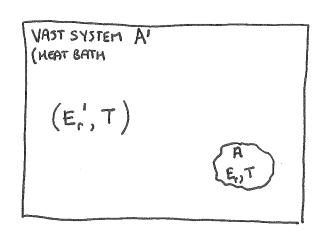
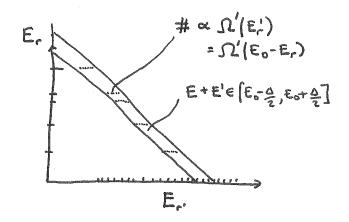
3. THE CANONICAL ENSEMBLE

In the microcanonical ensemble, $E \in [E_0 - \frac{1}{4}O, E_0 + \frac{1}{4}O]$. We say how we could relate the entropy to the number of microstates $\Omega(N,V,E)$ accessible to the system.

But the use of an ensemble with definite energy is not very practical. Today we shall examine a new kind of ensemble: the commiscal ensemble, characterized by a definite temperature. In the commiscal ensemble, the energy of the state is variable. We need to understand what governs the probability of the be in a microstate of energy Er.

3.1 EQUILIBRIUM BETWEEN A SYSTEM AND A HEAT RESERVOIR.





$$\ln \Omega'(E_0 - E_r) = \ln \Omega'(E_0) - \frac{\partial \ln \Omega'(E)}{\partial E} = + O(\frac{SE_r^2}{E_0^2})$$

$$= const - \beta'E_r$$

where

We'd like to re-examine the Boltzmann distribution

from the point of view of an ensemble. We consider

N identical systems with the same energy level structure.

The hotal # of members in the expende = $N = \sum n_r$ The hotal Energy of the expende = $NU = \sum n_r E_r$

U is the average energy per ensemble member

The probability of the distribution {n,} will be proportional to the number of varyo that this distribution

Can occur

$$P[\{n_r\}] \propto W[\{n_r\}] = \frac{N!}{n_0! n_1! \cdots}$$

It turns out that this probability distribution is extremely highly peaked around the most probable distribution. We'll begin by looking at the most probable probable distribution.

From W[{nr}] we can calculate expectation values

$$\langle n_s 7 = \frac{\sum_{n=1}^{7} n_s W[\{n_n\}]}{\sum_{n=1}^{7} W[\{n_n\}]}$$
 $\langle E \rangle = \frac{\sum_{n=1}^{7} W[\{n_n\}]}{\sum_{n=1}^{7} W[\{n_n\}]}$

where the prime implies ourmation one distribution wit N ensembles

& Nu energy.

Method of most probable values

What distribution maximizes W[{n-y]?

Vary ShW, orbject to the constraints $\sum Sn_r = 0$ & $\sum E_r Sn_r = 0$ Using Lagrange multipliess

Where B is the solution to to equation

 $\frac{1}{2} \left\langle n_{\nu}^{*} \right\rangle \sim O(N)$

Now although n_r^* is the most likely value of n_r , we expect $\langle 8n_r^2 \rangle = \langle n_r^2 \rangle - \langle n_r \rangle^2 \propto O(H)$, so that

(We will jump over a more indepth treatment (Pathria 3.26) returning to his

PHYTICAL SIGNIFICANCE OF THE VARIOUS QUANTITIES 3.3 IN THE CANONICAL ENSEMBLE

"Parlihhor function"

Determines B.

At constant temperature us use the Kelmhotta free energy

$$A = U - 18$$

$$dU = TdS - PdV + udN \Rightarrow dA = -SdT - PdV + udN$$

$$S = -\frac{\partial A}{\partial T} P = -\frac{\partial A}{\partial N} P = -\frac{\partial A}{\partial N}$$

We can identify B: I & - leath a = A in ho different ways

Memod I
$$U = A + TS = A - T \frac{\partial A}{\partial T} = -\frac{7}{3} \frac{\partial (A/T)}{\partial T} = \left(\frac{3A/T}{3(17)}\right)_{N,V}$$

as the entropy of he promote

$$P_{c} = \frac{n_{r}^{*}}{N} = \frac{e}{Q}.$$

If we expand this

$$\frac{S}{N} = S = avge | hermodynamic entropy | member of events |
= -les $SP_r l_r P_r$

$$S = -les SP_r l_r P_r$$

$$= les S(U) + les l_r Q$$

$$= les S(U) + les l_r Q$$

$$= S = (U-A)$$$$

$$\Rightarrow k_{8}\beta = \frac{1}{7} \Rightarrow \beta = \frac{1}{k_{0}T}$$

From A re can get the rest of the thermodynamis

$$C_{v} = \left(\frac{\partial U}{\partial T}\right)_{N,V} = -T \frac{\partial^{2} A}{\partial T^{2}}$$

$$U = A - 7 \frac{\partial A}{\partial 7}$$

$$\frac{\partial U}{\partial 7} = \frac{\partial A}{\partial 7} - \frac{\partial A}{\partial 7} - 7 \frac{\partial^2 A}{\partial 7^2}$$

$$G = A + PV = A - V \frac{\partial A}{\partial V} = N \frac{\partial A}{\partial$$

