we can calculate expectation values

$$
\left\langle n_{s}\right\rangle=\frac{\sum_{\left\{n_{r}\right\}}^{\prime} n_{s} W\left[\left\{n_{r}\right\}\right]}{\sum_{\left\{n_{r}\right\}}^{\prime} W\left[\left\{n_{r}\right\}\right]} \quad\langle E\rangle=\frac{\sum^{\prime} E_{s} n_{s} W\left[\left\{n_{r}\right\}\right]}{\sum^{\prime} W\left[n_{r}\right]}
$$

Where the prime implies summation one distributor bit N evembles \& Nu energy.

Method of most probable values

What distribution maximizes $W[\{n r\}]$?

$$
\begin{aligned}
\ln _{n} W & =\ln N!-\sum_{r} \ln n_{r}! \\
& =N \ln \frac{N}{e}-\sum n_{r} \ln \frac{n_{r}}{e}
\end{aligned}
$$

Vary $\delta \ln W$, subject to the conblaints $\sum \delta n_{r}=0$ \& $\sum E_{r} \delta n_{r}=0$ Uong Lagrange multiplies

$$
\left(\delta \ln W-\alpha \sum \delta n_{r}-\beta \sum \delta n_{r} E_{r}\right)=0
$$

$$
\begin{aligned}
& \delta(\ln \omega-\alpha N-\beta E)=-\sum\left(\ln n_{r}+\alpha+\beta E_{r}\right) \delta n_{r}=0 \\
& \Rightarrow \quad \operatorname{lnn}_{r}^{*}=-\alpha-\beta E_{r} \\
& \Rightarrow \quad n_{r}^{*}=C \exp \left(-\beta E_{r}\right) \\
& \frac{n_{r}^{*}}{N}=\frac{\exp \left(-\beta E_{r}\right)}{\sum_{r} \exp \left(\beta E_{r}\right)} \\
& P_{r}=\frac{\sum W\left[\{n\} \| \delta\left(n_{-}-n_{r}^{0}\right)\right.}{\sum W\{\{n r\}]}
\end{aligned}
$$

Where β is the solution to equation

$$
\frac{E}{N}=U=\frac{\sum E_{r} e^{-\beta e r}}{\sum e^{-\beta e_{r}}}
$$

Now although n_{r}^{*} is the most lively value of n_{r}, we expect $\left\langle\delta n_{r}^{2}\right\rangle=\left\langle n_{r}^{2}\right\rangle-\left\langle n_{r}\right\rangle^{2} \propto O(N)$, oo that $\frac{\sqrt{\left\langle\delta n_{r}^{2}\right\rangle}}{N} \sim \frac{1}{\sqrt{N}}$ is negligible.
(We will jumpoves a more in depth treabmer (Pathria 3.2b) retnrang to his
3.3 Pumacal sionificance of the various quantmes in the canonical ensemble

$$
\begin{aligned}
& Q=\sum e^{-\beta E_{r}} \\
& P_{r}=e^{-\beta E_{r}} / Q \\
& U=\frac{\sum E_{r} e^{-\beta E_{r}}}{Q}=-\frac{\partial}{\partial \beta} \ln \sum e^{-\beta E_{r}}=-\frac{\partial}{\partial \beta} \ln Q .
\end{aligned}
$$

Detemines β.

At constran temperatire wi use the Kelmindte free energy

$$
\begin{aligned}
& A=U-T S \\
& d U=T d S-P d V+\mu d N \quad \Rightarrow \quad \frac{d A=-S d T-P d U+\mu d N}{S=-\frac{\partial A}{\partial T} \quad P=-\frac{\partial A}{\partial U} \quad \mu=\frac{\partial A}{\partial N} .}
\end{aligned}
$$

We can iderity $\beta=\frac{1}{R_{B T}} \&-k_{B} \ln Q=A$ in tho ditterent mags

Memod I

$$
\begin{aligned}
U=A+T S=A-T \frac{\partial A}{\partial T}=-T^{2} \frac{\partial}{\partial T}(A / T) & =\left[+\frac{\partial A / T}{\partial(1 / T)}\right]_{N, v} \\
& =-\frac{\partial \ln \theta}{\partial \beta}
\end{aligned}
$$

$\Rightarrow \beta=\frac{1}{k T} \quad \ln Q=-\frac{A}{k T} \quad$ ke is a univessal consup (Boltzranan!)

Mehod II

We can identily $\quad S=-k_{B} h \omega[\{n *\}]$ as the entropy of the

$$
\begin{array}{rlrl}
S & =+k s\left[N \ln N \sum_{r} n_{r}^{*} \ln n_{r}^{*}\right] \\
& =-k s N \sum P_{r} \ln P_{r} & P_{r}=\frac{n_{r}^{*}}{N}=\frac{e^{-\beta E_{r}}}{Q} .
\end{array}
$$

It we expand this
$\frac{S}{N}=S=$ arge mermodynamic entropy/member of evenble

$$
\begin{aligned}
S & =-k_{B} \sum \operatorname{Pr}\left(-\beta E_{r}-\operatorname{hn} Q\right)=-k_{B} \sum \operatorname{Pr} \operatorname{l} P_{r} \\
& =k_{B} \beta(U)+k_{B} \operatorname{hn} Q
\end{aligned}
$$

$$
\begin{gathered}
B_{n+} \quad A=u-S T \Rightarrow S=\left(\frac{u-A}{T}\right) \\
\Rightarrow \quad k_{B} \beta=\frac{1}{T} \Rightarrow B=\frac{1}{k_{B} T} \\
A=-k_{B} T \ln Q
\end{gathered}
$$

From A va con get the rest of the kermodynamis

$$
\begin{aligned}
& C_{V}=\left(\frac{\partial U}{\partial T}\right)_{N, V}=-T \frac{\partial^{2} A}{\partial T^{2}} \\
& U=A-T \frac{\partial A}{\partial T} \\
& \frac{\partial U}{\partial T}=\frac{\partial A}{\partial T}-\frac{\partial A}{\partial T}-\frac{\partial^{2} A}{\partial T^{2}} \\
&\left.\left.G=A+P V=A-V \frac{\partial A}{\partial V}\right)_{N, T}=N \frac{\partial A}{\partial N}\right)_{V, T}=N \mu \\
&(\text { consequence of } A=N a(T, V / N))
\end{aligned}
$$

