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Abstract

A spin-1/2 system on a honeycomb lattice is studied. The interactions between nearest neighbors
are of XX, YY or ZZ type, depending on the direction of the link; different types of interactions may
differ in strength. The model is solved exactly by a reduction to free fermions in a static Z2 gauge
field. A phase diagram in the parameter space is obtained. One of the phases has an energy gap
and carries excitations that are Abelian anyons. The other phase is gapless, but acquires a gap in
the presence of magnetic field. In the latter case excitations are non-Abelian anyons whose braiding
rules coincide with those of conformal blocks for the Ising model. We also consider a general theory
of free fermions with a gapped spectrum, which is characterized by a spectral Chern number m. The
Abelian and non-Abelian phases of the original model correspond to m = 0 and m = ±1, respectively.
The anyonic properties of excitation depend on m mod 16, whereas m itself governs edge thermal
transport. The paper also provides mathematical background on anyons as well as an elementary
theory of Chern number for quasidiagonal matrices.
� 2005 Elsevier Inc. All rights reserved.

1. Comments to the contents: what is this paper about?

Certainly, the main result of the paper is an exact solution of a particular two-dimen-
sional quantum model. However, I was sitting on that result for too long, trying to perfect
it, derive some properties of the model, and put them into a more general framework. Thus
many ramifications have come along. Some of them stem from the desire to avoid the use
of conformal field theory, which is more relevant to edge excitations rather than the bulk

0003-4916/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.aop.2005.10.005

* Fax: +1 626 5682764.
E-mail address: kitaev@iqi.caltech.edu.

Annals of Physics 321 (2006) 2–111

www.elsevier.com/locate/aop



physics. This program has been partially successful, but some rudiments of conformal field
theory (namely, the topological spin ha ¼ e2piðha��haÞ and the chiral central charge
c� ¼ c� �c) are still used.

The paper is self-contained and provides an introduction into the subject. For most
readers, a good strategy is to follow the exposition through the beginning of Section 10,
non-Abelian anyons, and take a glance at the rest of that section, where things become
more technical. But the mathematically inclined reader may be interested in those details,
as well as some of the appendices. I have tried to make the paper modular so that some
parts of it can be understood without detailed reading of the other. This has caused some
redundancy though.

Appendix E, Algebraic theory of anyons, is an elementary introduction into unitary
modular categories, which generalizes the discussion in Section 10.

Appendix C, Quasidiagonal matrices, is also mostly expository but some of the argu-
ments may be new. It begins with a simplified treatment of ‘‘operator flow’’ and ‘‘noncom-
mutative Chern number’’ (the latter has been used to prove the quantization of Hall
conductivity in disordered systems [1]), but the main goal is to explain ‘‘unpaired Major-
ana modes,’’ a certain parity phenomenon related to the Chern number.

Appendix D on the chiral central charge and Appendix F on weak symmetry breaking
contain some raw ideas that might eventually develop into interesting theories.

2. Introduction

2.1. Overview of the subject

Anyons are particles with unusual statistics (neither Bose nor Fermi), which can only
occur in two dimensions. Quantum statistics may be understood as a special kind of inter-
action: when two particles interchange along some specified trajectories, the overall quan-
tum state is multiplied by eiu. In three dimensions, there is only one topologically distinct
way to swap two particles. Two swaps are equivalent to the identity transformation, hence
eiu = ±1. On the contrary, in two dimensions the double swap corresponds to one particle
making a full turn around the other; this process is topologically nontrivial. Therefore the
exchange phase u can, in principle, have any value—hence the name ‘‘anyon.’’ (However,
a stability consideration requires that u be a rational multiple of 2p.) Of course, the real
question is whether such particles exist in nature or can be built somehow, but we will fol-
low the historic path, approaching the problem from the mathematical end.

The study of anyons was initiated by Wilczek [2,3] in early 1980s. He proposed a simple
but rather abstract model, which was based on (2 + 1)-dimensional electrodynamics. This
theory has integer electric charges and vortices carrying magnetic flux (which is a real
number defined up to an integer). Considered separately, both kinds of particles are
bosons. But when a charge q goes around a vortex v, it picks up the phase 2pqv, known
as the Aharonov–Bohm phase. Thus, charges and vortices have nontrivial mutual statistics
and therefore must be called anyons when considered together. Moreover, composite
objects (q,v) consisting of a charge and a vortex are anyons by themselves because they
have nontrivial exchange phase u(q, v) = 2pqv.

A general way to describe quantum statistics is to consider particle worldlines in the
(2 + 1)-dimensional space-time. Such worldlines form a braid, therefore the statistics is
characterized by a representation of the braid group. In the preceding discussion we
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assumed that braiding is characterized just by phase factors, i.e., that the representation is
one-dimensional. The corresponding anyons are called Abelian. But one can also consider
multidimensional representations of the braid group; in this case the anyons are called
non-Abelian. Actually, it may not be so important how the braid group acts, but the very
existence of a multidimensional space associated with several particles is a key feature.
Vectors in this space are quantum states that have almost the same energy (see discussion
of topological quantum computation below).

Historically, the theory of non-Abelian anyons emerged from conformal theory (CFT).
However, only topological and algebraic structure in CFT is relevant to anyons. Different
pieces of this structure were discovered in a colossal work of many people, culminating in
the paper by Moore and Seiberg [4]. Witten�s work on quantum Chern–Simons theory [5]
was also very influential. A more abstract approach (based on local field theory) was devel-
oped by Fredenhagen et al. [6] and by Frohlich and Gabbiani [7].

The most amazing thing about anyons is that they actually exist as excitations in some
condensed matter systems. Such systems also have highly nontrivial ground states that are
described as possessing topological order. The best studied example (both theoretically and
experimentally) is the Laughlin state [8] in the fractional quantum Hall system at the filling
factor m = 1/3. It carries Abelian anyons with exchange phase u = p/3 and electric charge
±1/3. It is the fractional value of the charge that was predicted in original Laughlin�s paper
and confirmed by several methods, in particular by a shot noise measurement [9,10]. The
statistical phase is a subtler property which is deduced theoretically [11,12]; a nontrivial
experimental test has been performed recently using quasiparticle tunneling [13].

A different kind of state is observed at the filling factor m = 5/2, though it is more fragile
and less studied experimentally. There is much evidence suggesting that this system is
described by a beautiful theory proposed by Moore and Read [14,15]. The Moore–Read
state admits non-Abelian anyons with charge ±1/4. If 2n such particles are present, the
associated Hilbert space has dimension 2n�1. (The non-Abelian anyons studied in this
paper have similar properties, though there is no electric charge.)

The notion of anyons assumes that the underlying state has an energy gap (at least for
topologically nontrivial quasiparticles). Otherwise excitations are not localizable and
braiding may not be defined. Note that if all excitations are gapped, then all equal-time
correlators decay exponentially with distance [16].

An example of anyons in a spin-1/2 system originates from the theory of resonating
valence bond (RVB). The idea of RVB was put forward by Anderson [17] and used later
as a model of the undoped insulating phase in high-Tc cuprate superconductors [18]. With-
out electrically charged holes, the problem seems to be described adequately by a Heisen-
berg-like Hamiltonian, but its solution has proved very difficult. Several variants of an
RVB state have been proposed, both gapless and gapped. Here we discuss a particular
gapped RVB phase, namely the one which is realized on the triangular lattice [19], but
which apparently exists on the square lattice as well. This phase admits quasiparticles of
four types: trivial excitations (such as spin waves), spinons (spin-1/2 fermions, which are
conserved modulo 2), Z2-vortices (spinless bosons, also called visons), and spinon–vison
composites [20]. The mutual statistics of spinons and visons is characterized by the Aharo-
nov–Bohm factor �1, therefore the composite particles are bosons. Note that the rele-
vance of this theory to cuprate superconductors is under debate. Senthil and Fisher
proposed an interesting way to detect visons in these materials [21], but the experiment
gave a negative result [22]. However, some kind of RVB state is likely to realize in a
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different material, Cs2CuCl4. This conclusion is drawn from neutron-scattering experi-
ments that have shown the presence of spin-1/2 excitations [23].

Anyonic particles are best viewed as a kind of topological defects that reveal nontrivial
properties of the ground state. Thus anyons carry some topological quantum numbers
which make them stable: a single particle cannot be annihilated locally but only through
the fusion with an antiparticle. An intuitive way to picture an anyon is to imagine a vortex
in a medium with a local order parameter (see Fig. 1A). Now suppose that quantum fluc-
tuations are so strong that the order parameter is completely washed out and only the
topology remains (see Fig. 1B). Of course, that is only a rough illustration. It resembles
the Kosterlitz–Thouless phase with power-law correlation decay, while in anyonic systems
correlations decay exponentially due to the energy gap.

A real example can be constructed with spins on the edges of a square lattice. Basis
states of the spins are described by the variables sj = ±1, which may be regarded as a
Z2 gauge field (i.e., ‘‘vector potential’’), whereas the ‘‘magnetic field intensity’’ on pla-
quette p is given by

wp ¼
Y

j2boundaryðpÞ
sj. ð1Þ

We say that there is a vortex on plaquette p if wp = �1. Now we may define the vortex-free
state:

jWi ¼ c
X

s : wpðsÞ ¼ 1

for all p

jsi; where s ¼ ðs1; . . . ; sN Þ
ð2Þ

(c is a normalization factor). The state with a single vortex on a given plaquette is defined
similarly. It is clear that the vortex can be detected by measuring the observable

Q
j2lr

z
j for

any enclosing path l, though no local order parameter exists.
The state (2) can be represented as the ground state of the following Hamiltonian with

four-body interaction [24]:

H ¼ �Je
X

vertices

As � Jm
X

plaquettes

Bp; where As ¼
Y

starðsÞ
rx
j ; Bp ¼

Y
boundaryðpÞ

rz
j. ð3Þ

Its elementary excitations are Z2-charges with energy 2Je and vortices with energy 2Jm. Cer-
tain essential features of this model are stable to small local perturbations (such as external

Fig. 1. A classical vortex (A) distorted by fluctuations (B).
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magnetic field or Heisenberg interaction between neighboring spins). Note that the robust
characteristic of excitations is not the energy or the property of being elementary, but rather
superselection sector. It is defined as a class of states that can be transformed one to another
by local operators. This particular model has the vacuum sector 1, the charge sector e, the
vortex sector m, and a charge-vortex composite e. Particles of type e and m are bosons with
nontrivial mutual statistics, whereas e is a fermion. Thus, the model represents a universality
class of topological order—actually, the same class as RVB.

Anyonic superselection sectors may or may not be linked to conventional quantum
numbers, like spin or electric charge. Most studies have been focused on the case where
anyons carry fractional electric charge or half-integer spin. Such anyons are potentially
easier to find experimentally because they contribute to collective effects (in particular,
electric current) or have characteristic selection rules for spin-dependent scattering.
Chargeless and spinless quasiparticles are generally harder to identify. But anyons, by vir-
tue of their topological stability, must have some observable signatures. For example, any-
ons can be trapped by impurities and stay there for sufficiently long time, modifying the
spectrum of local modes (magnons, excitons, etc.). However, effective methods to observe
anyons are yet to be found.

Thus, the hunt for anyons and topological order is a difficult endeavor. Why do we
care? First, because these are conceptually important phenomena, breaking some para-
digms. In particular, consider these principles (which work well and provide important
guidance in many cases):

1. Conservation laws come from symmetries (by Noether�s theorem or its quantum
analogue).

2. Symmetries are initially present in the Hamiltonian (or Lagrangian), but may be spon-
taneously broken.

Let us limit our discussion to the case of gauge symmetries and local conservation laws,
which are described by fusion rules between superselection sectors. A profound under-
standing of the first principle and its underlying assumptions is due to Doplicher and Rob-
erts [25,26]. They proved that any consistent system of fusion rules for bosons is equivalent
to the multiplication rules for irreducible representations of some compact group. Ferm-
ions also fit into this framework. However, anyonic fusion rules are not generally
described by a group! As far as the second principle is concerned, topological order does
not require any preexisting symmetry but leads to new conservation laws. Thus, the for-
mation of topological order is exactly the opposite of symmetry breaking!