(consequence of
$$A = Na(T, V/N)$$
)

Note also that

$$P = -\frac{\partial}{\partial V} = \frac{\sum \left(\frac{\partial E}{\partial V}\right) e^{-\beta E}}{\sum e^{-\beta E}}$$

00 tech

PdV = - \Sere Ber = - Spren = - SU

\[
\text{\final}
\text{\final}
\]

Mechanical code > Pio a form.

3.4 RELATIONSHIP BETWEEN DENSITY OF STATES AND PARTITION FU

$$Q_N(V,T) = \sum_{i=1}^{N} g_i e^{-\beta \epsilon_i}$$

P(e)
$$dF = \frac{g(E)e^{-\beta E}dE}{\int g(E)e^{-\beta E}dE}$$

$$Q_N(V,T) = \int_{-BE}^{CB} e^{-BE} g(E) dE$$
 [CAPIACE TRANSFORM] OF $g(E)$.

Note exact if we put $g(E) = \sum g_i S(E-E_i)$

We can always invert the Loplace Trasform

$$g(E) = \frac{1}{2\pi i} \int_{-i\infty}^{\beta'+i\infty} e^{\beta E} Q(\beta) d\beta$$

$$=\frac{1}{2\pi}\int e^{(\beta'+i\beta'')E} \mathcal{Q}(\beta'+i\beta'')d\beta''$$

Inverse Laplace TFM.

(Note that ie can derive his or follows

$$g(E) = \sum_{j} g_{j} \delta(E-E_{j})$$

$$\delta(E-E_{j}) = \int_{\overline{20}}^{dx} e^{ix(E-E_{j})} = \int_{-\infty}^{\infty} \frac{dx}{20} e^{ix(E-E_{j})}$$

$$= \int \frac{dx}{2\pi} g_j e^{(\beta' + ix)} (E - E)$$

$$= \int \frac{dx}{2\pi} e^{(\beta' + ix)} E \leq g_j e^{-(\beta' + ix)} E_j$$

$$= \int \frac{dx}{2\pi} e^{(\beta' + ix)} e^{\beta} e^{\beta} e^{(\beta' + ix)} E_j$$

$$= \int \frac{dx}{2\pi} e^{(\beta' + ix)} e^{\beta} e^{\beta} e^{(\beta' + ix)} E_j$$

$$= \int \frac{dx}{2\pi} e^{(\beta' + ix)} e^{\beta} e^{\beta} e^{(\beta' + ix)} E_j$$

$$= \int \frac{dx}{2\pi} e^{(\beta' + ix)} e^{\beta} e^{\beta} e^{(\beta' + ix)} E_j$$

$$= \int \frac{dx}{2\pi} e^{(\beta' + ix)} e^{\beta} e^{(\beta' + ix)} E_j$$

$$= \int \frac{dx}{2\pi} e^{(\beta' + ix)} e^{\beta} e^{(\beta' + ix)} E_j$$

$$= \int \frac{dx}{2\pi} e^{(\beta' + ix)} e^{\beta} e^{(\beta' + ix)} E_j$$

$$= \int \frac{dx}{2\pi} e^{(\beta' + ix)} e^{(\beta' + ix)} e^{(\beta' + ix)} E_j$$

$$= \int \frac{dx}{2\pi} e^{(\beta' + ix)} e^{(\beta' + ix)} e^{(\beta' + ix)} e^{(\beta' + ix)} E_j$$

$$= \int \frac{dx}{2\pi} e^{(\beta' + ix)} E_j$$

$$= \int \frac{dx}{2\pi} e^{(\beta' + ix)} e^{(\beta' + ix)}$$

3.5 CANONICAL ENSEMBLE: CLASSICAL

Recoll
$$(f) = \int f(q,p) g(q,p) d^{3N} q d^{3N} p$$

$$\int g(q,p) d^{3N} q d^{3N} p$$

We used the stationarity of g(q,p,t) = g(q,p) & Liauvilles that to argue het g(q,p) = g[N(q,p)]. Using our arguments of the last this sections, now we take $g(q,p) \propto e^{-\beta N(q,p)}$

So had now: -

$$\frac{\int f e^{-\beta n} du}{\int f^{-\beta n} du} du = d^{3n} \rho d^{3n} q$$

We now introduce to partition function

$$\Omega_N(V,T) = \frac{1}{N!h^3N} \int_{\mathbb{R}^3} e^{-\beta u(q,p)} d\omega$$

Here we have used he observation of chapter 2 her

$$du \longrightarrow d\bar{u} = \frac{du}{N! h^{3N}}$$

is the correct classical limit of quarter cumbing.