Note also that

$$
P=-\frac{\partial}{\partial v} A=\frac{\sum\left(\frac{\partial E_{r}}{\partial v}\right) e^{-\beta E_{r}}}{\sum e^{-\beta E_{r}}}
$$

change is energy duet suit is levels
∞ to c

$$
P_{\uparrow} d V=-\frac{\sum \delta E_{r} e^{-\beta E r}}{\sum e^{-\beta Z_{r}}}=-\sum p_{r} E_{r}=-\delta U
$$

Mechanises wore $\Rightarrow P$ is a fore.
3.4 Relatonsulp between Density of States and Partiton fin

$$
\begin{aligned}
& Q_{N}\left(V_{1} T\right)=\sum g_{i} e^{-\beta E i} \\
& P:=\frac{g_{i} e^{-\beta E i}}{Q_{N}\left(U_{i}, T\right)}
\end{aligned}
$$

Corhnumen. $E \rightarrow$ corhuraus vonble

$$
\begin{aligned}
& g(E) d E=\# d \text { shse in inkervol } \delta E . \\
& P(E) d E) \propto g^{(E) e^{-\beta E} d E} \\
& P(\theta) d E=\frac{g^{(E)} e^{-\beta E} d E}{\int_{0}^{\infty} g(E) e^{-\beta E} d E} \quad \begin{array}{l}
\text { CAPCACE TRANSFORM. } \\
O F \\
g(E) .
\end{array}
\end{aligned}
$$

Note exact it ue put $g(E)=\sum_{i} g_{i} \delta\left(E-E_{i}\right)$

We con abas invest the Laplace Tranderm

$$
\begin{aligned}
g(E) & =\frac{1}{2 \pi i} \int_{\beta^{\prime}-i \infty}^{\beta^{\prime}+10 \infty} e^{\beta E} Q(\beta) d \beta \\
& =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{\left(\beta^{\prime}+i \beta^{\prime \prime}\right) E} Q\left(\beta^{\prime}+\beta^{\prime \prime}\right) d \beta^{\prime \prime}
\end{aligned}
$$

Inverse Laplace Tern.

$$
\beta>0
$$

(Note that ie can derive has or follows

$$
\begin{aligned}
g(E) & =\sum_{j} g_{j} \delta\left(E-E_{j}\right) \\
\delta(E-E) & =\int_{\frac{d x}{2 \pi}} e^{i x\left(E-E_{j}\right)}=\int_{-\infty}^{\infty} \frac{d x}{2 \pi} e^{\left(\beta^{\prime}+i x\right)\left(E-E_{j}\right)} \\
\Rightarrow g(E) & =\sum_{j} \int_{-\infty} \frac{d x}{2 \pi} g_{j} e^{\left(\beta^{\prime}+i x\right)\left(E-E_{j}\right)} \\
& =\int_{-\infty}^{\infty} \frac{d x}{2 \pi} e^{\left(\beta^{\prime}+i x\right) E} \sum_{j} g_{j} e^{-\left(\beta^{\prime}+i x\right) E_{j}} \\
& =\frac{1}{2 \pi} \int_{\beta^{\prime}-i \infty}^{\beta^{\prime}+1 \infty} d \beta e^{\beta \epsilon} Q(\beta)
\end{aligned}
$$

$$
\checkmark
$$

3.5 CAnonical ensemble: CuAstical

$$
\operatorname{Recall}\langle f\rangle=\frac{\int f(q, p) \rho(q, p) d_{q}^{3 N} d^{3 N} p}{\int \rho(q, p) d^{3 N} q d^{3 N} p}
$$

We ured the stahonanty of $\rho(q, p, t)=\rho(q, p)$ \& Lowilles thm to ague hat $\rho(q, p)=\rho[n(q, p)]$. Uaing ow arguments of the lask thoo sechons, nee we talee

$$
\rho(q, p) \propto e^{-\beta u(q, p)}
$$

So hat now :-

$$
\langle f\rangle=\frac{\int f e^{-\beta n} d \omega}{\int e^{-\beta n} d \omega} \quad d v=d^{3 N} p d^{3 N} q
$$

We nos introduce tos poritioin function

$$
\Omega_{N}(V, T)=\frac{1}{N!h^{3 N}} \int e^{-\beta u(q, p)} d \omega
$$

Here we have need the observation of chapter 2 hal

$$
d u \longrightarrow d \tilde{u}=\frac{d u}{N!h^{3 N}}
$$

is the correct classical limits of quariom counting.

Suppose $\sqrt{ }$ have no iterations, no internal degrees of freedom, then $H(q, p)=\sum_{j=1}^{3 N} p_{j}^{2} / 2 m$ and

$$
\Omega_{N}(v, T)=\frac{1}{N!h^{3 N}} \int e^{-(\beta / 2 m) \sum_{j=1}^{2 N} p_{j}^{2}} \prod_{j=1}^{3 N}\left(d q_{j} d p_{j}\right)
$$

Volume integral $\pi \int d^{3} q_{j}=V^{N}$. Remainder of call

$$
\Omega_{N}(v, T)=\frac{1}{N!}\left(\frac{V}{h^{3}}\right)^{N} \prod_{j=1}^{3 N}\left(\sqrt{\left(d p_{j} e^{-\frac{\beta}{m} p^{2}}\right.}\right)
$$

$$
\begin{aligned}
& \Omega_{N}=\frac{1}{N!}\left[\frac{V}{h^{3}}\left(2 \pi_{m k_{B} T}\right)^{3 / 2}\right]^{N} \\
& \Rightarrow A(N, V, T)=-k_{S} T \ln \Omega_{N} \\
& =-k_{B} T N P_{n}\left[\frac{V}{h^{3}}\left(2 \pi m k_{B} T\right)^{3 / 2}\right] \\
& +k_{B} T N \ln \left(\frac{N}{e}\right) \\
& A(N, V, T)=N \operatorname{le}_{s} T\left(\ln \left[\frac{N}{V}\left(\frac{h^{2}}{2 \pi \text { mest } T}\right)^{3 / 2}\right]-1\right) \\
& \left.\mu=\frac{\partial A}{\partial N}\right)_{V, T}=\operatorname{les} T \ln \left[\frac{N}{V}\left(\frac{h^{2}}{2 n_{\text {mlest }}}\right)^{3 / 2}\right] \\
& P=-\left(\frac{\partial A}{\partial V}\right)_{N, T}=\frac{N_{k_{B} T}}{V} \\
& S=-\left.\frac{\partial A}{\partial T}\right|_{N, V}=N_{k B}\left[h\left[\frac{V}{N}\left(\frac{2 \pi_{m b s} T}{h^{2}}\right)^{3 / 2}\right]+\frac{5}{2}\right]
\end{aligned}
$$

$$
U=-\left(\frac{\partial}{\partial \beta} \ln \theta\right)_{E}=T^{2}\left(\frac{\partial}{\partial T}\left(\frac{A}{T}\right)\right)_{N, V}=A+T S=\frac{3}{2} N \operatorname{ces}_{S} T .
$$