2.2. Topological quantum computation

A more practical reason to look for anyons is their potential use in quantum comput-
ing. In [24], I suggested that topologically ordered states can serve as a physical analogue
of error-correcting quantum codes. Thus, anyonic systems provide a realization of quan-
tum memory that is protected from decoherence. Some quantum gates can be implemented
by braiding; this implementation is exact and does not require explicit error correction.
Freedman et al. [27] proved that for certain types of non-Abelian anyons braiding enables
one to perform universal quantum computation. This scheme is usually referred to as topo-
logical quantum computation (TQC).
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Let us outline some basic principles of TQC. First, topologically ordered systems have
degenerate ground states under certain circumstances. In particular, the existence of Abe-
lian anyons implies the ground state degeneracy on the torus [28]. Indeed, consider a pro-
cess in which a particle–antiparticle pair is created, one of the particles winds around the
torus, and the pair is annihilated. Such a process corresponds to an operator acting on the
ground state. If A and B are such operators corresponding to two basic loops on the torus,
then ABA�1B�1 describes a process in which none of the particles effectively crosses the
torus, but one of them winds around the other. If the Aharonov–Bohm phase is nontrivial,
then A and B do not commute. Therefore they act on a multidimensional space.

Actually, the degeneracy is not absolute but very precise. It is lifted due to virtual par-
ticle tunneling across the torus, but this process is exponentially suppressed. Therefore the
distance between ground energy levels is proportional to exp(�L/n), where L is the linear
size of the torus and n is some characteristic length, which is related to the gap in the exci-
tation spectrum.

In non-Abelian systems, degeneracy occurs even in the planar geometry when several
anyons are localized in some places far apart from each other (it is this space of quantum
states the braid group acts on). The underlying elementary property may be described as
follows: two given non-Abelian particles can fuse in several ways (like multi-dimensional
representations of a non-Abelian group). For example, the non-Abelian phase studied
in this paper has the following fusion rules:

e� e ¼ 1; e� r ¼ r; r� r ¼ 1þ e;

where 1 is the vacuum sector, and e and r are some other superselection sectors. The last
rule is especially interesting: it means that two r-particles may either annihilate or fuse into
an e-particle. But when the r-particles stay apart, 1 and e correspond to two quantum
states, jwrr

1 i and jwrr
e i. These states are persistent. For example, if we create jwrr

e i by split-
ting an e into two r�s, wait some time, and fuse the r-particles back, we will still get an e-
particle.

Here is a subtler property: the fusion states jwrr
1 i and jwrr

e i are practically indistinguishable
and have almost the same energy. In fact, a natural process that ‘‘distinguishes’’ them by mul-
tiplying by different factors is tunneling of a virtual e-particle between the fixed r-particles
(which is possible since r · e = r). However, e-particles are gapped, therefore this process
is exponentially suppressed. Of course, this explanation depends on many details, but it is
a general principle that different fusion states can only be distinguished by transporting a qua-
siparticle. Such processes are unlikely even in the presence of thermal bath and external noise,
as long as the temperature and the noise frequency are much smaller than the gap.

In the above example, the two-particle fusion states jwrr
1 i and jwrr

e i cannot form coher-
ent superpositions because they belong to different superselection sectors (1 and e, respec-
tively). To implement a qubit, one needs four r-particles. A logical |0æ is represented by the
quantum state |n1æ that is obtained by creating the pairs (1,2) and (3,4) from the vacuum
(see Fig. 2). A logical |1æ is encoded by the complementary state |neæ: we first create a pair
of e-particles, and then split each of them into a rr-pair. Note that both states belong to
the vacuum sector and therefore can form superpositions. Also shown in Fig. 2 are two
alternative ways to initialize the qubit, |g1æ and |geæ. The detailed analysis presented in Sec-
tions 10.4 and 10.5 implies that

jg1i ¼ 1ffiffi
2

p ðjn1i þ jneiÞ; jgei ¼ 1ffiffi
2

p ðjn1i � jneiÞ.
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Therefore we can perform the following gedanken experiment. We create the state |n1æ and
then measure the qubit in the fjg1i; j geig-basis by fusing the pairs (1,3) and (2,4). With
probability 1/2 both pairs annihilate, and with probability 1/2 we get two e-particles.
One can also think of a simple robustness test for quantum states: if there is no decoher-
ence, then both |n1æ and |g1æ are persistent.

As already mentioned, braiding is described by operators that are exact (up to virtual
quasiparticle tunneling). Indeed, the operators of counterclockwise exchange between two
particles (R-matrices) are related to the fusion rules by so-called hexagon equations and
pentagon equation. We will see on concrete examples that these equations have only a finite
number of solutions and therefore do not admit small deformations. In general, it is a non-
trivial theorem known as Ocneanu rigidity [29,30], see Section E.6.

Thus, we have all essential elements of a quantum computer implemented in a robust
fashion: an initial state is made by creating pairs and/or by splitting particles, unitary gates
are realized by braiding, and measurements are performed by fusion. This ‘‘purely topo-
logical’’ scheme is universal for sufficiently complicated phases such as the k = 3 paraferm-
ion state [31], lattice models based on some finite groups (e.g., S5 [24], A5 [32,33], and S3

[34]), and double Chern–Simons models [35–37]. Unfortunately, the model studied in this
paper is not universal in this sense. One can, however, combine a topologically protected
quantum memory with a nontopological realization of gates (using explicit error correc-
tion). Note that some weak form of topological protection is possible even in one-dimen-
sional Josephson junction arrays [38], which is due to the build-in U (1)-symmetry. Several
other schemes of Josephson junction-based topological quantum memory have been pro-
posed recently [39–41].

Unlike many other quantum computation proposals, TQC should not have serious sca-
lability issues. What is usually considered an initial step, i.e., implementing a single gate,
may actually be close to the solution of the whole problem. It is an extremely challenging
task, though. It demands the ability to control individual quasiparticles, which is beyond
the reach of present technology. One should however keep in mind that the ultimate goal
is to build a practical quantum computer, which will contain at least a few hundred logical
qubits and involve error-correcting coding: either in software (with considerable overhead)
or by topological protection or maybe by some other means. At any rate, that is a task for the
technology of the future. But for the meantime, finding and studying topological phases
seems to be a very reasonable goal, also attractive from the fundamental science perspective.

2.3. Comparison with earlier work and a summary of the results

In this paper, we study a particular exactly solvable spin model on a two-dimensional
lattice. It only involves two-body interactions and therefore is simpler than Hamiltonian

Fig. 2. Four ways to initialize an anyonic qubit.
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(3) considered in [24], but the solution is less trivial. It is not clear how to realize this model
in solid state, but an optical lattice implementation has been proposed [42].

The model has two phases (denoted by A and B) which occur at different values of
parameters. The exact solution is obtained by a reduction to free real fermions. Thus quasi-
particles in the system may be characterized as fermions and Z2-vortices. Vortices and ferm-
ions interact by the Aharonov–Bohm factor equal to �1. In phase A the fermions have an
energy gap, and the vortices are bosons that fall into two distinct superselection sectors.
(Interestingly enough, the two types of vortices have identical physical properties and are
related to each other by a lattice translation.) The overall particle classification, fusion
rules, and statistics are the same as in model (2) or RVB. In phase B the fermions are gapless
and there is only one type of vortices with undefined statistics. Adding a magnetic field to
the Hamiltonian opens a gap in the fermionic spectrum, and the vortices become non-Abe-
lian anyons. The difference between the vortex statistics in phase A and phase B with the
magnetic field may be attributed to different topology of fermionic pairing.

Topological properties of Fermi-systems were first studied in the theory of integer
quantum Hall effect [43,44]. Let us outline the main result. To begin with, the Hall con-
ductivity of noninteracting electrons in a periodic potential (e.g., in the Hofstadter model
with m/n flux quanta per plaquette) is expressed in terms of a single-electron Hamiltonian
in the Fourier basis. Such a Hamiltonian is an n · n matrix that depends on the momen-
tum q. For each value of q one can define a subspace LðqÞ 
 Cn that is associated with
negative-energy states, i.e., ones that are occupied by electrons. Thus, a vector bundle over
the momentum space is defined. The quantized Hall conductivity is proportional to the
Chern number of this bundle. Bellissard et al. [1] have generalized this theory to disordered
systems by using a powerful mathematical theory called noncommutative geometry [45].

Even more interesting topological phenomena occur when the number of particles is
not conserved (due to the presence of terms like ayja

y
k, as in the mean-field description of

superconductors). In this case the single-electron Hamiltonian is replaced by a more gen-
eral object, the Bogolyubov–Nambu matrix. It also has an associated Chern number m,
which is twice the number defined above when the previous definition is applicable. But
in general m is an arbitrary integer. The first physical example of this kind, the 3He-A film,
was studied by Volovik [46]. Volovik and Yakovenko [47] showed that the Chern number
in this system determines the statistics of solitons. More recently, Read and Green [48]
considered BCS pairing of spinless particles with angular momentum l = �1. They iden-
tified a ‘‘strong pairing phase’’ with zero Chern number and a ‘‘weak pairing phase’’ with
m = 1. The latter is closely related to the Moore–Read state and has non-Abelian vortices
and chiral edge modes.

In the present paper, these results are generalized to an arbitrary Fermi-system
described by a quadratic Hamiltonian on a two-dimensional lattice. We show that Z2-vor-
tices are Abelian particles when the Chern number m is even and non-Abelian anyons when
m is odd. The non-Abelian statistics is due to unpaired Majorana modes associated with
vortices. Our method relies on a quasidiagonal matrix formalism (see Appendix C), which
is similar to, but more elementary than, noncommutative geometry. It can also be applied
to disordered systems.

Furthermore, we find that there are actually 16 (8 Abelian and 8 non-Abelian) types of
vortex-fermion statistics, which correspond to different values of m mod 16. Only three of
them (for m = 0,±1) are realized in the original spin model. We give a complete algebraic
description of all 16 cases, see Tables 1–3.
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Table 1
Algebraic properties of anyons in non-Abelian phases (m is odd)

3. The model

We study a spin-1/2 system in which spins are located at the vertices of a honeycomb
lattice, see Fig. 3A. This lattice consists of two equivalent simple sublattices, referred to as
‘‘even’’ and ‘‘odd’’ (they are shown by empty and full circles in the figure). A unit cell of
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the lattice contains one vertex of each kind. Links are divided into three types, depending
on their direction (see Fig. 3B); we call them ‘‘x-links,’’ ‘‘y-links,’’ and ‘‘z-links.’’ The
Hamiltonian is as follows:

H ¼ �Jx
X
x-links

rx
jr

x
k � Jy

X
y-links

ry
jr

y
k � J z

X
z-links

rz
jr

z
k; ð4Þ

where Jx, Jy, and Jz are model parameters.

Table 2
Properties of anyons for m ” 2 (mod 4)
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Let us introduce a special notation for the individual terms in the Hamiltonian:

Kjk ¼
rx
jr

x
k; if ðj; kÞ is an x-link,

rx
jr

y
k; if ðj; kÞ is an y-link,

rx
jr

z
k; if ðj; kÞ is an z-link.