Suppose 12 have no interactions, no interact degrees of freedom, then $H(q,p)=\sum_{j=1}^{3W}p_j^3/2m$ and

$$\Omega_{N}(v,T) = \frac{1}{N! \, h^{3N}} \left\{ e^{-(\beta/2m) \sum_{j=1}^{2N} p_{j}^{3}} \frac{3N}{M(d q_{j} d p_{j})} \right\}$$

Volume integral
$$\Pi \int d^3q_i = V^N$$
. Remainder of calc $\sqrt{2\pi m/B^2}$

$$\Omega_N(U,T) = \frac{1}{N!} \left(\frac{V}{h^3} \right)^N \frac{3N}{j!} \left(\int dp_i e^{-\frac{p_i}{h}} p_i^2 \right)$$

$$\Omega_N = \frac{1}{N!} \left[\frac{V}{h^3} \left(2\pi m k_B T \right)^{3/2} \right]^{N}$$

$$\Rightarrow A(N,V,T) = - k_B T ln ln$$

$$= - k_B T N ln \left[\frac{V}{h^3} (2\pi m k_B T)^{3/2} \right]$$

$$A(N,V,T) = NRT \left(\frac{N}{V} \left(\frac{h^2}{2\pi m kes^2} \right)^3 \right) - 1$$

$$M = \frac{\partial A}{\partial N} \bigg|_{V,T} = \left[\log T \left(\frac{N}{V} \left(\frac{L^2}{2Rm \log T} \right)^3 h \right] \right]$$

$$S = -\frac{\partial A}{\partial T}\Big|_{N,V} = N \log \left[\frac{V}{N} \left(\frac{2\pi n \log T}{h^2} \right)^{3/2} \right] + \frac{5}{2} \right]$$

$$U = -\left(\frac{\partial}{\partial \beta} \, P_{NQ}\right) = T^{2} \left(\frac{\partial}{\partial 7} \left(\frac{A}{T}\right)\right)_{NN} = A + T5 = \frac{3}{2} \, N \, \text{Res} T.$$

Renades

•
$$Q_N = \frac{1}{N!} \left[Q_2(V,T) \right]^N$$

Parhihan for of single molecule!

Still true ever with interned degrees of freeds.

· Could have calculated using denoting of studes.

$$g(E) = \frac{\partial E}{\partial E} = \frac{1}{N!} \frac{\partial}{\partial E} \left[\frac{1}{(3N)!} \left(\frac{2\pi nE}{L^3} \right)^N \right]$$

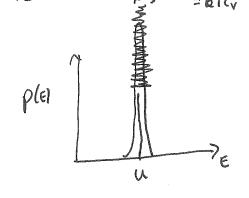
$$Q_{N}(E) = \begin{cases} \frac{1}{N!} \left(\frac{V}{L^{3}} \right)^{N} \left(\frac{2\pi n}{3} N^{-1} \right)! & (3N/2-1)! (ke_{0}T)^{3N/2} \\ \frac{1}{N!} \left(\frac{V}{L^{3}} \right)^{N} \left(2\pi n \log_{3}T \right)^{3N/2} & e^{-\beta E} \left(\frac{6N/2-1}{N} \right)! (ke_{0}T)^{3N/2} \\ = \frac{1}{N!} \left(\frac{V}{L^{3}} \right)^{N} \left(2\pi n \log_{3}T \right)^{3N/2} & \end{cases}$$

· Can also catry at inverse L.T to get g(E) from QN(E)

$$Q(z) = \frac{1}{N!} \left[\frac{V}{L^2} (2\pi n)^{3/L} \right]^{N} = \frac{1}{z^{3N/2}}$$

Definite temperature => Indefinite energy

We'll see had to energy finitiations are related to
the specific head againty.



$$U = \frac{\sum E_r e^{-\beta E_r}}{\sum e^{-\beta E_r}} \Rightarrow \frac{\partial u}{\partial \beta} = \frac{\sum E_r^3 e^{-\beta E_r}}{\sum e^{-\beta E_r}} + \frac{\sum E_r e^{-\beta E_r}}{\sum e^{-\beta E_r}}$$

$$= -\langle E^2 \rangle + \langle E \rangle^2 = -\langle \Delta E^2 \rangle$$

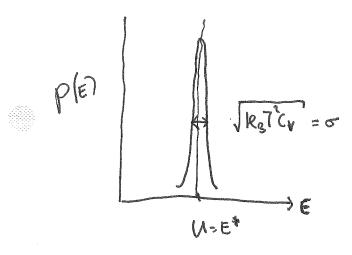
So
$$\langle \alpha \epsilon^2 \gamma = -\frac{\partial U}{\partial \beta} = -\frac{\partial T}{\partial \beta} \frac{\partial U}{\partial T} = k_B T^2 CV \propto O(N)$$