Remades

- $Q_{N}=\frac{1}{N!}\left[Q_{1}(V, T)\right]^{N}$
\uparrow
Parition for of xangle moleunce!
Shll tme even ith interned degrees of freeds:
- Could have calculated uning denity of sheles.

$$
\begin{aligned}
& g(E)=\frac{\partial \varepsilon}{\partial E}=\frac{1}{N!} \frac{\partial}{\partial E}\left[\frac{1}{\left(\frac{3 N}{2}!!\right.}(2 \pi m E)^{3 N / 2}\left(\frac{V}{h^{3}}\right)^{N}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{N!}\left(\frac{V}{n^{3}}\right)^{N}\left(2 \pi m_{\text {les }} T\right)^{3 N / 2} \sqrt{ }
\end{aligned}
$$

- Car alro caltiy aul invere L.T k geb $g(E)$ from $Q_{N}(E)$

$$
Q(z)=\frac{1}{N!}\left[\left.\frac{V}{h^{3}}(2 \pi m)^{3 / h}\right|^{N} \frac{1}{z^{3 N / 2}}\right.
$$

$$
\# \frac{1}{2 n i} \int_{\beta^{\prime}-\infty}^{\beta^{\prime}+i \infty} \frac{e^{2 E} d z}{z^{3 N / 2}}
$$

β $\beta^{-i \infty} \frac{(2 \tau)^{n}}{n!}$

$$
g(E)=\frac{1}{N!}\left[\frac{V}{h^{3}}(2 \pi m)^{3 / 2}\right]^{N} \frac{E^{3 N / 2-1}}{\left(\frac{3 N-1}{2}\right)!} \theta(E)
$$

3.6 Energy fluctuations

Deprite kmperatione \leftrightarrow Indefinite energy

Well see hat to enargy finctiontong we relatia $b \quad\left\langle\Delta E^{2}\right\rangle \sim N$ the specific hear copanty.

$$
\begin{aligned}
&\left\langle\left\langle(\Delta E)^{2}\right\rangle=k_{B} T^{2} C_{V}\right| \frac{\|}{u} \\
& \begin{aligned}
U=\frac{\sum E_{r} e^{-\beta E_{r}}}{\sum e^{-\beta E_{r}}} \Rightarrow \frac{\partial u}{\partial \beta} & =-\frac{\sum E_{r}^{2} e^{-\beta E_{r}}}{\sum e^{-\beta E_{r}}}+\frac{\left(\sum E_{r} e^{-\beta E r}\right)^{2}}{\left(\sum e^{-\beta e_{r}}\right)^{2}} \\
& =-\left\langle E^{2}\right\rangle+\langle E\rangle^{2}=-\left\langle\Delta E^{2}\right\rangle
\end{aligned}
\end{aligned}
$$

So $\left\langle\Delta E^{2}\right\rangle=-\frac{\partial u}{\partial \beta}=-\frac{d T}{d \beta} \frac{\partial u}{\partial T}=k_{B} T^{2} C_{V} \quad \alpha O(N)$

$$
\begin{aligned}
\beta & =\frac{1}{k_{B} T} \\
\frac{\partial \beta}{d T} & =-\frac{1}{k_{3} T^{2}} \\
\frac{\sqrt{\Delta E^{2}}}{U} \quad & =\frac{\sqrt{l_{3} T^{2} C_{V}}}{U} \sim O\left(N^{-1 / 2}\right)
\end{aligned}
$$

intrintesimal in macroscopia onstems

$$
p(E) \alpha \exp [-\frac{-(E-u)^{2}}{2 \underbrace{\operatorname{krs}^{2} C_{V}}_{\sigma}}]
$$

Lets examine $p(E)$

$$
\begin{aligned}
& p(E) d E \propto g(E) e^{-\beta E} d E \\
& p(E) \alpha e^{(\ln g-\beta E)}
\end{aligned}
$$

Maximain wher $\left.\quad \frac{\partial b g}{\partial E}\right|_{E=E^{*}}=\beta=\left.\frac{1}{k_{B} T} \Rightarrow \frac{\partial S}{\partial E}\right|_{E=E^{*}}=\frac{1}{T}$

But aince $S=$ kshg $\left.\& \quad \frac{\partial S}{\partial E}\right|_{E=U}=\frac{1}{T}$

So moot bitech enery $E^{*}=U$.

Moreover

$$
\begin{aligned}
& \ln g-\beta E= \operatorname{lng}(u)-\beta u+\left.\frac{(E-u)^{2}}{2} \frac{\partial^{2}}{\partial E^{2}} \operatorname{lng}(E)\right|_{E=u}+\delta E^{3} \\
&= \frac{-\frac{1}{k_{B} T}(u-S T)}{\left(\frac{S}{k_{B}}-\frac{u}{k B T}\right)}+\left.\frac{(E-u)^{2}}{2} \frac{\partial^{2}}{\partial E^{2}} \ln g(E)\right|_{E=u}+\ldots \\
& \frac{\partial \ln g}{\partial E}=\frac{1}{k_{B} T(E)} \quad \frac{\partial^{2} \ln S}{\partial E^{2}}=-\frac{1}{k_{B} T^{2}} \frac{\partial T}{\partial E}=\frac{-1}{k_{B} T^{2} C_{V}} \\
& p(E) \alpha \quad e^{-\beta(u-S T)} \exp \left[-\frac{(E-u)^{2}}{26 T^{2} C_{V}}\right]
\end{aligned}
$$

Finally, les look at $\theta=\int g e^{-\beta \varepsilon} d \varepsilon$

$$
\begin{aligned}
Q_{N}(V, T) & =e^{-\beta(u-5 T)} \int d E e^{-\frac{(E-u)^{2}}{2 k T^{2} c V}} \\
& =e^{-\beta(u-S T)} \sqrt{2 \pi R_{B} T^{2} C_{V}}
\end{aligned}
$$

$$
\begin{aligned}
& -k_{3} T h Q_{N}(v, T) \\
& =A \approx \overbrace{U-T S}^{O(N)} \overbrace{\underbrace{2}_{\text {Gaustan covection }} \sigma}^{\overbrace{R_{3} T} \ln \left(2 \pi k_{B}^{2} T C_{V}\right)}
\end{aligned}
$$ Themadryemus.