8><>: ð5Þ

Table 3
Properties of anyons for m ” 2 (mod 4)

y

y y y y y y

y y y y y

y y y y y y

y y y y y y

x

A

B
x

x

x

x x x x x

x x x x x

x x x x x

x x x x x

z z z z z z z

z

z z z z z z

z z z z z

z

yx z

Fig. 3. Three types of links in the honeycomb lattice.
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Remarkably, all operators Kjk commute with the following operators Wp, which are asso-
ciated to lattice plaquettes (i.e., hexagons)

ð6Þ

Here, p is a label of the plaquette. Note that different operators Wp commute with each
other.

Thus, Hamiltonian (4) has the set of ‘‘integrals of motion’’ Wp, which greatly simplifies
the problem. To find eigenstates of the Hamiltonian, we first divide the total Hilbert space
L into sectors—eigenspaces of Wp, which are also invariant subspaces of H. This can be
written as follows:

L ¼ �
w1;...;wm

Lw1;...;wm ; ð7Þ

where m is the number of plaquettes. Each operator Wp has eigenvalues +1 and �1, there-
fore each sector corresponds to a choice of wp = ±1 for each plaquette p. Then we need to
solve for the eigenvalues of the Hamiltonian restricted to a particular sector Lw1;...;wm .

The honeycomb lattice has 1/2 plaquette per vertex, therefore m � n/2, where n is the
number of vertices. It follows that the dimension of each sector is �2n/2m � 2n/2 (we will
in fact see that all these dimensions are equal). Thus splitting into sectors does not solve
the problem yet. Fortunately, it turns out that the degrees of freedom within each sector
can be described as real (Majorana) fermions, and the restricted Hamiltonian is simply a
quadratic form in Majorana operators. This makes an exact solution possible.

4. Representing spins by Majorana operators

4.1. A general spin-fermion transformation

Let us remind the reader some general formalism pertaining to Fermi systems. A system
with n fermionic modes is usually described by the annihilation and creation operators ak,
ayk (k = 1, . . .,n). Instead, one can use their linear combinations,

c2k�1 ¼ ak þ ayk; c2k ¼
ak � ayk

i
;

which are called Majorana operators. The operators cj (j = 1, . . . , 2n) are Hermitian and
obey the following relations:

c2
j ¼ 1; cjcl ¼ �clcj if j 6¼ l. ð8Þ

Note that all operators cj can be treated on equal basis.
We now describe a representation of a spin by two fermionic modes, i.e., by four

Majorana operators. Let us denote these operators by bx, by, bz, and c (instead of c1,
c2, c3, and c4). The Majorana operators act on the 4-dimensional Fock space fM, whereas
the Hilbert space of a spin is identified with a two-dimensional subspace M � fM defined
by this condition:

A. Kitaev / Annals of Physics 321 (2006) 2–111 13



jni 2M if and only if Djni ¼ jni; where D ¼ bxbybzc. ð9Þ
We call M and fM the physical subspace and the extended space, respectively; the operator
D may be thought of as a gauge transformation for the group Z2.

The Pauli operator rx, ry, rz can be represented by some operators erx, ery , erz acting
on the extended space. Such a representation must satisfy two conditions: (1) erx, ery , erz

preserve the subspace M; (2) when restricted to M, the operators erx, ery , erz obey the
same algebraic relations as rx, ry, rz. We will use the following particular representation:

ð10Þ

(We have associated the Majorana operators with four dots for a reason that will be clear
later.) This representation is correct since era (a = x,y,z) commutes with D (so that M is
preserved), ðeraÞy ¼ era, ðeraÞ2 ¼ 1 anderxeryerz ¼ ibxbybzc ¼ iD.

The last equation is consistent with the formula rxryrz = i because D acts as the identity
operator on the subspace M.

A multi-spin system is described by four Majorana operators per spin. The correspond-
ing operators eraj , Da

j and the physical subspace L � eL are defined as follows:

eraj ¼ iba
j cj; Dj ¼ bxjb

y
jb

z
jcj;

jni 2 L if and only if Djjni ¼ jni for all j.
ð11Þ

Any spin Hamiltonian Hfra
jg can be replaced by the fermionic HamiltonianeH fba

j ; cjg ¼ Hferajg the action of which is restricted to the physical subspace. (The result-
ing Hamiltonian eH is rather special; in particular, it commutes with the operators Dj.)

Remark 4.1. The substitution ra
j 7!era

j ¼ iba
j cj is gauge-equivalent to a more familiar one

(see [49] and references therein)

ra
j 7!Djera

j ; i.e., rx
j 7! � ibyjb

z
j; ry

j 7! � ibzjb
x
j ; rz

j 7! � ibxjb
y
j . ð12Þ

Thus, one can represent a spin by only three Majorana operators without imposing gauge
constraints. However, this is not sufficient for our purposes.

4.2. Application to the concrete model

Let us apply the general procedure to the spin Hamiltonian (4). Each term Kjk ¼ ra
jr

a
k

becomes eKjk ¼ ðiba
j cjÞðiba

kckÞ ¼ �iðiba
j b

a
kÞcjck. The operator in parentheses, ûjk ¼ iba

j b
a
k , is

Hermitian; we associated it with the link (j,k). (The index a takes values x,y or z depend-
ing on the direction of the link, i.e., a = ajk.) Thus we get:

eH ¼ i
4

P
j;k

Âjkcjck; Âjk ¼
2J ajk ûjk if j and k are connected,

0 otherwise,

�
ûjk ¼ ib

ajk
j b

ajk
k .

ð13Þ
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Note that each pair of connected sites is counted twice, and ûkj = �ûjk. The structure of
this Hamiltonian is shown in Fig. 4.

Remarkably, the operators ûjk commute with the Hamiltonian and with each other.
Therefore the Hilbert space eL splits into common eigenspaces of ûjk, which are indexed
by the corresponding eigenvalues ujk = ±1. Similar to (7), we may write eL ¼ �u

eLu, where
u stands for the collection of all ujk. The restriction of Hamiltonian (13) to the subspace eLu

is obtained by ‘‘removing hats,’’ i.e., replacing operators by numbers. This procedure
results in the Hamiltonian eH u ¼ i

4

P
j;kAjkcjck, which corresponds to free fermions. The

ground state of eH u can be found exactly; let us denote it by j eWui.
Note, however, that the subspace eLu is not gauge-invariant: applying the gauge oper-

ator Dj changes the values of ujk on the links connecting the vertex j with three adjacent
vertices k. Therefore the state j eWui does not belong to the physical subspace. To obtain
a physical space we must symmetrize over all gauge transformations. Specifically, we con-
struct the following state:

jWwi ¼
Y
j

1þ Dj

2


 �
j eWui 2 L. ð14Þ

Here, w denotes the equivalence class of u under the gauge transformations. For the planar
lattice (but not on the torus) w is characterized by numbers wp = ±1 defined as products of
ujk around hexagons. To avoid ambiguity (due to the relation ukj = �ujk), we choose a par-
ticular direction for each link

wp ¼
Y

ðj;kÞ2boundaryðpÞ
ujk ðj 2 even sublattice, k 2 odd sublatticeÞ. ð15Þ

The corresponding operator eW p ¼
Q

ûjk commutes with the gauge transformations as well
as the Hamiltonian. The restriction of this operator to the physical subspace coincides
with the integral of motion Wp defined earlier (see (6)).

4.2.1. Notation change

From now on, we will not make distinction between operators acting in the extended
space and their restrictions to the physical subspace, e.g., eW p versus Wp. The tilde mark
will be used for other purposes.

4.3. Path and loop operators

One may think of the variables ukj as a Z2 gauge field. The number wp is interpreted as the
magnetic flux through the plaquette p. If wp = �1, we say that the plaquette carries a vortex.

spins

Majorana operators

cj

bj
z

ujk
bk

z

ck

Fig. 4. Graphic representation of Hamiltonian (13).
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The product of ûjk along an arbitrary path corresponds to the transfer of a fermion
between the initial and the final point. However, this product is not gauge-invariant.
One can define an invariant fermionic path operator in terms of spins or in terms of fermions

W ðj0; . . . ; jnÞ ¼ Kjnjn�1
. . .Kj1j0 ¼

Yn
s¼1

�iûjsjs�1

 !
cnc0; ð16Þ

where Kjk is given by (5). If the path is closed, i.e., jn = j0, the factors cn and c0 cancel each
other. In this case the path operator is called the Wilson loop; it generalizes the notion of
magnetic flux.

On the honeycomb lattice all loops have even length, and formula (16) agrees with the
sign convention based on the partition into the even and odd sublattice. However, the spin
model can be generalized to any trivalent graph, in which case the loop length is arbitrary.
For an odd loop l the operator W(l) has eigenvalues wl = ±i. This is not just an artifact of
the definition: odd loops are special in that they cause spontaneous breaking of the time-
reversal symmetry.

The time-reversal operator is a conjugate-linear unitary operator T such that

Tra
j T

�1 ¼ �ra
j ; TbjT�1 ¼ bj; TcjT�1 ¼ cj. ð17Þ

(The first equation is a physical requirement; the other two represent the action of T in the
extended space.) ThereforeT commutes with the Hamiltonian (4) and the Wilson loop. Mul-
tiplying the equationWl|Wæ = wl|Wæ by T, we get W lT jWi ¼ w�l T jWi. Thus the time-reversal
operator changes wl to w�l . For a bipartite graph w�l ¼ wl for all loops, therefore fixing the
variables wl does not break the time-reversal symmetry. On the contrary, for a similar model
on a non-bipartite graph (e.g., a lattice containing triangles) the operatorT does not preserve
the field configuration, which is defined by the values of wl on all loops. But T is a symmetry
operator, therefore all Hamiltonian eigenstates are (at least) twofold degenerate.

5. Quadratic Hamiltonians

In the previous section, we transformed the spin model (4) to a quadratic fermionic
Hamiltonian of the general form

HðAÞ ¼ i

4

X
j;k

Ajkcjck; ð18Þ

where A is a real skew-symmetric matrix of size n = 2m. Let us briefly state some general
properties of such Hamiltonians and fix the terminology.

First, we comment on the normalization factor 1/4 in Eq. (18). It is chosen so that

½�iHðAÞ;�iHðBÞ� ¼ �iH ½A;B�ð Þ. ð19Þ
Thus, the Lie algebra of quadratic operators �iH(A) (acting on the 2m-dimensional Fock
space) is identified with soð2mÞ. Operators of the form e�iH(A) constitute the Lie group
Spin (2m). The center of this group consists of phase factors ±1 (e.g., epc1c2 ¼ �1). The
quotient group Spin (2m)/{+1, �1} = SO (2m) describes the action of e�iH(A) on Majorana
operators by conjugation

e�iHðAÞckeiHðAÞ ¼
X
j

Qjkcj; where Q ¼ eA ð20Þ
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(Q is a real orthogonal matrix with determinant 1).
Note that the sum in Eq. (20) corresponds to the multiplication of the row vector

(c1, . . . ,c2m) by the matrix Q. On the other hand, when we consider a linear combination
of Majorana operators

F ðxÞ ¼
X
j

xjcj; ð21Þ

we prefer to view x as a column vector. If the coefficients xj are real, we call F (x) (or x
itself) a Majorana mode.

To find the ground state of the Hamiltonian (18), one needs to reduce it to a canonical
form

H canonical ¼
i

2

Xm
k¼1

ekb
0
kb
00
k ¼

Xm
k¼1

ek aykak �
1

2


 �
; ek P 0; ð22Þ

where b0k, b
00
k are normal modes and ayk ¼ 1

2
ðb0k � ib00kÞ, ak ¼ 1

2
ðb0k þ ib00kÞ are the corresponding

creation and annihilation operators. The ground state of Hcanonical is characterized by the
condition ak|Wæ = 0 for all k. The reduction to the canonical form is achieved by the trans-
formation

ðb01; b001; . . . ; b0m; b00mÞ ¼ ðc1; c2; . . . ; c2m�1; c2mÞQ; Q 2 Oð2mÞ; ð23Þ
such that

A ¼ Q

0 e1

�e1 0

. .
.