$$\frac{\beta}{\beta} = \frac{1}{k_B T}$$

$$\frac{\partial \beta}{\partial T} = -\frac{1}{k_B T^2}$$

$$\frac{\sqrt{DE^2}}{U} = \frac{\sqrt{\log T^2Cv}}{U} \sim O(N^{-1/2})$$

infinitesimal in macroscopic oystems



Lets examne p(E)

$$p(E)dE \propto g(E)e^{-\beta E}dE$$

$$p(E) \propto e^{(\ln g - \beta E)}$$

Maximum where $\frac{\partial c_{5}}{\partial E} = \frac{1}{|c|} \Rightarrow \frac{\partial S}{\partial E} = \frac{1}{|c|}$

But since S = kes hg $\delta \left(\frac{\partial S}{\partial E} \right)_{E=U} = \frac{1}{7}$

So most likely every E* = U

Moreover

$$\frac{\log - \beta E}{\log (u) - \beta U} + \left(\frac{E - u}{2}\right)^{2} \frac{\partial^{2} \ln_{2}(E)}{\partial E^{2}} + \frac{\partial E^{2}}{\partial E^{2}}$$

$$= \left(\frac{S - U}{\log R}\right) + \left(\frac{E - \omega}{2}\right)^{2} \frac{\partial^{2} \ln_{2}(E)}{\partial E^{2}} + \frac{\partial E^{2}}{\partial E^{2}}$$

$$= \left(\frac{S - U}{\log R}\right) + \left(\frac{E - \omega}{2}\right)^{2} \frac{\partial^{2} \ln_{2}(E)}{\partial E^{2}} + \frac{\partial E^{2}}{\partial E^{2}}$$

$$p(E) \alpha e^{-\beta(u-st)} exp\left[-\frac{(E-u)^2}{2k^2Cv}\right]$$

$$Q_N(V,T) = e^{-\beta(u-sr)}$$

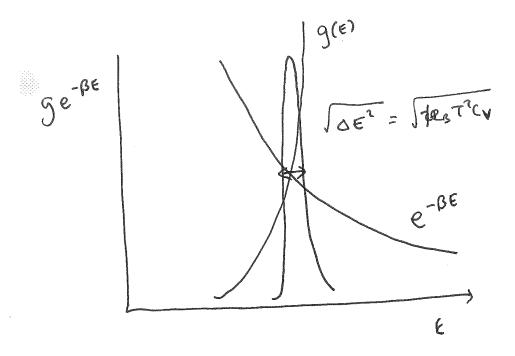
$$\int_{\mathbb{R}^n} de e^{-(\frac{\varepsilon-u}{2(\varepsilon\tau)^2}cv)}$$

-kgT hQN(V,T)

=
$$A \approx U-7S - \frac{kgT}{2} \ln \left(2\pi kg^{2}TCV\right)$$

Caustien corrections to thermodynamis.

Up to a CaN/O(N) % error.



PV = Nugt well lean result

Notice that V = -2K.

(wing equiporhim)

We can not extend to an intersuting systemin' d dimensions

$$\frac{P}{N \log T} = 1 + \frac{1}{N \log T} \left\langle \sum_{i \neq j} F_{i}(\vec{r}_{ij}) \cdot \vec{\Gamma}_{ij} \right\rangle$$

$$\vec{F}_{1}.\vec{r}_{1}$$
 $+\vec{r}_{1}.\vec{r}_{2}$ $=$ $\vec{F}_{12}(\vec{r}_{1}-\vec{r}_{2})$ $=$ $\vec{F}_{12}\cdot(\vec{r}_{12})$

3.7 THE EQUIPARTITION & THE VIRIAL THEOREM

Two results had derive from considering the quartity

$$\left\langle x; \frac{\partial h}{\partial x_{j}} \right\rangle$$

X; ∈ { p2... p3m, 91... 9 sm}.

$$\left\langle x:\frac{\partial h}{\partial x_{j}}\right\rangle = \int_{-\beta n}^{\infty} \left(x:\frac{\partial h}{\partial x_{j}}\right)e^{-\beta n}du$$