Uets a $\operatorname{Cn} N / O(N) \%$ error. $\quad A=(U-\tau 5)$

$$
\Rightarrow \quad-3 P V=-3 N k_{3} T
$$

$P v=$ Nk-3 7 well lenan nexut

Nohicetal $\quad V=-2 K . \quad$ (uning equiparhine)

We can nos exterd f an interabinay systemin d diressions

$$
\begin{aligned}
& \frac{P}{\left(\frac{N l_{3} T}{V}\right)}=\frac{P}{n R_{3} T}=1+\frac{1}{N \text { dles } T}\left\langle\sum_{i \alpha j} F_{\left(r_{i j}\right)} \cdot \vec{F}_{i j}\right\rangle \\
& \vec{F}_{1} \cdot \vec{r}_{3}+\vec{F}_{2} \cdot \vec{r}_{2}=\vec{F}_{12}\left(\vec{r}_{1}-r_{2}\right)=\vec{F}_{12} \cdot\left(\vec{r}_{12}\right) \\
& \frac{P}{n \operatorname{kes} T}=1-\frac{1}{N d \operatorname{les} T}\left\langle\sum_{i<j} \frac{\partial u\left(r_{0}\right)}{\partial r_{i j}} r_{i j}\right\rangle \\
& \text { virial } \\
& \text { siare. }
\end{aligned}
$$

3.7 THE EQUIPARTITON \& THE VIrIAL TLEDREM

Two reoults hat derve from conndeng the quarh's

$$
\begin{aligned}
& \left\langle x_{i} \frac{\partial h}{\partial x_{j}}\right\rangle \\
& x_{i} \in\left\{p_{2} \ldots p_{3 \sim}, q_{1} \ldots q_{s n}\right\} . \\
& \left\langle x_{i} \frac{\partial k}{\partial x_{j}}\right\rangle=\frac{\int\left(x_{i} \frac{\partial u}{\partial x_{j}}\right) e^{-\beta u} d u}{\int e^{-\beta u} d u}
\end{aligned}
$$

Conorder he numeratio \& ingegrate by paits

$$
\begin{aligned}
\int\left(\frac{\partial k}{\partial x_{j}} x_{i}\right) e^{-\beta u} d u & =\int\left[\frac{\partial}{\partial x_{j}}\left(-\frac{1}{\beta} x_{i} e^{-\beta u}\right)+\frac{\partial x_{i}}{\partial x_{j}} e^{-\beta u}\right] d x_{j} d \omega_{(j)} \\
& =\overbrace{\left.-\frac{1}{\beta} x_{j} e^{-\beta n}\right]_{x_{j 2}}}^{x_{j 2}}+\frac{1}{\beta} \int \delta_{i j} e^{-\beta u} d \omega \\
\Rightarrow\left\langle x_{i} \frac{\partial u}{\partial x_{j}}\right\rangle & =\delta_{i j} k_{B} T
\end{aligned}
$$

If $x_{i}=x_{j}=p_{i}$

$$
\left\langle p_{i} \frac{\partial u}{\partial p_{i}}\right\rangle=\left\langle p_{i} \dot{q}_{i}\right\rangle=k_{s} T
$$

14 $x_{i}=x_{j}=q_{i}$

$$
\left\langle q_{i} \frac{\partial h}{\partial q_{i}}\right\rangle=-\left\langle q_{i} \dot{p}_{i}\right\rangle=\operatorname{ks} T .
$$

If we oum kere over all N, we hewre

$$
\begin{aligned}
\sum\left\langle p_{i} \frac{\partial u}{\partial p_{i}}\right\rangle= & \sum\left\langle p_{i} \dot{q}_{i}\right\rangle=3 N k_{3} T \\
& \sum\left\langle q_{i} \dot{p}_{0}\right\rangle=-3 N k_{B} 7 .
\end{aligned}
$$

- Equipartihon Thm

If the Kanillowion can be bougter trange a canonical transformation ints quadratio form

$$
H=\sum_{j}\left(A, P_{j}^{2}+B_{j} Q_{j}^{2}\right)
$$

then sinca

$$
\sum_{j}\left(P_{i} \frac{\partial u}{\partial P_{j}}+Q_{i} \frac{\partial u}{\partial Q_{j}}\right)=2 H
$$

If pollow hat

$$
2 H=6 N k_{s} T=f k_{B} T
$$

$f=H$ of quadrution degreens of preeda

$$
h=f \cdot\left(\frac{k_{B} T}{2}\right)
$$

Equpartition tum.
"Clasical equparibion of energy"

- Virial Theoren
[Ciansus 1870]

$$
\frac{\partial u}{\partial t}=f \frac{k_{3}}{2}=\left(\frac{f}{N}\right) \frac{R}{2}
$$

Dulong + PETTI' las

$$
\nu=\left\langle\sum_{i=1}^{3 N} q_{i} \dot{p}_{i}\right\rangle=-3 N_{\text {ks }} T
$$

$$
\begin{aligned}
& \text { Foradets of } 19^{6} \mathrm{c} \\
& \text { Da } 1 \text { ync) }
\end{aligned}
$$

Non interachy porides, ealy fores are at the wallo

$$
V=\left(\sum_{i=1}^{3 N}\left\langle q_{i} F_{i}\right\rangle\right)_{0}
$$

puyous

Sum oun partides is volume δV

$$
\begin{gathered}
\sum_{\vec{q}_{i} \in \delta V}\left\langle q_{i} F_{i}\right\rangle \\
=\vec{r} \cdot \sum_{q_{i} \in \delta V}\left\langle\vec{F}_{i}\right\rangle=-\vec{r}(P d \vec{s}) \\
\Rightarrow \quad\left(\sum\left\langle q_{i} F_{i}\right\rangle\right)_{0}=-p \int \vec{r} \cdot d \vec{s}=-P \int(\nabla \cdot \vec{r}) d V=-3 P V
\end{gathered}
$$