0 em
�em 0

0BBBBBBB@

1CCCCCCCAQ
T. ð24Þ

The numbers ±ek constitute the spectrum of the Hermitian matrix iA, whereas odd (even)
columns of Q are equal to the real (respectively, imaginary) part of the eigenvectors. The
ground state of the Majorana system has energy

E ¼ �1
2

Xm
k¼1

ek ¼ �1
4
TrjiAj; ð25Þ

where the function | Æ | acts on the eigenvalues, the eigenvectors being fixed. (In fact, any
function of a real variable can be applied to Hermitian matrices.)

Note that different quadratic Hamiltonians may give rise to the same ground state. The
latter actually depends on

B ¼ �i sgnðiAÞ ¼ Q

0 1

�1 0

. .
.

0 1

�1 0

0BBBBBB@

1CCCCCCAQ
T. ð26Þ

(We assume that A is not degenerate.) The matrix B is real skew-symmetric and satisfies
B2 = �1. It determines the ground state through the condition
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X
j

P jkcjjWi ¼ 0 for all k; where Pjk ¼ 1
2
ðdjk � iBjkÞ. ð27Þ

Loosely speaking, B corresponds to a pairing1 between Majorana modes. The operators
b 0 = F (x 0) and b00 = F (x00) are paired if x00 = ±Bx 0.

The matrix P in Eq. (27) is called the spectral projector. It projects the 2m-dimen-
sional complex space C2m onto the m-dimensional subspace L spanned by the eigenvec-
tors of iA corresponding to negative eigenvalues. For any vector z 2 L the
corresponding operator F (z) annihilates the ground state, so we may call L the space
of annihilation operators. Note that if z,z 0 2 L then

P
jzjz

0
j ¼ 0. The choice of an m-di-

mensional subspace L 
 C2m satisfying this condition is equivalent to the choice of
matrix B.

The ground state of a quadratic Hamiltonian can also be characterized by correlation
functions. The second-order correlator is ÆW|cjck|Wæ = 2Pkj; higher-order correlators can
be found using Wick�s formula.

6. The spectrum of fermions and the phase diagram

We now study the system of Majorana fermions on the honeycomb lattice. It is
described by the quadratic Hamiltonian Hu = H (A), where Ajk ¼ 2J ajk ujk, ujk = ±1.
Although the Hamiltonian is parametrized by ujk, the corresponding gauge-invariant
state (or the state of the spin system) actually depends on the variables wp, see (15).

First, we remark that the global ground state energy does not depend on the signs of
the exchange constants Jx,Jy,Jz since changing the signs can be compensated by chang-
ing the corresponding variables ujk. We further notice that the ground state energy for
Hu does not depend on these signs even if u is fixed. Suppose, for instance, that we
replace Jz by �Jz. Such a change is equivalent to altering ujk for all z-links. But the
gauge-invariant quantities wp remain constant, so we may apply a gauge transformation
that returns ujk to their original values. The net effect is that the Majorana operators at
some sites are transformed as cj´ �cj. Specifically, the transformation acts on the set of
sites Xz that lie in the shaded area in the picture below. In terms of spins, this action is
induced by the unitary operator

ð28Þ

So, for the purpose of finding the ground state energy and the excitation spectrum, the
signs of exchange constants do not matter (but other physical quantities may depend on
them).

1 Note the nonstandard use of terminology: in our sense, electron half-modes in an insulator are paired as well
as in a superconductor. The only difference is that the insulating pairing commutes with the number of electrons
while the superconducting one does not. This distinction is irrelevant to our model because the Hamiltonian does
not preserve any integral charge, and the number of fermions is only conserved modulo 2.
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The most interesting choice of ujk is the one that minimizes the ground state energy. It
turns out that the energy minimum is achieved by the vortex-free field configuration, i.e.,
wp = 1 for all plaquettes p. This statement follows from a beautiful theorem proved by
Lieb [50]. (Not knowing about Lieb�s result, I did some numerical study suggesting the
same answer, see Appendix A.) Thus, we may assume that ujk = 1 for all links (j,k), where
j belongs to the even sublattice, and k belongs to the odd sublattice. This field configura-
tion (denoted by ustd

jk ) possesses a translational symmetry, therefore the fermionic spectrum
can be found analytically using the Fourier transform.

The general procedure is as follows. Let us represent the site index j as (s,k), where s
refers to a unit cell, and k to a position type inside the cell (we choose the unit cell as shown
in the figure accompanying Eq. (32)). The Hamiltonian becomes
H ¼ ði=4Þ

P
s;k;t;lAsk;tlcskctl, where Ask, tl actually depends on k, l, and t � s. Then we pass

to the momentum representation:

H ¼ 1
2

X
q;k;l

ieAklðqÞa�q;kaq;l; eAklðqÞ ¼
X
t

eiðq;rtÞA0k;tl; ð29Þ

aq;k ¼
1ffiffiffiffiffiffiffi
2N

p
X
s

e�iðq;rsÞcsk; ð30Þ

where N is the total number of the unit cells. (Here and on, operators in the momentum
representation are marked with tilde.) Note that ayq;k ¼ a�q;k and
ap;la

y
q;k þ ayq;kap;l ¼ dpqdlk. The spectrum e (q) is given by the eigenvalues of the matrix

ieAðqÞ. One may call it a ‘‘double spectrum’’ because of its redundancy: e (�q) = �e (�q).
The ‘‘single spectrum’’ can be obtained by taking only positive eigenvalues (if none of the
eigenvalues is zero).

We now apply this procedure to the concrete Hamiltonian

H vortex-free ¼
i

4

X
j;k

Ajkcjck; Ajk ¼ 2J ajk u
std
jk . ð31Þ

We choose a basis (n1,n2) of the translation group and obtain the following result:

ð32Þ

where n1 ¼ ð12 ;
ffiffi
3

p

2
Þ, n2 ¼ ð� 1

2
;
ffiffi
3

p

2
Þ in the standard xy-coordinates.

An important property of the spectrum is whether it is gapless, i.e., whether e (q) is zero
for some q. The equation Jxe

i(q, n1) + Jye
i(q, n2) + Jz = 0 has solutions if and only if |Jx|, |Jy|,

|Jz| satisfy the triangle inequalities

jJxj 6 jJy j þ jJzj; jJy j 6 jJxj þ jJ zj; jJ zj 6 jJxj þ jJy j. ð33Þ
If the inequalities are strict (‘‘<’’ instead of ‘‘6’’), there are exactly 2 solutions: q = ±q*.
The region defined by inequalities (33) is marked by B in Fig. 5; this phase is gapless.
The gapped phases, Ax, Ay, and Az, are algebraically distinct, though related to each other
by rotational symmetry. They differ in the way lattice translations act on anyonic states
(see Section 7.2). Therefore a continuous transition from one gapped phase to another

A. Kitaev / Annals of Physics 321 (2006) 2–111 19



is impossible, even if we introduce new terms in the Hamiltonian. On the other hand, the
eight copies of each phase (corresponding to different sign combinations of Jx,Jy,Jz) have
the same translational properties. It is unknown whether the eight copies of the gapless
phase are algebraically different.

We now consider the zeros of the spectrum that exist in the gapless phase. The momen-
tum q is defined modulo the reciprocal lattice, i.e., it belongs to a torus. We represent the
momentum space by the parallelogram spanned by (q1,q2)—the basis dual to (n1,n2). In
the symmetric case (Jx = Jy = Jz) the zeros of the spectrum are given by

ð34Þ

If |Jx| and |Jy| decrease while |Jz| remains constant, q* and �q* move toward each other
(within the parallelogram) until they fuse and disappear. This happens when
|Jx| + |Jy| = |Jz|. The points q* and �q* can also effectively fuse at opposite sides of the par-
allelogram. (Note that the equation q* = �q* has three nonzero solutions on the torus.)

At the points ±q* the spectrum has conic singularities (assuming that q* „ �q*)

ð35Þ

7. Properties of the gapped phases

In a gapped phase, spin correlations decay exponentially with distance, therefore spa-
tially separated quasiparticles cannot interact directly. That is, a small displacement or
another local action on one particle does not influence the other. However, the particles

Jx Jz= =0Jy Jz= =0

=1,Jx =1,Jy

=1,Jz Jx Jy= =0

gapless

gappedAz

Ax Ay

B

Fig. 5. Phase diagram of the model. The triangle is the section of the positive octant (Jx, Jy, Jz P 0) by the plane
Jx + Jy + Jz = 1. The diagrams for the other octants are similar.
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can interact topologically if they move around each other. This phenomenon is described
by braiding rules. (We refer to braids that are formed by particle worldlines in the three-
dimensional space-time.) In our case the particles are vortices and fermions. When a fer-
mion moves around a vortex, the overall quantum state is multiplied by �1. As mentioned
in the introduction, such particles (with braiding characterized simply by phase factors)
are called Abelian anyons.

The description of anyons begins with identifying superselection sectors, i.e., excitation
types defined up to local operations. (An ‘‘excitation’’ is assumed to be localized in space,
but it may have uncertain energy or be composed of several unbound particles.) The trivial
superselection sector is that of the vacuum; it also contains all excitations that can be
obtained from the vacuum by the action of local operators.

At first sight, each gapped phase in our model has three superselection sectors: a fermi-
on, a vortex, and the vacuum. However, we will see that there are actually two types of
vortices that live on different subsets of plaquettes. They have the same energy and other
physical characteristics, yet they belong to different superselection sectors: to transform
one type of vortex into the other one has to create or annihilate a fermion.

To understand the particle types and other algebraic properties of the gapped phases,
we will map our model to an already known one [24]. Let us focus on the phase Az, which
occurs when |Jx| + |Jy| < |Jz|. Since we are only interested in discrete characteristics of the
phase, we may set |Jx|, |Jy|� |Jz| and apply the perturbation theory.

7.1. Perturbation theory study

The Hamiltonian is H = H0 + V, where H0 is the main part and V is the perturbation:

H 0 ¼ �J z
X
z-links

rz
jr

z
k; V ¼ �Jx

X
x-links

rx
jr

x
k � Jy

X
y-links

ry
jr

y
k.

Let us assume that Jz > 0 (the opposite case is studied analogously).
We first set Jx = Jy = 0 and find the ground state. It is highly degenerate: each two spins

connected by a z-link are aligned (›› or flfl), but their common direction is not fixed. We
regard each such pair as an effective spin. The transition from physical spins to effective
spins is shown in Figs. 6A and B. The ground state energy is E0 = �NJz, where N is
the number of unit cells, i.e., half the number of spins.

z zp

s

xy

x y

n1n2

s

p y

z

z

y

m1

m2 s

p

A

B C

Fig. 6. Reduction of the model. Strong links in the original model (A) become effective spins (B), which are
associated with the links of a new lattice (C).
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Our goal is to find an effective Hamiltonian that would act in the space of effective
spins Leff . One way to solve the problem is to choose a basis in Leff and compute the matrix
elements

hajH ð1Þ
eff jbi ¼ hajV jbi; hajH ð2Þ

eff jbi ¼
X0

j

hajV jjihjjV jbi
E0 � Ej

; etc.