Consider he numerator & integrate by parts

$$\int \left(\frac{\partial \mathbf{K}}{\partial x_{j}} \times \cdot\right) e^{-\beta \mathbf{M}} du = \int \left[\frac{\partial}{\partial x_{j}} \left(\frac{-1}{\beta} \times \cdot e^{-\beta \mathbf{M}}\right) + \frac{\partial}{\partial x_{j}} \cdot e^{-\beta \mathbf{M}}\right] dx_{j} \cdot d\omega_{(j)}$$

$$= \left[\frac{-1}{\beta} \times \cdot e^{-\beta \mathbf{M}}\right] \times_{j,2} + \frac{1}{\beta} \int_{X_{j}} \delta_{ij} e^{-\beta \mathbf{M}} d\omega$$

$$\Rightarrow \left(\frac{\lambda_i}{\delta x_i} \right) = \delta_{ij} k_B T$$

$$\left\langle P; \frac{\partial u}{\partial p_i} \right\rangle = \left\langle P; q_i \right\rangle = k_s T$$

14 x:= x; = q:

$$\left\langle q; \frac{\partial h}{\partial q_i} \right\rangle = -\left\langle q; \hat{p}; \right\rangle = \text{keT}.$$

If we own there over all N, we have

$$\sum \langle p; \frac{\partial u}{\partial p} \rangle = \sum \langle p; q; \gamma = 3N \log 7$$

$$\sum \langle q; p; \gamma = 3N \log 7.$$

· Equiparlihon Thm

If the Kanilhovan can be brought through a canonical transformation into quadratu form

$$N = \sum_{j} (A_{j} P_{j}^{2} + B_{j} Q_{j}^{2})$$

then since
$$\sum_{i} \left(P_{i} \frac{\partial u}{\partial P_{i}} + Q_{i} \frac{\partial h}{\partial Q_{i}} \right) = 2H$$

It plans har

$$h = f \cdot \left(\frac{k_0 T}{2}\right)$$

EQUIPARTITION TUM.

"Classical equipertition of energy"

$$\frac{\partial U}{\partial \tau} = \frac{\int e^3}{2} = \left(\frac{f}{N}\right) \frac{R}{2}$$

Non interacting particles, only forces are at the halls

$$V = \left(\sum_{i=1}^{3N} \langle q_i | F_i \rangle \right)_0$$

DULONG + PETIT'S

Sum over partides in volume 8V

$$\Rightarrow \left(\sum \langle q, F; \rangle \right)_{\circ} = -P \int \vec{r} . d\vec{s} = -P \int (\vec{v}. \vec{r}) dv = -3PV$$

EINSTEINS MODEL 3, 26

· Closnically

N oscillates in ear a temperative T

$$\frac{1}{h} \sqrt{\frac{2\pi}{Bmc^2}} \sqrt{\frac{2\pi m}{B}} = \frac{2\pi}{h} \frac{1}{Bc}$$

$$= \frac{1}{\beta k \omega} = \frac{k a T}{k \omega}$$

$$= \frac{1}{2\pi}$$

$$Q_{N}(\beta) = [Q_{1}(\beta)]^{N}$$

P=0

N distinguishable oscillators.

(e.g. at different locators in a crystal).

Later over that to oscillators

are representation of to energy

levels of to oysten, not particles.

$$C_V = \frac{\partial h}{\partial T} = Nlea$$

$$= nR$$

DULONG AND PETIT'S LAW.

$$g(E) = \frac{1}{2\pi i} \int_{\beta'-i\infty}^{\beta'+i\infty} e^{\beta E} d\beta \, Q_N(B)$$

$$= \frac{1}{(ku)^N} \int_{\beta'-i\infty}^{\beta'+i\infty} \frac{e^{\beta E} d\beta}{\beta'^{N}} \beta'^{N} d\beta$$

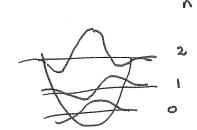
$$= \frac{1}{(ku)^N} \int_{\beta'-i\infty}^{\beta'+i\infty} \frac{e^{\beta E} d\beta}{\beta'^{N}} \beta'^{N} d\beta$$

$$g(\varepsilon) = \frac{1}{(k_0)^N} \frac{\varepsilon^{N-1}}{(N-1)!} O(N)$$

$$g(\varepsilon) = \frac{1}{k_0} \left(\frac{\varepsilon}{k_0}\right)^{N-1} \frac{1}{(N-1)!}$$

$$T = \left(\frac{\partial S}{\partial E}\right)^{-1} = \frac{E}{Nks}$$

· Quantin



$$Q_{1}(\beta) = \begin{cases} e^{-(n+1)t-\beta} = \frac{e^{-\frac{t-\beta}{2}}}{1-e^{-\frac{t-\beta}{2}}} = \frac{1}{2 \operatorname{sinh}(\beta t-\beta)} \end{cases}$$

$$Q_{N}(\beta) = Q_{1}(\beta)^{N} = \left(\frac{2}{2}\right)^{N}$$

$$A = N R_{3} T \left(\frac{2}{2}\right)^{N} \left(\frac{\beta t_{0}}{2}\right)^{N}$$