3.8 System of harmomic Oscmlators

- Clastically

せ ↔ ↔ ↔
N oscllates in eqn a rempercies T

$$
\begin{aligned}
Q_{1}(\beta) & =\int \frac{d q d \rho}{h} \exp \left[-\beta\left(\frac{1}{2} m \omega^{2} q^{2}+\frac{1}{2} p^{2} / m\right)\right] \\
& =\frac{1}{h} \sqrt{\frac{2 \pi}{\beta m \omega^{2}}} \sqrt{\frac{2 \pi m}{\beta}}=\frac{2 \pi}{h} \frac{1}{\beta \omega} \\
& =\frac{1}{\beta \hbar \omega}=\frac{k-\frac{x^{2}}{2 \omega}}{\sqrt{2 \pi \sigma}} \\
\hbar \omega & \hbar=\frac{h}{2 \pi}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{N}(\beta)=\left[Q_{1}(\beta)\right]^{N} \\
& \left.A=-k_{B} T \ln Q_{N}=N k_{B} T l\left(\frac{\hbar_{L}}{k_{B} T}\right)\right] \\
& \mu=k_{B} T h_{k-}^{k_{3} T} \\
& P=0 \\
& S=-\frac{\partial A}{\partial T}=N k_{B}\left[\ln \left(\frac{k T}{\hbar W}\right)+1\right] \\
& U=A+T S=N k_{B} T .
\end{aligned}
$$

N dishingunghble osilletirs. (e.g at indisterant looctars in a cminal). Later oee hat σ oxullatos are upperenteros of to energy levers oft oystem, not parides.

$$
\begin{aligned}
d A & =d(U-T S) \\
& =-S d T-P d U+\mu d N
\end{aligned}
$$

$$
\begin{aligned}
C_{V}=\frac{\partial W}{\partial T} & =N R_{B} \\
& =n R
\end{aligned}
$$

Dulont and Pettic lav.

Density of outer

$$
Q_{N}=\left(\frac{k T}{k_{k}}\right)^{N}
$$

$$
\begin{aligned}
g(E) & =\frac{1}{2 \pi i} \int_{\beta^{\prime}-i \infty}^{\beta^{\prime}+\infty} e^{\beta E} d \beta Q_{N}(\beta) \\
& =\frac{1}{(\hbar \omega)^{N}} \frac{1}{2 \pi i} \int_{\beta^{\prime}-\infty}^{\beta^{\prime}+i \infty} \frac{e^{\beta \epsilon} d \beta}{\beta^{N}} \quad \beta^{\prime}>0
\end{aligned}
$$

$$
\begin{aligned}
\frac{e^{\beta E}}{\beta^{N}} & \sim \frac{1}{\beta} \frac{e^{\beta E}}{\beta^{N-1}} \\
& \sim \frac{1}{\beta} \frac{(\beta E)^{N-1} /(N-1)!}{\beta^{N-1}} \\
& \sim \frac{1}{\beta} \frac{E^{N-1}}{(N-1)!}
\end{aligned}
$$

$$
\begin{aligned}
& g(E)=\frac{1}{\left(\hbar_{\omega}\right)^{N}} \frac{E^{N-1}}{(N-1)!} \theta(N) \\
& g(E)=\frac{1}{\hbar \omega}\left(\frac{E}{\hbar \omega}\right)^{N-1} \frac{1}{(N-1)!}
\end{aligned}
$$

$$
\begin{aligned}
& S(N, E)=k \operatorname{lng}(E) \approx N \operatorname{kes}\left[\ln \frac{E}{N E}+1\right] \\
& \ln (N-1)!\sim N \ln (N / e)+O(1) \\
& \ln \frac{E(L-1))^{N-1}}{(N-1)!} \sim N e\left(\frac{E}{L_{0}}\right)-N \ln \left(\frac{N}{e}\right) \quad \frac{\partial S}{\partial E}=\frac{N Q_{3}}{E} \\
& T=\left(\frac{\partial S}{\partial E}\right)^{-1}=\frac{E}{N k_{3}}
\end{aligned}
$$

- Quantam Eintrein 1906

$$
x_{0}{ }^{2}
$$

$$
\begin{aligned}
& \epsilon_{n}=\operatorname{tu}\left(n+\frac{1}{2}\right) \\
& Q_{1}(\beta)=\sum e^{-\left(n+\frac{1}{2}\right) t \omega \beta}=\frac{e^{-\frac{\hbar \omega}{2}}}{1-e^{-t \omega \beta}}=\frac{1}{2 \sinh \left(\frac{\beta t \omega}{2}\right)} \\
& Q_{N}(\beta)=Q_{1}(\beta)^{N}=\left(2 \sinh \left(\frac{\beta t_{0}}{2}\right)\right)^{-N} \\
& A=N k_{3} T h\left[2 \sinh \left(\frac{\beta \hbar \omega}{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mu=A / N \\
& P=0 \\
& S=-\frac{\partial A}{\partial T}=-N k_{3} \ln \left[2 \sinh \left(\frac{\beta t-}{2}\right)\right] \\
& -N k_{3} T \frac{1}{\sinh \left(\frac{\beta t_{-}^{2}}{2}\right)} \cosh \left(\frac{\beta t-}{2}\right)\left(\frac{-1}{2 k_{B} T^{2}}\right) \\
& =N k_{s}\left[\frac{1}{2} \beta t_{c} \operatorname{con}\left(\frac{\beta L t}{2}\right)-\ln \left[2 \sin \left(\beta \frac{t}{2}-\right)\right]\right. \\
& =N W_{3}\left[\frac{\hbar \omega \beta}{e^{\beta \hbar \omega}-1}+\frac{\beta \hbar \omega}{2}-h[]\right] \\
& \frac{e^{x / 2}+e^{-x / 2}}{e^{x / 2}-e^{-x / 2}}=\frac{e^{x}+1}{e^{x}-1}=\frac{2}{e^{x}-1}+1 \\
& =N k s\left[\frac{\hbar \omega \beta}{e^{\beta t-1}}-\ln \left(1-e^{-\beta t u}\right)\right] \\
& \ln \left(e^{x / 2}-e^{-x / 2}\right)=\ln \left(1-e^{-x}\right)+\operatorname{he} e^{x / 2}=\ln \left(1-e^{-x}\right)+x / 2 \\
& U=-\frac{\partial l}{\partial \beta} Q_{N}(\beta)=\frac{\partial}{\partial \beta} N \ln \left(2 \operatorname{con}\left(\frac{\beta-t}{2}\right)\right) \\
& =N \frac{\cosh \left(\frac{\beta t c}{2}\right)}{\sinh \frac{\beta t c}{2}} \frac{t u}{2} \\
& =N \frac{\hbar v}{2} \operatorname{com}\left(\frac{\beta \hbar_{0}}{2}\right) \\
& =\frac{N\left[\begin{array}{c}
\frac{\hbar \omega}{2}+\frac{\hbar \omega}{e^{\beta \omega}-1} \\
\uparrow
\end{array} \frac{\uparrow}{\text { 2eroporty }}\right. \text { Themol. }}{N}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{c}{s} \rightarrow \frac{s}{s}-\frac{c^{2}}{s^{2}} \\
& C_{V}=\frac{\partial U}{\partial T}=\frac{\partial}{\partial T} \quad \frac{N \hbar \omega}{2} \cot \left(\frac{\beta \hbar_{L}}{2}\right) \\
& =\frac{s^{2}-c^{2}}{s^{2}}=\frac{-1}{s^{2}} \\
& =\frac{N t-}{2}\left(\frac{-1}{\sinh ^{2}\left(\frac{\beta t^{2}}{2}\right)}\right) \cdot\left(-\frac{\hbar \omega}{2 \operatorname{leg} T^{2}}\right) \\
& =N k_{B}\left(\frac{x}{\sin x}\right)_{x=\left(\frac{\beta \pi \omega}{2}\right)}^{2}=N k_{s} F\left[\frac{\beta t c}{2}\right] \\
& F(x)=\frac{x^{2}}{\sinh ^{2} x} \\
& =n R F\left[\frac{t c}{\frac{t .5}{} 7}\right]
\end{aligned}
$$