However, we will use the more general Green function formalism.
Let � : Leff ! L be the embedding that maps the effective Hilbert space onto the

ground subspace of H0. The map simply doubles each spin: |mæ = |mmæ, where m = › or
m = fl. The eigenvalues of the ‘‘effective Hamiltonian’’ (if one exists) are supposed to be
the energy levels of H that originate from ground states of H0. These levels can be unam-
biguously defined as poles of the Green function G (E) = �(E � H)�1, which is an operator
acting on Leff and depending on the parameter E. The Green function is conventionally
expressed as E � E0 � RðEÞð Þ�1, where R (E) is called self-energy, so the energy levels in
question are the values of E for which the operator E � E0 � R (E) is degenerate. Neglect-
ing the dependence of R (E) on E (for E � E0), we define the effective Hamiltonian as
Heff = E0 + R (E0).

The self-energy is computed by the standard method. Let G00ðEÞ ¼ ðE � H 0Þ�1
� �0

be the
unperturbed Green function for exited states of H0. The 0 sign indicates that the operator

ðE � H 0Þ�1
� �0

acts on excited states in the natural way but vanishes on ground states.

Then

RðEÞ ¼ � y V þ VG00ðEÞV þ VG00ðEÞVG00ðEÞV þ � � �
� �

� . ð36Þ

We set E = E0 and compute Heff = E0 + R in the zeroth order (H ð0Þ
eff ¼ E0), first order, sec-

ond order, and on, until we find a nonconstant term.2 The calculation follows:

1. H ð1Þ
eff ¼ � yV � ¼ 0.

2. H ð2Þ
eff ¼ � yVG00V � ¼ �

P
x-links

J2
x

4J z
�
P

y-links

J2
y

4Jz
¼ �N J2

xþJ2
y

4Jz
. Indeed, consider the action of

the second V in the expression � yVG00V � . Each term rx
jr

x
k or ry

jr
y
k flips two spins, increas-

ing the energy by 4Jz. The other V must flip them back.

3. H ð3Þ
eff ¼ � yVG00VG

0
0V � ¼ 0.

4. H ð4Þ
eff ¼ � yVG00VG

0
0VG

0
0V � ¼ const� J2

x J
2
y

16J3
z

P
pQp, where Qp = (Wp)eff is the effective spin

representation of the operator (6). The factor 1
16

is obtained by summing 24 terms, each
of which corresponds to flipping four spin pairs in a particular order

1

16
¼ 8 � 1

64
þ 8 � �1

64
þ 8 � 1

128
.

The above arguments can be easily adapted to the case Jz < 0. Now we have : |›æ ´
|›flæ, |flæ ´ |fl›æ. The result turns out to be the same, with Jz replaced by |Jz|.

Thus the effective Hamiltonian has the form

H eff ¼ �
J 2
xJ

2
y

16jJ zj3
X
p

Qp; Qp ¼ ry
leftðpÞr

y
rightðpÞr

z
upðpÞr

z
downðpÞ ð37Þ

2 Higher order terms may be less significant than the dependence of R(E) on E in the first nonconstant term.
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(the geometric arrangement of the spins corresponds to Fig. 6B).

7.2. Abelian anyons

Hamiltonian (37) already lends itself to direct analysis. However, let us first
reduce it to the more familiar form (3). We construct a new lattice K 0 so that
the effective spins lie on its links (see Fig. 6C). This is a sublattice of index 2 in
the original lattice K (here ‘‘lattice’’ means ‘‘translational group’’). The basis vectors
of K 0 are m1 = n1 � n2 and m2 = n1 + n2. The plaquettes of the effective spin lattice
become plaquettes and vertices of the new lattice, so the Hamiltonian can be written
as follows:

H eff ¼ �J eff

X
vertices

Qs þ
X

plaquettes

Qp

 !
;

where J eff ¼ J 2
xJ

2
y=ð16jJ zj3Þ.

Now, we apply the unitary transformation

U ¼
Y

horizontal links

X j

Y
vertical links

Y k ð38Þ

for suitably chosen spin rotations X and Y so that the Hamiltonian becomes

H 0
eff ¼ UH effU y ¼ �J eff

X
vertices

As þ
X

plaquettes

Bp

 !
; ð39Þ

where As and Bp are defined in Eq. (3). (Caution: transformation (38) breaks the transla-
tional symmetry of the original model.)

The last Hamiltonian has been studied in detail [24]. Its key properties are that all the
terms As, Bp commute, and that the ground state minimizes each term separately. Thus the
ground state satisfies these conditions:

AsjWi ¼ þjWi; BpjWi ¼ þjWi. ð40Þ
Excited states can be obtained by replacing the + sign to a � sign for a few vertices and
plaquettes. Those vertices and plaquettes are the locations of anyons. We call them ‘‘elec-
tric charges’’ and ‘‘magnetic vortices,’’ or e-particles and m-particles, respectively. When
an e-particle moves around a m-particle, the overall state of the system is multiplied by
�1. This property is stable with respect to small local perturbations of the Hamiltonian.
(A local operator is a sum of terms each of which acts on a small number of neighboring
spins.) It is also a robust property that the number of particles of each type is conserved
modulo 2.

The model has four superselection sectors: 1 (the vacuum), e, m, and e = e · m. The lat-
ter expression denotes a composite object consisting of an ‘‘electric charge’’ and a ‘‘mag-
netic vortex.’’ These are the fusion rules:

e� e ¼ m� m ¼ e� e ¼ 1;

e� m ¼ e; e� e ¼ m; m� e ¼ e.
ð41Þ

(In general, fusion rules must be supplemented by associativity relations, or 6j-symbols,
but they are trivial in our case.)
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Let us discuss the braiding rules. One special case has been mentioned: moving an
e-particle around an m-particle yields �1. This fact can be represented pictorially:

ð42Þ

The fist diagram shows the ‘‘top view’’ of the process. The diagrams in the second equation
correspond to the ‘‘front view’’: the ‘‘up’’ direction is time.

It is easy to show that e-particles are bosons with respect to themselves (though they
clearly do not behave like bosons with respect to m-particles); m-particles are also bosons.
However e-particles are fermions. To see this, consider two processes. In the first process
two ee-pairs are created, two of the four e-objects are exchanged by a 180	 counterclock-
wise rotation, then the pairs are annihilated. (Each e-object is represented by e and m, so
there are eight elementary particles involved.) In the second process the two pairs are anni-
hilated immediately. It does not matter how exactly we create and annihilate the pairs, but
we should do it the same way in both cases. For example, we may use this definition:

ð43Þ

Now, we compare the two processes. Each one effects the multiplication of the ground
state by a number, but the two numbers differ by �1:

ð44Þ

Indeed, in the left diagram the dashed line is linked with the solid line. This corresponds to
an e-particle going around an m particle, which yields the minus sign.

Braiding an e-particle with an e- or m-particle also gives �1. This completes the descrip-
tion of braiding rules.

It remains to interpret these properties in terms of vortices and fermions in the origi-
nal model. Tracing sites and plaquettes of the reduced model (3) back to the original
model, we conclude that e-particles and m-particles are vortices that live on alternating
rows of hexagons, see Fig. 7. Note that the two types of vortices have the same energy
and other physical properties, yet they cannot be transformed one to another without
creating or absorbing a fermion. A general view on this kind of phenomenon is given
in Appendix F.

The fermions in the original model belong to the superselection sector e, although they
are not composed of e and m. In the perturbation-theoretic limit, the energy of a fermion is
about 2|Jz| whereas an em-pair has energy 4Jeff � |Jz|. The fermions are stable due to the
conservation ofWp (and also due to the conservation of energy). However, they will decay
into e and m if we let the spins interact with a zero-temperature bath, i.e., another system
that can absorb the energy released in the decay.
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8. Phase B acquires a gap in the presence of magnetic field

8.1. The conic singularity and the time-reversal symmetry

Phase B (cf. Fig. 5) carries gapped vortices and gapless fermions. Note that vortices in
this phase do not have well-defined statistics, i.e., the effect of transporting one vortex
around the other depends on details of the process. Indeed, a pair of vortices separated
by distance L is strongly coupled to fermionic modes near the singularity of the spectrum,
|q � q*| � L�1. This coupling results in effective interaction between the vortices that is
proportional to e (q) � L�1 and oscillates with characteristic wavevector 2q*. When one
vortex moves around the other, the quantum state picks up a nonuniversal phase
u � L�1t, where t is the duration of the process. Since the vortex velocity v = L/t must
be small to ensure adiabaticity (or, at least, to prevent the emission of fermionic pairs),
the nonuniversal phase u is always large.

The conic singularity in the spectrum is, in fact, a robust feature that is related to time-
reversal symmetry. As discussed in the end of Section 4, this symmetry is not broken by
fixing the gauge sector (i.e., the variables wp) since the honeycomb lattice is bipartite.
Let us show that a small perturbation commuting with the time-reversal operator T cannot
open a spectral gap.

We may perform the perturbation theory expansion relative to the gauge sector of the
ground state (i.e., any term that changes the field configuration is taken into account in the
second and higher orders). This procedure yields an effective Hamiltonian which acts in
the fixed gauge sector and therefore can be represented in terms of cj and ûjk. The operator
T defined by (17) changes the sign of ûjk ¼ ib

ajk
j b

ajk
k , but this change can be compensated by

a gauge transformation. Thus we get a physically equivalent operator T 0 such that

T 0ûjkðT 0Þ�1 ¼ ûjk; T 0cjðT 0Þ�1 ¼
cj if j 2 even sublattice,

�cj if j 2 odd sublattice.

�
A T 0-invariant perturbation to the fermionic Hamiltonian (31) (corresponding to a fixed
gauge) cannot contain terms like icjck, where j and k belong to the same sublattice.
Thus the perturbed matrix eAðqÞ in Eq. (32) still has zeros on the diagonal, though
the exact form of the function f (q) may be different. However, a zero of a complex-val-
ued function in two real variables is a topological feature, therefore it survives the per-
turbation.

e e e e

e e e e

m m m

m m m

m m m

m m

Fig. 7. Weak breaking of the translational symmetry: e-vortices and m-vortices live on alternating rows of
hexagons.
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8.2. Derivation of an effective Hamiltonian

What if the perturbation does not respect the time-reversal symmetry? We will now
show that the simplest perturbation of this kind

V ¼ �
X
j

ðhxrx
j þ hyr

y
j þ hzrz

jÞ; ð45Þ

does open a spectral gap. (Physically, the vector h = (hx,hy,hz) is an external magnetic field
acting on all spins.) For simplicity, we will assume that Jx = Jy = Jz = J.

Let us use the perturbation theory to construct an effective Hamiltonian Heff acting on
the vortex-free sector. One can easily see that H ð1Þ

eff ¼ 0. Although the second-order term
H ð2Þ

eff does not vanish, it preserves the time-reversal symmetry. Therefore, we must consider
the third-order term, which can be written as follows:

H ð3Þ
eff ¼ P0VG

0
0ðE0ÞVG00ðE0ÞVP0;

where P0 is the projector onto the vortex-free sector, and G00 is the unperturbed Green
function with the vortex-free sector excluded. In principle, the Green function can be com-
puted for each gauge sector using the formula G0ðEÞ ¼ �i

R1
0

eiðE�H0þidÞtdt (where d is an
infinitely small number). For fixed values of the field variables ujk the unperturbed Ham-
iltonian may be represented in the form (18) and exponentiated implicitly by exponentiat-
ing the corresponding matrix A; the final result may be written as a normal-ordered
expansion up to the second order. However, it is a rather difficult calculation, so we will
use a qualitative argument instead.