$$S = -\frac{\partial A}{\partial 7} = -N \log \left(\frac{2 \sinh \left(\frac{\beta t v}{\tau} \right)}{1} \right)$$

$$- N \log \left(\frac{1}{2} \frac{\beta t v}{2} \cosh \left(\frac{\beta t v}{\tau} \right) \left(\frac{-1}{2 \log 7^2} \right) \right)$$

$$= N \log \left(\frac{1}{2} \frac{\beta t v}{2} \cosh \left(\frac{\beta v}{\tau} \right) - \left(\frac{1}{2 \log 7^2} \right) \right)$$

$$= N \log \left(\frac{\hbar u \beta}{e^{\beta v} - 1} + \frac{\beta \hbar u}{2} - \ln \left(\frac{1}{2} - \frac{1}{2} \right) \right)$$

$$= N \log \left(\frac{\hbar u \beta}{e^{\beta v} - 1} + \frac{1}{2} \right)$$

$$= N \log \left(\frac{\hbar u \beta}{e^{\beta v} - 1} - \ln \left(\frac{1}{2} - \frac{1}{2} \right) \right)$$

$$U = -\frac{\partial \mathcal{L} Q_{N}(B)}{\partial B} = \frac{\partial}{\partial B} N \ln \left(\frac{2 \operatorname{sinh}(B_{c} t)}{2} \right)$$

$$= N \frac{\cosh \left(\frac{B_{c} t}{2} \right)}{\sinh 2} \frac{\ln t}{2}$$

$$= N \frac{\sinh 2}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= N \frac{\ln t}{2} \cosh \left(\frac{B_{c} t}{2} \right)$$

$$= \frac{\partial}{\partial T} \frac{Nt}{z} cot \left(\frac{Bt}{z}\right)$$

$$\frac{c}{s} \to \frac{s}{s} - \frac{c^2}{s^2}$$

$$= \frac{s^2 - c^2}{s^2} = \frac{1}{s^2}$$

$$= \frac{Nt}{2} \left(\frac{-1}{\sinh^2(\beta t - 1)} \right) \cdot \left(\frac{-t - 1}{2 \log T^2} \right)$$

=
$$N \log \left(\frac{x}{\sinh x} \right)_{x = \left(\frac{\beta t \omega}{2} \right)}^{2} = N \log \left(\frac{\beta t \omega}{2} \right)$$

$$f(x) = \frac{x^2}{\sin^2 x} = nR F\left[\frac{\pm c}{\cos 7}\right]$$

$$\left(\frac{1}{e^{x_{1}}e^{-x_{1}}}\right)^{2} = \left(\frac{e^{x_{1}}}{e^{x_{-1}}}\right)^{n}$$

$$= e^{x}$$

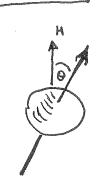
$$\left(e^{x_{-1}}\right)^{2}$$

$$C_V = Nleg \left(\beta t_{-1}\right)^2$$

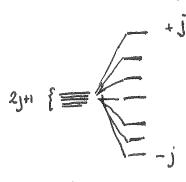
$$\left(e^{\beta t_{-1}}\right)^2$$

EQUIPARATION | DULONG + PETTS

39 PARAMAGNERSM

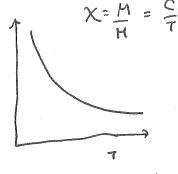


Classical



mj

Quartum



Curie onsceptions

"Magneti Monert

$$Q_N(\beta) = [Q_1(\beta)]^N$$

CLASSICAL

$$Q_{1}(\beta) = \sum_{\Theta} \exp \left[\beta_{1} H \cos \Theta\right]$$

$$\langle M_{2} \rangle = \frac{M_{2}(\beta)}{N} = \langle \mu \cos \Theta \rangle = \sum_{\Theta} \frac{\mu \cos \Theta \exp \left[\beta_{1} H \cos \Theta\right]}{\sum_{\Theta} \exp \left[\beta_{1} H \cos \Theta\right]}$$

$$= \frac{1}{\beta} \frac{\partial}{\partial H} P_{\alpha} Q_{\alpha}(\beta) = -\left(\frac{\partial A}{\partial H}\right)^{T}.$$

$$Q_{1}(\beta) = \int \frac{d\Omega}{d\cos\theta \, d\phi} \, e^{\beta mH\cos\theta} = 2\pi \int dc \, e^{\beta mHc}$$