Diamond

$$
C_{V}=N k_{3}(\beta t) \frac{e^{\beta h v}}{\left(e^{\beta+c}-1\right)^{2}}
$$

$$
\begin{aligned}
\left(\frac{1}{e^{x / 2}-e^{-x}}\right)^{\prime} & =\left(\frac{e^{x / 2}}{e^{x}-1}\right)^{n} \\
& =\frac{e^{x}}{\left(e^{x}-1\right)^{2}}
\end{aligned}
$$

Bhes $\rightarrow 0$

$$
C_{V} \rightarrow N_{\text {les }}=n R .
$$

3.9 Paramagnetism

Quantum

Classical
"Magneni Moment"

$$
Q_{N}(\beta)=\left[Q_{1}(\beta)\right]^{N}
$$

$$
H=-\vec{\mu} \cdot \vec{H}
$$

CLASSICAL $\quad H=-\mu H \cos \theta$

$$
\begin{aligned}
& Q_{1}(\beta)=\sum_{\theta} \exp [\beta \mu H \cos \theta] \\
& \left\langle\mu_{z}\right\rangle=\frac{M_{z}(\beta)}{N}=\langle\mu \cos \theta\rangle=\sum_{\theta} \frac{\mu \cos \theta \exp [\beta \mu n \cos \theta]}{\sum_{\theta} \exp [\beta \mu H \cos \theta]} \\
& =\frac{1}{\beta} \frac{\partial}{\partial H} \ln Q_{1}(\beta)=-\left(\frac{\partial A}{\partial H}\right)_{T} \\
& Q_{1}(\beta)=\int \overbrace{d \cos \theta d \phi}^{d \Omega} e^{\beta \mu H \cos \theta}=2 \pi \int_{-1}^{1} d c e^{\beta \mu n c} \\
& =\frac{2 \pi}{\beta_{\mu} H}\left(e^{\beta_{\mu} \mu}-e^{-\beta_{\mu} u}\right) \\
& Q_{1}(\beta)=4 \pi \frac{\sinh \beta \mu u}{\beta_{j \mu} H}
\end{aligned}
$$

Deasitg of shiter of Quat systen

$$
\begin{aligned}
& Q_{N}(\beta)=\left(\frac{e^{\beta h \omega / z}}{e^{\beta h \omega}-1}\right)^{N}=\left(\frac{e^{-\beta L \omega}}{1-e^{-\beta L \omega}}\right)^{N}=e^{-\beta \frac{\beta L}{2}}\left(1-e^{-\beta \omega}\right)^{N} \\
& =e^{-N \beta L / 2} \sum\binom{N+R-1}{R} e^{-R \operatorname{LL\beta }} \\
& -1+1.2 \quad(1-\hat{x})^{N}=1-N x+\frac{N(N-1) x^{2}+\ldots \ldots .}{2} \\
& 1-N\left(-e^{-\beta L \omega}\right)+(-N)(-N-1)\left(-e^{-\beta L U}\right)^{2}+\cdots \cdot \cdot \\
& +\frac{N N+1 \ldots(N+R-1)}{R!}\left(+e^{-\beta L \omega}\right)^{R}+\cdots \\
& \frac{1}{\left(1-e^{-(\beta L}\right)^{N}}=\sum_{R=0}^{\infty}\binom{N+R-1}{R} e^{-R+\omega \beta} \\
& Q_{N}(\beta)=\sum\binom{N+R-1}{R} e^{-\beta \hbar \omega(N / 2+R)} \\
& Q_{N}(\beta)=\int g(E) e^{-\beta E} d E \\
& \Rightarrow g(E)=\sum\binom{N+R-1}{R} \delta\left(E-\hbar \omega\left(R+\frac{N}{2}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& W_{N, R}=\frac{(N+R-1)!}{(N-N))(R!)} \\
& R=\frac{(E-2 \cdot p \cdot e)}{t \omega}=\frac{E-N L / R}{5 U}=\# \text { quanta } \\
& R=\frac{E-N}{L-}-\frac{N}{2}
\end{aligned}
$$

R indistingusbuble quante ThTo N boxes

$$
\begin{aligned}
13 \text { quarla } & =R \\
& =N
\end{aligned}
$$

$$
.1 \cdot 1 \cdot \quad \begin{aligned}
& 5 \text { boxes }=N \\
& 4 \text { parlimons }
\end{aligned}
$$

4 parlimons

$$
\text { \#quart }+ \text { pulutes }=13+4=17=R+N-1
$$

$$
\begin{aligned}
& S \approx k \ln R+N!-\ln !-h N! \\
& =R \operatorname{se}\left(2+N \ln R+N-N Q^{N}-R \ln \right) \\
& \frac{1}{T}=\frac{\partial S}{\partial E}=\frac{1}{t_{0}} \frac{\partial S}{\partial R}=\frac{K_{B}}{E_{0}}\left[\ln \left(\frac{R+N}{R}\right)\right] \\
& =\frac{\text { les }}{\text { 和 }} h\left[\frac{E / L u+N / 2}{\frac{E}{\hbar \nu}-N / 2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad e^{t-\beta}=\frac{E+\frac{t u N}{2}}{E-\frac{n \pi}{2}} \\
& \Rightarrow E=\frac{1}{2} t u \frac{e^{t u \beta}+1}{e^{\operatorname{lu} \beta-1}}
\end{aligned}
$$