Let us assume that all intermediate states involved in the calculation have energy
DE �j J j above the ground state. (Actually, DE � 0:27 j J j for the lowest energy state
with two adjacent vortices, see Appendix A.) Then G00ðE0Þ can be replaced by
�ð1�P0Þ= j J j. The effective Hamiltonian becomes

H ð3Þ
eff � �

hxhyhz
J 2

X
j;k;l

rx
jr

y
kr

z
l; ð46Þ

where the summation takes place over spin triples arranged as follows:

ð47Þ
Configuration (a) corresponds to the term rx

jr
y
kr

z
l ¼ �iDlûjlûklcjck (where Dl may be omit-

ted as we work in the physical subspace), or simply �icj ck in the standard gauge. Config-
uration (b) corresponds to a four-fermion term and therefore does not directly influence
the spectrum. Thus, we arrive at this effective Hamiltonian:

ð48Þ
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Here (‹) is just another notation for ustd, i.e., the matrix whose entry (‹)jk is equal to 1 if
there is a solid arrow from k to j in the figure, �1 if an arrow goes from j to k, and 0 other-
wise. (<- - -) is defined similarly.

8.3. The spectrum and the Chern number

The fermionic spectrum e (q) of the Hamiltonian (48) is given by the eigenvalues of a
modified matrix ieAðqÞ (cf. Eq. (32)):

ieAðqÞ ¼ DðqÞ if ðqÞ
�if ðqÞ� �DðqÞ


 �
; eðqÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jf ðqÞj2 þ DðqÞ2

q
; ð49Þ

where f ðqÞ ¼ 2Jðeiðq;n1Þ þ eiðq;n2Þ þ 1Þ and D (q)=4j (sin(q,n1) + sin(q,�n2) + sin(q,n2 � n1)).
Actually, the exact form of the function D (q) does not matter; the important parameter is

D ¼ Dðq�Þ ¼ �Dð�q�Þ ¼ 6
ffiffiffi
3

p
j � hxhyhz

J 2
ð50Þ

which determines the energy gap. The conic singularities are resolved as follows:

ð51Þ

Remark 8.1. The magnetic field also gives nontrivial dispersion to vortices. Indeed, the
operators Wp are no longer conserved, therefore a vortex can hop to an adjacent hexagon.
Thus the vortex energy depends on the momentum. This effect is linear in h, but it is not so
important as the change in the fermionic spectrum.

Let us also find the fermionic spectral projector, which determines the ground state. The
global spectral projector P is defined by Eq. (27); we now consider its Fourier component:

eP ðqÞ ¼ 1
2
ð1� sgnðieAðqÞÞÞ ¼ 1

2
ð1þ mxðqÞrx þ myðqÞry þ mzðqÞrzÞ; ð52Þ

mðqÞ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdqxÞ2þðdqy Þ2þD2=ð3J2Þ
p �dqy ;�dqx;� Dffiffi

3
p

J

� �
if q � q�;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdqxÞ2þðdqy Þ2þD2=ð3J2Þ

p �dqy ; dqx;
Dffiffi
3

p
J

� �
if q � �q�.

8><>: ð53Þ

The function m maps the torus to the unit sphere. If D > 0, then this map has degree 1.
Indeed, the neighborhood of q* is mapped onto the lower hemisphere, the neighborhood
of �q* is mapped onto the upper hemisphere; in both cases the orientation is preserved.
(The rest of the torus is mapped onto the equator.) For negative D the map has degree �1.

An important topological quantity characterizing a two-dimensional system of nonin-
teracting (or weakly interacting) fermions with an energy gap is the spectral Chern number.
It plays a central role in the theory of the integer quantum Hall effect [43,44,1]. In our
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model there is no analogue of Hall conductivity (because the number of fermions is not
conserved), but the Chern number determines the edge mode chirality and anyonic prop-
erties of vortices (cf. [48]).

The spectral Chern number is defined as follows. For each value of the momentum q we
consider the space eLðqÞ of annihilation operators, i.e., fermionic modes with negative ener-
gy; this is the subspace the matrix eP ðqÞ projects onto. Thus we obtain a complex vector
bundle over the momentum space. (In our case eLðqÞ is a one-dimensional subspace of
C2, so the bundle is one-dimensional.) The first Chern number of this bundle is denoted
by m and can be expressed as follows (cf. [44]):

m ¼ 1

2pi

Z
TrðeP deP ^ deP Þ ¼ 1

2pi

Z
Tr eP oeP

oqx

oeP
oqy

� oeP
oqy

oeP
oqx

 ! !
dqx dqy . ð54Þ

The Chern number is always an integer. If the spectral projector eP ðqÞ is given by Eqs. (52)
and (53), then

m ¼ 1

4p

Z
om

oqx
� om

oqy
;m

 !
dqxdqy ¼ sgnD ¼ �1. ð55Þ

We will use the notation Bm (where m = ±1) to designate phase B in the magnetic field. In
the Abelian phases Ax, Ay, Az the Chern number is zero.

9. Edge modes and thermal transport

Remarkably, any system with nonzero Chern number possesses gapless edge modes.
Such modes were first discovered in the integer quantum Hall effect [51]; they are chiral,
i.e., propagate only in one direction (see Fig. 8). In fact, left-moving and right-moving
modes may coexist, but the following relation holds [52]:

medge ¼def
# of left-movers�# of right-moversð Þ ¼ m. ð56Þ

In the absence of special symmetry, counterpropagating modes usually cancel each other,
so the surviving modes have the same chirality. A calculation of the edge spectrum in phas-
es Bm (for some specific boundary conditions) and a simple proof of Eq. (56) are given in
Appendix B. More rigorous and general results, which even apply to disordered systems,
can be found in [53,54].

A B

Fig. 8. Chiral edge modes: left-moving (A) and right-moving (B).
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It is important to note that the analogy to the quantum Hall effect is not exact. In our
model (like in two-dimensional superfluid and superconducting systems [55,48]) edge
modes are described by real fermions, as contrasted to complex fermions in the quantum
Hall effect. Therefore, each quantum Hall mode is equivalent to two modes in our system.

Chiral edge modes can carry energy, leading to potentially measurable thermal trans-
port. (The temperature T is assumed to be much smaller than the energy gap in the bulk,
so that the effect of bulk excitations is negligible.) For quantum Hall systems, this phe-
nomenon was discussed in [56,57]. The energy current along the edge in the left (counter-
clockwise) direction is given by the following formula:

I ¼ p
12

c�T 2; ð57Þ

where c� is some real number. (The factor p/12 is introduced to make a connection to con-
formal field theory, see below.) It is remarkable that c� does not depend on particular con-
ditions at the edge, but rather on the bulk state. Indeed, the energy current is conserved,
therefore it remains constant even if some conditions change along the edge. The effect is
invariant with respect to time rescaling. Since the energy current has dimension (time)�2, it
must be proportional to T2. But the value of the dimensionless proportionality coefficient
cannot be found using such simple arguments.

There are two standard ways to calculate the coefficient c�. They both rely on certain
assumptions but can be applied to our model, yielding this result:

c� ¼
m
2

. ð58Þ

The first argument [58] (adapted to real fermions) assumes translational invariance and the
absence of interaction. Each edge mode is described by a free fermion with an energy spec-
trum e (q) such that e (�q) = �e (q) and e (q) fi ±1 as qfi ±1. The signs in the last two
expressions agree if the mode propagates in the direction of positive q (for simplicity we
may assume that e (q) > 0 when q is positive and e (q) < 0 when q is negative). Thus the
Hamiltonian has the form

H ¼ 1

2

X
q

eðqÞa�qaq ¼
X

q:eðqÞ>0

eðqÞa�qaq.

If e (q) > 0, then aq is an annihilation operator and a�q ¼ ayq is the corresponding creation
operator. The mode propagates with group velocity v (q) = de/dq, and the occupation
number n (q) is given by the Fermi distribution. The energy flow due to each mode prop-
agating in the positive direction can be calculated as follows:

I1 ¼
Z

eðqÞ>0

nðqÞeðqÞvðqÞ dq
2p
¼
Z

eðqÞ>0

eðqÞ
1þ eeðqÞ=T

de
dq

dq
2p
¼ 1

2p

Z 1

0

ede
1þ ee=T

¼ p
24

T 2.

Each mode propagating in the opposite direction contributes �I1, therefore I ¼ p
24

mT 2.
The second derivation [57] is based on the assumption that the edge modes can be

described by a conformal field theory (CFT). In this case,

c� ¼ c� �c; ð59Þ
where c and �c are the Virasoro central charges. Thus, c� is called the chiral central charge.
Left-moving fermions have ðc;�cÞ ¼ 1

2
; 0

� �
whereas right-moving fermions have

ðc;�cÞ ¼ 0; 1
2

� �
, which implies Eq. (58). More generally, c and �c are some rational numbers,
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and so is c�. The chiral central charge parametrizes a two-dimensional gravitational
anomaly [59] of the corresponding CFT; it can also be identified with the coefficient in
front of the gravitational Chern–Simons action in a three-dimensional theory [5]. Volovik
[60] suggested that for 3He-A films, the role of gravitational field is played by the order
parameter interacting with fermions. However, it is not obvious how to define a ‘‘gravita-
tional field’’ for lattice models.

It remains a bit mysterious how the chiral central charge is related to the ground state
and spin correlators in the bulk. This question is partially answered in Appendix D, but
the obtained expression for c� is not easy to use, nor can we demonstrate that c� is
rational. Note that there is a beautiful relation between the chiral central charge and alge-
braic properties of anyons [7,61], which does imply the rationality of c�. We discuss that
relation in Appendix E (see Eq. (172)), though it is unclear how to deduce it only consid-
ering the bulk. The only known argument is to assume that edge modes are described by a
CFT, then one can use modular invariance [62]. In fact, the modular invariance alone
would suffice. In Appendix D, we try to derive it from general principles, but again,
encounter a problem.

10. Non-Abelian anyons

We continue the study of phase B in the magnetic field. Now that all bulk excitations
are gapped, their braiding rules must be well-defined. Of course, this is only true if the par-
ticles are separated by distances that are much larger than the correlation length associated
with the spectrum (51). The correlation length may be defined as follows: n = |Im q|�1,
where q is a complex solution to the equation e (q) = 0. Thus

n ¼
ffiffiffi
3

p
J

D

�����
����� � J 3

hxhyhz

���� ����. ð60Þ

The braiding rules for vortices depend on the spectral Chern number m. Although m is actu-
ally equal to +1 or �1 (depending on the direction of the magnetic field), one may formal-
ly consider a model with an arbitrary gapped fermionic spectrum, in which case m may take
any integer value. We will see that vortices behave as non-Abelian anyons for any odd val-
ue of m, but their exact statistics depends on m mod 16.

The properties of the anyons are summarized in Table 1. The notation and underlying
concepts are explained below; see also Appendix E. Let us first show a quick way of deriv-
ing those properties from conformal filed theory (CFT) in the most important case,
m = ±1. (For a general reference on CFT, see [63].) Then we will give an alternative der-
ivation, which uses only rudimentary CFT and refers to the operational meaning of braid-
ing and fusion.

10.1. Bulk-edge correspondence

The properties listed in Table 1 form the same type of algebraic structure that was
described by Moore and Seiberg [4] in the CFT context. However, the actual connection
to CFT is indirect: anyons are related to edge modes, which in turn can be described by a
field theory in 1 + 1 dimensions. More concretely, the space-time may be represented as a
cylinder (see Fig. 9). It is convenient to use the imaginary time formalism (t = �is, where
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s 2 R), so that we have a two-dimensional Euclidean field theory on the side surface of the
cylinder. The surface may be parametrized by a complex variable z = s + ix, where x is the
spatial coordinate.

The two-dimensional field theory describes the physics of the edge, which is generally
richer than that of the bulk. The theory possesses both local and nonlocal fields. The inser-
tion of a nonlocal field /(s + ix) corresponds to an anyonic particle emerging on the edge
or sinking into the bulk at point (s, x). The correlation function of several nonlocal fields
has nontrivial monodromy which coincides with the anyonic braiding. Specifically, the
counterclockwise exchange of anyons in the bulk is equivalent to moving the fields coun-
terclockwise on surface (if we look at the cylinder from outside). Moreover, the value of
the correlator is not a number, but rather an operator transforming the initial anyonic
state (on the bottom of the cylinder) into the final one (on the top of the cylinder). For
non-Abelian anyons, the space of such operators is multidimensional.