$$= 2\pi \left(e^{\beta mH} - e^{-\beta mH} \right)$$

$$Q_{1}(\beta) = 2\pi \int dc \, e^{\beta mHc}$$

$$Q_{1}(\beta) = 2\pi \int dc \, e^{\beta mHc}$$

$$Q_{1}(\beta) = 2\pi \int dc \, e^{\beta mHc}$$

Density of shots of Quant system

$$Q_{N}(\beta) = \left(\frac{e^{\beta h u h}}{e^{\beta h u}-1}\right)^{N} = \left(\frac{e^{-\beta h u}}{1-e^{-\beta h u}}\right)^{N} = e^{-\beta h u}^{N}$$

$$= e^{-N\beta h u h 2} = \left(\frac{N+R-1}{R}\right) e^{-\beta h u}^{N}$$

$$= e^{-N\beta h u h 2} = \left(\frac{N+R-1}{R}\right) e^{-\beta h u h 2}$$

$$= e^{-N\beta h u h 2} = \left(\frac{N+R-1}{R}\right) e^{-\beta h u h 2} + \frac{N(N-1) \times 1 + \dots + N(N-1) \times 1$$

$$Q_{N}(B) = \begin{cases} g(E) e^{-BE} dE \\ \# \text{ microshtes} \end{cases}$$

$$g(E) = \begin{cases} N+R-1 \\ R \end{cases} \delta(E-\ln(R+N_{1}))$$

$$R = (E - 2.p.e)$$

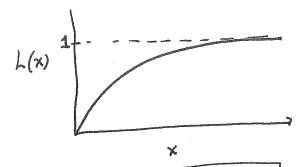
$$= E - NLuli = # quarka$$

$$R = \frac{E}{Lu} - \frac{N}{2}$$

$$\langle M_{\tilde{e}} \rangle = -\frac{\partial}{\partial H} \left[-\frac{1}{\beta} P_{\Lambda} \left[\frac{s_{\Lambda}h(M_{R})}{\mu N_{R}} \right] \right]$$

$$= \mu \left[\coth(\mu N_{R}) - \frac{1}{\beta \mu H} \right]$$

$$L(x) = com x - \frac{1}{x}$$

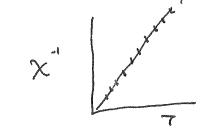


$$\chi_{7} = \lim_{H \to 0} \left(\frac{\partial M}{\partial u} \right)_{7} = \frac{N_{o}m^{2}}{3 \log 7} = \frac{C}{7}$$

$$coh \times \approx \frac{1 + \frac{x_{1}^{2}}{x^{2} + \frac{x_{2}^{2}}{3}} = \frac{1}{x} \left(1 + \frac{x_{1}^{2}}{3} \right) \left(1 + \frac{x_{2}^{2}}{3} \right)$$

$$= \frac{1}{x} \left(1 + \frac{x_{2}^{2}}{3} \right)$$

$$cot \times -\frac{1}{x} \sim \frac{x_{1}^{2}}{3} + O(x^{3})$$



QUANTUM

$$\vec{J} = g\left(\frac{e}{2m}\right)\vec{J}$$

$$\vec{J}^2 = j(j+1)\vec{k}^2$$

$$J = \begin{cases} \text{integer } 0,1,2...\\ \text{% integer } k,\frac{3}{2}.... \end{cases}$$

$$\frac{ge}{2m} = gyromagnehi rakis$$
 $g = (Landé) g - factor. = \frac{3}{2} + \frac{S(5+1) - L(L+1)}{2j(j+1)}$

$$M^2 = g^2 M_0^2 j(j+1)$$

$$M_2 = \frac{e h}{2m} = \frac{e h}{M_0 M_0^2}$$

$$M_3 = -j \dots + j$$

$$M_4 = g M_0 M_2$$

$$Q_{1}(\beta) : \sum_{m=-j}^{7} e^{xm} = e^{-xj} \sum_{r=0}^{2j} e^{-xr} = e^{-xj} \frac{1-e^{-x}}{1-e^{-x}}$$

$$= \frac{\sinh\left((2j+1)\times/2\right)}{\sinh\left((2j+1)\times/2\right)} \times = \left(\beta g_{MS}H\right)$$

$$A = - \log T \ln\left(\frac{\sinh\left((2j+1)\times/2\right)}{\sinh\left((2j+1)\times/2\right)}\right)$$

$$\frac{M_z}{N} = \langle M_z \rangle = \frac{1}{\beta} \frac{\partial h Q_i(\beta)}{\partial H}$$

=
$$\frac{g MB}{2} \left[(2)+1 \right) \coth \left[\left(\frac{2j+1}{2} \right) \times \right] - \coth \left[\frac{x}{2} \right] \right]$$

$$B_{j}(x) = \left\{ \left(1 + \frac{1}{2j} \right) \cosh \left(j + \frac{1}{2} \right) x \right\} - \frac{1}{2j} \cosh \left(\frac{x}{2} \right) \right\}$$

$$\times = \frac{9Mh}{4e_{3}T}.$$

$$B_{j}(x) \sim \begin{cases} 1 & x > 7 \\ \frac{(j+1)x}{3} & x < 4 \\ 1 & x < 4 \end{cases}$$