Llen $\begin{aligned} E \geqslant>E \\ R>N\end{aligned} \quad U_{N R} \sim \frac{R^{N-1}}{(N-1)!}$

$$
\begin{aligned}
& R>N \\
& R \sim \frac{E}{L} .
\end{aligned}
$$

$$
\begin{aligned}
\left\langle\mu_{z}\right\rangle & =-\frac{\partial}{\partial H}\left[-\frac{1}{\beta} P_{\Lambda}\left[\frac{\sinh (\mu M \beta)}{\mu \mu \beta}\right]\right] \\
& =\mu\left[\operatorname{coth}(\mu n \beta)-\frac{1}{\beta \mu H}\right] \\
& =\mu L\left(\frac{\mu H}{\ln t}\right) \\
L(x) & =\cos x-\frac{1}{x}
\end{aligned}
$$

$$
M_{z}=N_{0 \mu} L\left(\beta_{\mu} u\right)
$$

$$
\begin{aligned}
& \cot x \approx \frac{1+x^{2} / 2}{x+x^{3} / 3}=\frac{1}{x}\left(1+x^{2} / 2\right)\left(1-x^{2} / 3\right) \\
& =\frac{1}{x}\left(1+x^{2} / 3\right) \\
& \cot x-\frac{1}{x} \sim x / 3+O\left(x^{3}\right)
\end{aligned}
$$

Curie Suscepribatios

$$
X_{T}=\lim _{H \rightarrow 0}\left(\frac{\partial M}{\partial u}\right)_{1}=\frac{N_{0} \mu^{2}}{3 \operatorname{len} T}=\frac{C}{T}
$$

Quantum

$$
\begin{aligned}
& \vec{\mu}=g\left(\frac{e}{2 m}\right) \stackrel{\rightharpoonup}{J} \\
& \vec{J}^{2}=j(j+1) \hbar^{2 m}
\end{aligned} \quad J= \begin{cases}\text { integer } & 0,1,2 \ldots \\
1 / 2 \text { integen } & 1 / 2,3 / 2 \ldots . .\end{cases}
$$

$$
\begin{aligned}
& \frac{g e}{2 m}=\text { gynomagnethi ratio } \\
& g=(\text { Landé }) g \text {-factor. }=\frac{3}{2}+\frac{S(5+1)-L(L+1)}{2 j(j+1)} \\
& \mu^{2}=g^{2} \mu_{B}^{2} j(j+1) \\
& \mu_{z}=g \mu_{B} m_{z} \\
& E=-\mu_{z} H_{z}=-g \mu_{\Delta} H m . \\
& \mu_{B}=\frac{e \hbar}{2 m}=\begin{array}{c}
\text { BOHR } \\
\text { MAGMETON }
\end{array} \\
& m_{z}=-j \cdots+j \\
& \left.\sum_{\rightarrow H}\right\}^{2 j+1} \\
& Q_{1}(\beta)=\sum_{m=-j}^{j} \exp \left[\left(\beta g \mu_{s} H\right)_{m}\right] \\
& Q_{1}(\beta)=\sum_{r=-j}^{j} e^{x m}=e^{x j} \sum_{r=0}^{2 j} e^{-x p}=e^{x j} \frac{1-e^{-x(2,+1)}}{1-e^{-x}} \\
& =\frac{\sinh [(2,+1) x / 2]}{\sinh (x / 2)} \quad x=\left(\beta g_{\mu g} H\right) \\
& A=-k_{B} T \ln \left[\frac{\sinh ((2)+1) \times / 2)}{\sinh (\times 12]}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{M_{z}}{N}=\left\langle\mu_{z}\right\rangle=\frac{1}{\beta} \frac{\partial h}{\partial H} Q_{1}(\beta) \\
&=\frac{g \mu_{B}}{2}\left[(2,+1) \operatorname{coth}\left[\left(\frac{j+1}{2}\right)^{x}\right]-\operatorname{coth}\left[\frac{x}{2}\right]\right] \\
&=\left(g \mu_{B} j\right) B_{j}(x) \\
& B_{j}(x)=\left[\left(1+\frac{1}{2 j}\right) \operatorname{coln}\left[\left(j+\frac{1}{2}\right) x\right]-\frac{1}{2 j} \operatorname{coth}\left(\frac{x}{2}\right)\right] \quad x=\frac{g \mu_{B} h}{\operatorname{kan}]_{1}} \\
& B_{j}(x) \sim \begin{cases}1 & x>1 \\
\frac{j+1) x}{3} & x \ll 1\end{cases}
\end{aligned}
$$

For $\quad \mu_{B} H \geqslant$ les $7 \quad\left\langle\mu_{z}\right\rangle \sim g \mu_{3} j$

$$
g_{\mu s} h \ll \mu_{B} H \geqslant \text { less } 7 \quad(\mu+\rangle \sim \frac{j(j+1)}{3} \frac{(g \mu s)^{2}}{T} H=x n
$$

$$
X=\frac{N}{3} \frac{\left.(9 \mu B)^{2}\right)(1+1)}{T}
$$

$$
\mu^{2}=\left(g \mu_{3}\right)^{2} J(\rho+1)
$$

Special case $j=\frac{1}{2} \quad g=2 \quad \frac{M_{z}}{N_{0}}=\mu_{B} \tanh \left(\frac{\beta_{\mu B} H}{2 T}\right)$
$B_{1}(x)=\tanh \left(\frac{x}{2}\right)$

$$
B_{\frac{1}{2}}(x)=\tanh \left(\frac{x}{2}\right)
$$

$$
X=\frac{N_{0} 0_{\mu_{3}}{ }^{3} \frac{3}{3} \cdot \frac{1}{2}}{T}=\frac{N_{0} \mu_{B}^{2}}{T} .
$$