The anyon-CFT correspondence has been successfully used in the study of quantum
Hall systems [14,15,31]. The correspondence is well-understood if all boundary fields are
either holomorphic or antiholomorphic, which is the case for our model. We have seen
that the edge carries a left-moving (holomorphic) fermion for m = 1, or a right-moving
(antiholomorphic) fermion for m = �1. A vortex emerging on the surface corresponds to
a twist field r. The correlation functions for such fields are given by holomorphic (respec-
tively antiholomorphic) conformal blocks for the Ising model.

A partial bulk-edge correspondence can be established at a more elementary level. Let
m = 1. A particularly important parameter of the edge theory is the conformal weight of
the twist field, ðhr; �hrÞ ¼ 1

16
; 0

� �
. The related bulk parameter is the topological spin of a

vortex, hr; it corresponds to the counterclockwise rotation by angle 2p. Since the rotations
in the bulk and on the surface must agree, the following equation holds for an arbitrary
field a:

ha ¼ e2piðha��haÞ. ð61Þ
Thus hr = eip/8. Similarly, if m = �1, then hr = e�ip/8. In the general case, there are
|m| = 2n + 1 species of the free fermion; the twist field also comes with some multiplicity.3

3 Specifically, there are 2n copies of the twist field, which are transformed according to the fundamental
representation of Spin (2n + 1).

τ

x

A B

Fig. 9. The space-time coordinates (A) and particle worldlines (B).
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One may argue that the conformal weight of the twist field is proportional to the number
of fermionic species. Hence

hr ¼ eipm=8. ð62Þ

10.2. Unpaired Majorana modes

We now begin a rather lengthy derivation of the properties listed in Table 1, dealing
only with anyons in the bulk. First, we give a crude description of vortices by Majorana
operators and find the fusion rules. The braiding rules and so-called associativity relations
(also known as crossing symmetry, or 6j-symbols) are determined up to several free
parameters; we discuss what combinations of these parameters have invariant meaning.
Solving the so-called pentagon and hexagon equations, we reduce the continuum of pos-
sibilities down to eight consistent theories. The right theory is selected using Eq. (62).

The starting point is this: if m is odd, then each vortex carries an unpaired Majorana
mode. A sufficiently rigorous proof of this statement can be found in Appendix C. Here,
we give a rough explanation based on the quantum Hall analogy.

It is known that the quantized Hall conductivity for noninteracting electrons (in units of
e2/h) is equal to the Chern number of the projector onto the occupied electron states [44].
The essential difference from our case is that electrons are ordinary fermions, not Majorana
fermions. However, we can concoct an analogue of an electron system from two copies of
the Majorana system, which may be pictured as two layers. The Hamiltonian is as follows:

H electron ¼
i

4

X
j;k

Ajkðc0jc0k þ c00j c
00
kÞ ¼

X
j;k

iAjka
y
jak; where aj ¼ 1

2
ðc0j þ ic00j Þ. ð63Þ

(We forget about the original spin model for the purpose of this construction.) Note that
the Hamiltonian possesses a global O (2) symmetry that consists of orthogonal linear
transformations c0j 7!ac0j þ bc00j ; c

00
j 7!cc0j þ dc00j . The rotational subgroup

U (1) @ SO (2) 
 O (2) corresponds to the conservation of electric charge, whereas reflec-
tions (i.e., transformations with determinant �1) change the sign of the charge.

Assuming that the Fermi energy is zero, the projector onto the occupied electron states
coincides with the spectral projector for the Majorana system. Thus, the Hall conductivity
of the electron system is m.

A vortex piercing both Majorana layers corresponds to half-integer magnetic flux. Such
a vortex carries excessive charge q = m/2 + n, where n is an arbitrary integer. In particular,
if m is odd, a state with q = 1/2 exist. By an O (2) reflection, it is related to a q = �1/2 state
with the same energy. The doublet of states with unit charge difference may be attributed
to a zero-energy electron mode that can be empty or occupied. This mode can be repre-
sented by two Majorana modes. Since the layers are independent, we conclude that each
layer contains one zero-energy Majorana mode.

It has been previously shown that zero-energy Majorana modes exist in some exotic
one-dimensional systems [64] as well as vortices in two-dimensional p-wave superconduc-
tors [48,65]. A pair of Majorana modes at two vortices constitutes a full fermionic mode
with a two-dimensional Fock space. The quantum state of such a pair is virtually inacces-
sible to measurements or perturbations as long as the vortices stay far apart from each
other. A system of 2n vortices possesses a protected space of dimensionality 2n (or 2n�1,
if we require that the whole system have even fermionic parity).
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10.3. Fusion and braiding rules

In our model a vortex carrying an unpaired Majorana mode is just one of the superse-
lection sectors, denoted by r. The other sectors are 1 (the vacuum) and e (a fermion). If
two vortices fuse, they either annihilate completely or leave a fermion behind:
r · r = 1 + e. The actual fusion outcome depends on the initial quantum state. Hence
the protected space of the vortex pair has two basis vectors: jwrr

1 i and jwrr
e i. (The upper

indices indicate the particle types before the fusion whereas the subscript indicates the
resulting particle.) The complete set of fusion rules is as follows:

e� e ¼ 1; e� r ¼ r; r� r ¼ 1þ e; ð64Þ

plus trivial rules of the form 1 · x = x. Read backwards, these relations are understood
as splitting rules: for example, an e-particle can split into two r-particles. However, these
rules do not capture more subtle aspects of fusion and splitting, which will be discussed
later.

Braiding rules for Majorana half-vortices in a spin-triplet superconductor have been
derived by Ivanov [65]. Here, we follow the main idea of Ivanov�s work. We should, however,
keep in mind one important difference between his setting and our model. A spin-triplet
superconductor has a locally measurable vector order parameter, which contributes to vor-
tex–vortex interaction and can interact with impurities. One vortex making a full turn around
another may pick up a nonuniversal phase, hence the non-Abelian statistics is defined up to
arbitrary phase factors. That is not the case for our model (or for spinless superconductors
[48]), so additional arguments are required to find the Abelian part of the vortex statistics.

Once again, we use the fact that each vortex p carries an unpaired Majorana mode Cp,
which is a linear combination of the operators cj on neighboring sites. The operators cj do
not commute with gauge transformations and therefore should be used with care. The
gauge can be fixed in a neighborhood of each vortex, so constructing the linear combina-
tion is not a problem. However, the overall sign of Cp does not have invariant meaning.
This ambiguity is avoided if we consider fermionic path operators (16), which are
gauge-invariant. A suitable linear combination of elementary paths constitutes a path that
begins or ends at a vortex.

Let us choose some reference path lp connecting each vortex p = 1,2, . . . to a reference
point 0. We will assume that the vortices lie on the horizontal axis whereas the reference
point 0 is located in the lower half-plane. Fixing the gauge along the paths, we may write

W ðlpÞ ¼ Cpc0. ð65Þ
Let us exchange vortices 1 and 2 by moving them counterclockwise. The exchange process
is described by a unitary operator R acting on the physical Hilbert space. It also acts on
operators by conjugation: X´RXR�. Clearly,

ð66Þ
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(We have used the fact that W ðl02Þ ¼ �W ðl1Þ. Indeed, the paths l02 and l1 differ by a loop
enclosing a vortex; transporting a fermion around the vortex gives rise to the minus sign.)
Hence

RC1Ry ¼ C2;

RC2Ry ¼ �C1;
R ¼ h exp � p

4
C1C2

� �
; ð67Þ

where h is a phase factor. (We will see that h is actually the topological spin of a vortex; for
now it is just an unknown parameter).

At first sight, it is not clear whether the number h has an invariant meaning. Indeed, the
operator that moves a vortex along a given path may be defined up to an arbitrary phase.
However, the ambiguity can be avoided by a careful definition of the particle exchange
process. The following argument is completely general; it is not based on adiabaticity or
translational invariance.

Let us consider a vortex path operator Wr (l) that is composed of elementary steps, i.e.,
displacements of the vortex from hexagon to hexagon.4 Each elementary displacement is
defined up to a phase, but the path operator satisfies these equations:

W rð�lÞ ¼ W rðlÞy; W rðl1l2Þ ¼ W rðl2ÞW rðl1Þ. ð68Þ
Here �l denotes the reverse path, whereas l1l2 is the composite path (the vortex goes along l1
and then along l2). Remarkably, two vortices can be exchanged in such a way that the arbi-
trary phases cancel each other, see Fig. 10. The vortices move along the indicated lines;
each line segment is passed by a vortex in both directions.

As mentioned above, the vortex pair has two states corresponding to the possible fusion
outcomes, jwrr

1 i and jwrr
e i. They should be identified with the eigenvectors of C1C2, but we

do not know which is which. We can only write:

C1C2jwrr
1 i ¼ iajwrr

1 i; C1C2jwrr
e i ¼ �iajwrr

e i; ð69Þ
where a = ±1 is unknown. Thus the braiding operator R acts as follows:

Rjwrr
1 i ¼ Rrr

1 jw
rr
1 i;

Rjwrr
e i ¼ Rrr

e jw
rr
e i;

where
Rrr

1 ¼ heiap=4;

Rrr
e ¼ he�iap=4.

ð70Þ

Remark 10.1. One may wonder why formula (67) contains the minus sign in front of C1,
but not in front of C2. This is, in fact, a consequence of the convention that the reference
point 0 lies in the lower half-plane. If we move it to the upper half-plane, the signs will

Fig. 10. A realization of the particle exchange in which all local contributions cancel, revealing the topological
effect in a pure form.

4 The displacement may be realized as the action of ra on one of the two spins at the boundary between the
hexagons (which changes the field configuration) followed by an operator of the form exp

P
F kmckcmð Þ (which

adjusts the fermionic subsystem).
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change, a will turn into �a, and the signs in front of a in Eq. (70) will change too. The
numbers Rrr

1 , Rrr
e and h are invariant though.

10.4. Associativity relations

The fusion rules only indicate what fusion and splitting events are possible. Nontrivial
relations arise if we consider a sequence of such events.

10.4.1. Relations based on the anticommutativity of fermionic operators

Let us consider the splitting of a r-particle into e, r, and e. This can be done in two dif-
ferent ways, depending on the order the two e-particles are created. Let us suppose that the
r-particle is located at point 2 in the middle; the e-particles will appear at points 1 and 3 on
the left and on the right, respectively. The particles (or their future locations) are connect-
ed by the paths l12 and l23.

The r-particle is described by the associated Majorana mode C2. The e-particles can
be created from the vacuum by operators ay1 and ay3. However, these operators are not
physical by themselves. To actually split the first e-particle off the r-particle, one needs
to apply a fermionic path operator W(l12), which equals ay1C2 in a suitable gauge. The
second e-particle is created by the operator W ðl23Þ ¼ ay3C2. Since
W (l12)W (l23) = �W (l23)W (l12), we obtain the following associativity relation between
the two splitting processes:

ð71Þ

Similarly, we can consider the splitting of one e-particle into three. For this, we use two
conventions:5 (i) moving an e-particle from place j to place k is described by the operator
aykaj; (ii) creating a fermionic pair from the vacuum is described by ayja

y
k, where j is located

left of k. Thus we get:

ð72Þ

because ðay1a
y
2Þða

y
3a2Þ ¼ ðay2a

y
3Þða

y
1a2Þ. (In these graphs the ‘‘up’’ direction is time. The inter-

mediate state of the middle particle is shown in all cases, but lines corresponding to label 1,
i.e., the vacuum superselection sector, are suppressed.)