For
$$g_{Nb}H > 7 les 7$$
 $(M+) \sim g_{Nb}j$
 $g_{Nb}h < c les 7$ $(M+) \sim \frac{j(j+1)}{3} \left(\frac{g_{Nb}}{T}\right)^{2} H = \chi n$

Special case
$$j=\frac{1}{2}$$
 $g=2$ $M_{\tilde{z}}=M_{\tilde{z}}$ has $fanh\left(\frac{B_{MB}H}{2T}\right)$

$$N_{\tilde{z}}=N_{\tilde{z}}M_{\tilde{z}}^{2}+\frac{N_{\tilde{z}}M_{\tilde{z}}}{2T}$$

$$\chi=N_{\tilde{z}}M_{\tilde{z}}^{2}+\frac{N_{\tilde{z}}M_{\tilde{z}}}{2T}$$

+ MBM
$$\int_{2\varepsilon}$$
 QN(B)= $(e^{\beta\varepsilon} + e^{-\beta\varepsilon})$

$$= 2\cosh\beta\varepsilon$$

$$\varepsilon = MBM$$

$$A = -Nk_{5}T \ln \left(2 \cosh \left(\frac{\epsilon}{\log T}\right)\right)$$

$$S = -\frac{\partial A}{\partial T} = Nk_{8} \ln \left(2 \cosh \frac{\epsilon}{\log T}\right) - \left(\frac{\epsilon}{\log T}\right) \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon}{\log T}\right)$$

$$M = -\frac{\partial A}{\partial U} = Nk_{8} \ln \left(\frac{\epsilon$$

$$C = N \log \left(\frac{\Delta}{2 \log 7} \right)^{2} \left(e^{\frac{C \log 7}{2 \log 7}} + e^{\frac{C \log 7}{2 \log 7}} \right)^{2}$$

$$= N \log \left(\frac{C}{2 \log 7} \right)^{2} \left(e^{\frac{C \log 7}{2 \log 7}} + 1 \right)^{2}$$

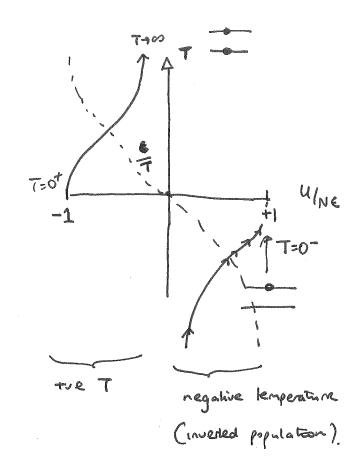
$$= N \log \left(\frac{C}{2 \log 7} \right)^{2} \left(\frac{C}{2 \log 7} \right)^{2} \left(\frac{C}{2 \log 7} \right)^{2}$$

NEGATIVE TEMPERATURE

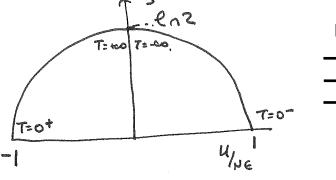
$$t = \frac{e^{2x}}{e^{2x}}$$
 $\Rightarrow x = \frac{1}{2} \left(\frac{1+t}{1-t} \right)$

$$\frac{1}{T} = \frac{\log R}{2\epsilon} \left[\frac{1 - \frac{M}{N\epsilon}}{1 + \frac{M}{N\epsilon}} \right] = \frac{1}{T} = \frac{\log R}{2\epsilon} \left[\frac{N\epsilon - M}{N\epsilon + M} \right]$$

$$\frac{S}{Nes} = -\frac{1}{2} \left(1 - \frac{u}{Ne} \right) \left(1 - \frac{u}{Ne} \right) \\
-\frac{1}{2} \left(1 + \frac{u}{Ne} \right) \left(1 + \frac{u}{Ne} \right)$$



- · TKO only possible lit an upper cutoff in thegy.
- · Maximum S D = 0 independent of sign of T!



dA = -SdT-pdv+xdv

$$C = \frac{\partial u}{\partial 7} = Nks \beta^2 (e^2 - e^2)$$

$$\begin{bmatrix} T_{1}, E_{1} \end{bmatrix} = \begin{bmatrix} \delta E_{2} \\ - \end{bmatrix} \begin{bmatrix} T_{2}, E_{1} \\ - \end{bmatrix}$$

$$| F = \frac{\partial S}{\partial E_1} = \frac{\partial S}{\partial E_1} = \frac{1}{T_2} = \frac{1}{T_1} > 0$$

Energy floor to the open ext the longst B

T<0 hotter trun Tro ever Tr=10!