3.10 Thermodnamics of magneic moments

$$
Q_{N}(\beta)=\left(e^{\beta \epsilon}+e^{-\beta \epsilon}\right)
$$

$$
=2 \cosh \beta \epsilon
$$

$$
\epsilon=\mu_{B} h .
$$

$$
\begin{aligned}
& A=-N k_{s} T h\left[2 \omega \operatorname{ch}\left(\varepsilon / \operatorname{les}_{3} \tau\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& M=-\frac{\partial A}{\partial u}=\quad N_{\mu s} \tanh \left(\frac{\epsilon}{1607}\right) \\
& u=A+T S=-N \epsilon \tanh \left(\frac{\epsilon}{V_{B} T}\right) \\
& c=\left.\frac{\partial U}{\partial T}\right|_{U}=N R_{B}\left(\frac{E}{k_{3} T}\right)^{2} \frac{1}{\cosh ^{2}\left(\frac{E}{R_{2} T}\right)} \\
& { }_{-\mathrm{Ne}}^{u}{ }^{?} \\
& \frac{s}{c} \rightarrow \frac{-s^{2}}{c^{2}}+\frac{c}{c} \\
& =\frac{c^{2}-s^{2}}{c^{2}}=\frac{1}{c^{2}}
\end{aligned}
$$

Note $\Delta=2 \epsilon$

$$
\begin{aligned}
& C=N b_{3}\left(\frac{\Delta}{2 \operatorname{la} b_{3} T}\right)^{2}\left(e^{\Delta / b_{n} T}+e^{-\frac{\Delta}{i L_{0} T}}\right)^{-2} \\
& =N \cos \left(\frac{\Delta}{\operatorname{len} T}\right)^{2} \frac{e^{\Delta / \operatorname{lon} T}}{\left(e^{\Delta / \operatorname{los}_{0} T}+1\right)^{2}} \\
& =\operatorname{Nan}\left(\frac{\Delta}{2 \cos 7}\right)^{n} \frac{1}{\left(1+e^{-0 / \log t}\right)^{2}}
\end{aligned}
$$

Negative temperature

$$
\begin{aligned}
& U=-N \in \tan \frac{\epsilon}{k_{0} \tau} \Rightarrow \frac{1}{T}=\frac{-k}{\epsilon} \tanh ^{-1}\left(\frac{u}{N \epsilon}\right) \\
& t=\frac{e^{2 x}-1}{e^{2 x+1}} \Rightarrow x=\frac{1}{2} \ln \left(\frac{1+t}{1-k}\right) \\
& \frac{1}{T}=\frac{\text { kes }}{2 \epsilon} \ln \left[\frac{1-\frac{u}{N \epsilon}}{1+\frac{u}{N E}}\right]=\frac{1}{T}=\frac{\text { bs }}{2 \epsilon} \ln \left(\frac{N+U}{N G+u}\right) \\
& \left.\frac{S}{\text { Nes }}=\int b\left(\operatorname{linht} \frac{\epsilon}{E_{0} T}\right)-\frac{E}{h_{S} T} \operatorname{la} \frac{\epsilon}{\operatorname{knT}]}\right] \\
& \frac{\epsilon}{L_{0} T}=\frac{1}{2} \ln \frac{N E-M}{N E+U} \\
& =\quad-p_{T} \ln p_{T}-p_{1} \operatorname{li} p_{2} \\
& p_{t}=\frac{e^{x}}{e^{x}+e^{-x}} \\
& p_{2}=\frac{e^{-x}}{e^{x}+e^{-x}} \\
& \frac{S}{\text { Nes }}=-\frac{1}{2}\left(1-\frac{u}{N_{e}}\right) \ln \left(1-\frac{u}{N_{e}}\right) \\
& \Rightarrow p_{T}-p_{2}=t=-u_{\text {lNE }} \\
& -\frac{1}{2}\left(1+\frac{4}{N E}\right) \ln \left(1+\frac{4}{N E}\right) \text {. } \\
& p+p_{1}=1 \\
& P_{\sigma}=\frac{1}{2}\left(1-\frac{4}{N} H\right) \quad P_{L}=\frac{1}{2}\left(1+{ }^{2}\right)
\end{aligned}
$$

$$
\text { kes } T=\frac{\epsilon / 2}{\ln \left(\frac{N \in-u}{N \epsilon+u}\right)}
$$

- $T<0$ enily posside bit an upper cunbef in pnegy.
- Max.mum S a $\frac{1}{T}=0$ indeperenter of sign of T !
 Infinite T: g states equally occupied.

$$
\begin{aligned}
& \text { - If } \left.\begin{array}{rl}
\beta \approx 0 \\
\left|\theta_{3} T\right|>0\left|\varepsilon_{n}\right|
\end{array} \quad Q_{N}(\beta)=\int \Sigma e^{-\beta \epsilon_{n}}\right]^{N} \approx\left(\sum_{n}\left(1-\beta \epsilon_{n}+\frac{\beta^{2} \epsilon_{n}}{2}\right)\right)^{N} \\
& \sum_{n} \epsilon_{n}^{\alpha} \rightarrow g \overline{\epsilon^{\alpha}} \quad \operatorname{l} Q_{N}=N \left\lvert\, \ln g+\ln \left(1-\beta \epsilon_{-}\left(\frac{\beta^{\prime} \epsilon_{i}^{\prime}}{2}\right)\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& d A=-S d T-p d N+\beta d N \\
& h Q_{N}=N\left[\operatorname{lng}-\beta \bar{E}+\beta^{1}\left(\overline{E^{2}}-(\bar{E})^{\prime}\right)+\ldots\right] \\
& 3.40 \\
& S=-\frac{\partial A}{\partial 7}=N \log -\frac{N \cos \beta^{2}}{\delta \epsilon^{2}} \\
& U=A+S T=N \bar{\epsilon}-N \beta \overline{\delta \epsilon^{2}} \\
& c=\frac{\partial u}{\partial T}=N \operatorname{kes} \beta^{2} \overline{\left(\epsilon^{2}-\bar{\epsilon}^{2}\right)} \\
& C=N \frac{1}{\operatorname{kes} T^{2}} \frac{}{\delta \epsilon^{2}}
\end{aligned}
$$

$$
-\frac{\partial S}{\partial E_{1}} \delta E_{2}+\frac{\partial S}{\partial E_{2}} \delta E_{2} \geqslant 0
$$

$14 \delta E_{2}>0 \Rightarrow\left(\frac{\partial S}{\partial E_{2}}-\frac{\partial S}{\partial E_{1}}\right)=\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)>0$
Energy flaw to to ogoten int tar loges β

$$
\text { If } \beta_{1}<0 \quad \& \beta_{2}>0
$$

$T<0$ hotter tran $T_{2} 0$ even $T_{2}=\infty$!