10.4.2. Some generalities

The analysis of other splitting processes (e.g., r fi rrr) is more complicated. Ideally,
we would use the vortex path operator, but its exact form is unknown. Therefore, we have
to rely on more abstract arguments. Before we proceed, let us clarify some points pertain-
ing to anyons in general.

5 Although these conventions are somewhat arbitrary, the result is invariant (see Section 10.4.2).
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1. Speaking about anyons, we are interested in particle types (i.e., superselection sectors)
and topology of the particle worldlines (braids, trees, etc.). An actual particle is also char-
acterized by position and local degrees of freedom; for example, an e-particle may be ‘‘el-
ementary’’ or consist of two adjacent vortices. We generally ignore such details though.

2. In the study of splitting and fusion, we consider particles located on the horizontal axis.
In this case, we only care about the order of the particles on the line, but not about their
positions. All configurations with the same particle types and order can be identified
with each other. Unlike in the two-dimensional case, cycling through several configura-
tions has trivial effect on the quantum state.6

3. ‘‘Quantum state of a particle’’ is a rather subtle notion. It may be understood as a pro-
jector that enforces certain spin correlations in some neighborhood of the supposed par-
ticle location. (The neighborhood radius must be much larger than the correlation
length). Such an object has no ‘‘overall phase.’’ Superpositions of states from different
superselection sectors cannot be constructed either.

4. In spite of that, the state jwrr
1 i has a well-defined phase if we consider it relative to the vac-

uum. A similar argument holds for an arbitrary state jwxy
z i, which describes particles x and

y with total ‘‘anyonic charge’’ z. For a general anyonic system, the xy-pair may have sev-
eral distinct states that belongs to the same superselection sector z; in other words, there
may be several ways to split z into x and y. Such states form a finite-dimensional Hilbert
space V xy

z , which is called fusion space.7 In our model, all such spaces have dimension one
or zero. For example, jwrr

1 i is a unit vector in the one-dimensional space V rr
1 .

For a more rigorous definition of the space V xy
z , consider the splitting of z into x and y

by an operator L that acts on the spins in some fixed finite region X. (We call such oper-
ators local.) Let us also fix a quantum state |Wzæ that has a z-particle at a given place and
no other particles in X or within the correlation length from
X. Finally, we consider the set of local operators L for which the state L|Wzæ has an x-par-
ticle and an y-particle at the required places. By definition, these are all possible states of
the xy-pair that can be obtained from z. On the other hand, such states are in one-to-one
correspondence with equivalence classes of operators L: we say that L and L 0 are equivalent
if L|Wzæ = L 0|Wzæ. For local operators, the equivalence relation does not depend on the
choice of |Wzæ. Thus we arrive at the following definition:

V xy
z is the set of equivalence classes of local operators that split z into x and y.

Each vertex in a splitting graph (as in Eqs. (71) and (72) above) designates an equiva-

lence class of local operators. For example, ¼ jwer
r i 2 V er

r . One may choose an arbitrary

basis in the space V xy
z . In our case, this amounts to fixing the phase of the vectors jwrr

1 i,
jwrr

e i, jw
er
r i, jw

re
r i, and jwee

1 i. Different bases are related by a transformation of the form

6 This claim can be justified as follows. To move a particle z from one place to another, we apply a path
operatorWz (r, r

0), which acts on the spins in some neighborhood of the interval [r,r 0]. These operators are defined
in such a way that it does not matter whether the particle is moved at once or in several steps (cf. Eq. (68)). When
several particles are present, we do not let them pass through each other, which imposes a certain restriction on
the sequence of operators applied. All such sequences are actually equivalent since the path operators for
nonoverlapping intervals commute.

7 Technically, it should be called ‘‘splitting space,’’ whereas the fusion space is its dual, V z
xy ¼ ðV xy

z Þ
�.
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jwxy
z i

0 ¼ uxyz jw
xy
z i; juxyz j ¼ 1; ð73Þ

which generally affects relations like (71) and (72). However, these particular relations are
invariant since they have the same set of basis vectors on both sides: jwer

r i, jw
re
r i in Eq. (71)

and jwee
1 i in Eq. (72).

10.4.3. More relations

Let us write some other possible associativity relations in a general form:

ð74Þ

ð75Þ

ð76Þ

ð77Þ

The numbers b1, b2, c1, c2, d, s, l1, and l2 are equal to 1 in magnitude. These and similar
coefficients are called structural parameters.

Using the transformation (73), we can eliminate some of the parameters, e.g., b1, b2,
and c1. Indeed, they are transformed as follows:

b01 ¼
uer

r u
rr
e

urr
1

b1; b02 ¼
urr

1

ure
r u

rr
e

b2; c01 ¼
ðure

r Þ
2

uee
1

c1. ð78Þ

We require that b01 ¼ b02 ¼ c01 ¼ 1 and solve for uxyz . Note that the solution is unique up to
trivial variations not affecting the structural parameters, namely

uxyz 7!fxfyf
�1
z uxyz . ð79Þ

Finally, let us consider the splitting of one r-particle into three r-particles. The space V rrr
r

is two-dimensional. A basis in this space can be chosen in two ways:

ð80Þ

Of course, one basis can be expressed in terms of the other:

jn1i ¼ a11jg1i þ ae1jgei; jnei ¼ a1ejg1i þ aeejgei; where axy ¼ hgxjnyi. ð81Þ

The coefficients axy and the other structural parameters will be found later. At this point,
we can only tell that the matrix (axy) is unitary.
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To illustrate the physical meaning of the structural parameters, let us return to the
gedanken experiment considered in the introduction. Suppose we create two pairs of r-
particles from the vacuum. Then we take one particle from each pair and fuse them. With
probability |a11|

2 they will annihilate, and with probability |ae1|
2 they will fuse into an e-

particle. (We will see that |a11|
2 = |ae1|

2 = 1/2.)

10.5. Algebraic consistency

All the previous arguments were based on the result that vortices carry unpaired Major-
ana modes. Not surprisingly, this property alone is not sufficient to fully characterize the
fusion and braiding of anyons. We now invoke some additional principles. The first one is
consistency: successive fusion and braiding events must commute with each other in cer-
tain cases. A more careful statement of this requirement amounts to the formulation of an
algebraic theory of anyons.

Anyons may be described in the framework of topological quantum field theory
(TQFT), which originates from Witten�s paper on quantum Chern-Simons fields [5]
and the work of Moore and Seiberg on conformal field theory [4]. Important mathe-
matical studies in this area were done by Reshetikhin and Turaev [66] and Walker
[67]. For our purposes, it suffices to use a construction called unitary modular category
(UMC), which constitutes the algebraic core of TQFT [68]. This construction will be
outlined in Appendix E. Actually, the full theory is not necessary to understand the cal-
culations below. On the contrary, one may use these calculations to motivate some of
the UMC axioms.

One of the axioms is known as the pentagon equation, see Fig. 17A. It deals with the five
ways to split a particle u into x, y, z, w, or five representation of the space V xyzw

u . The arrows
in the figure may be regarded as equality signs, therefore the diagram must commute. For
example, consider the splitting process r fi errr via intermediate states q = 1 and p = r.
The upper path across the diagram looks like this:

whereas the lower path is as follows:

Thus l1c2a1e = a11, l1c2aee = �ae1. One can also start with the splitting graph that has
intermediate state e instead of 1; this gives another pair of relations between the structural
parameters.

Overall, there are 23 spaces V xyzw
u with nontrivial upper indices. Thus we obtain 23 pen-

tagon equations, five of which are satisfied automatically. The remaining 18 equations
imply the following relations between the structural parameters:
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V errr
r :

l1c2a1e ¼ a11;

l1c2aee ¼ �ae1;

b1a11 ¼ a1e;

b1ae1 ¼ �aee;

8>>><>>>: V rrre
r :

l2c1ae1 ¼ a11;

b2a11 ¼ ae1;

l2c1aee ¼ �a1e;

b2a1e ¼ �aee;

8>>><>>>: ð82Þ

V rerr
r :

sb1ae1 ¼ a11;

sl1a11 ¼ c1ae1;

db1aee ¼ a1e;

dl1a1e ¼ c1aee;

8>>><>>>: V rrer
r :

sl2a11 ¼ c2a1e;

dl2ae1 ¼ c2aee;

sb2a1e ¼ a11;

db2aee ¼ ae1;

8>>><>>>: ð83Þ

V rrrr
1 :

a2
11 þ sa1eae1 ¼ 1;

ae1a11 þ saeeae1 ¼ 0;

a11a1e þ sa1eaee ¼ 0;

ae1a1e þ sa2
ee ¼ 1;

8>>><>>>: V rrrr
e :

a2
11 þ da1eae1 ¼ 0;

ae1a11 þ daeeae1 ¼ b2;

a11a1e þ da1eaee ¼ b1;

ae1a1e þ da2
ee ¼ 0;

8>>><>>>: ð84Þ

V reer
1 : s2 ¼ c1c2;

V reer
e : d2 ¼ c1c2;

V erer
1 ; V erer

e ; V rere
1 ; V rere

e : d ¼ �s;

V eerr
1 ; V eerr

e : l1b1c2 ¼ 1;

V rree
1 ; V rree

e : l2b2c1 ¼ 1;

V erre
1 ; V erre

e : l1l2 ¼ b1b2.

ð85Þ

Eqs. (82)–(85) have only two solutions satisfying the convention that b1 = b2 = c1 = 1:

b1 ¼ b2 ¼ c1 ¼ c2 ¼ l1 ¼ l2 ¼ s ¼ 1; d ¼ �1;

a11 a1e

ae1 aee


 �
¼ ,ffiffiffi

2
p

1 1

1 �1


 �
; where , ¼ �1.

ð86Þ

Remark 10.2. The number of independent equations can be reduced by using a symmetry
between upper and lower indices: V xy

z ffi V �zx
�y , where �z denotes the antiparticle for z (in our

case, �e ¼ e, �r ¼ r). However this symmetry generally involves nontrivial phase factors, so
we find the brute-force calculation a safer approach.

Let us now examine consistency between fusion and braiding. Braiding is fully charac-
terized by the action of the counterclockwise rotation on fusion spaces: bRxy

z : V xy
z ! V yx

z .

Since in our case the spaces V xy
z and V yx

z are one-dimensional, the linear map bRxy

z is given
by a single matrix element:8

bRxy

z jw
xy
z i ¼ Rxy

z jw
yx
z i; where Rxy

z ¼ hw
yx
z jbRxy

z jw
xy
z i. ð87Þ

In graphic notation, bRxy

z jw
xy
z i ¼ , therefore Eq. (87) reads:

8 In Appendix E, we take the liberty to omit the hat from the notation bRxy
z . This should not cause confusion

because we do not consider matrix elements there.
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ð88Þ

Nontrivial relations arise if we consider the action of braiding operators on the fusion
space of three particles. These relations can be expressed by two commutative diagrams
called the hexagon equations, see Fig. 20. The arrows in those diagrams may be understood
as equalities of vectors in the space V yzx

u . Let us consider the following example of the first
equation (the first line below corresponds to the upper path across the hexagon, the second
to the lower path):

Thus we get: 1þ Rre
r ¼ ,

ffiffiffi
2

p
ðRrr

1 Þ
2, 1� Rre

r ¼ ,
ffiffiffi
2

p
Rrr

1 Rrr
e .

The full set of equations arising from the first hexagon is as follows:

V rrr
r :

1þ Rre
r ¼ ,

ffiffiffi
2

p
ðRrr

1 Þ
2
;

1� Rre
r ¼ ,

ffiffiffi
2

p
Rrr

1 Rrr
e ;

1þ Rre
r ¼ �,

ffiffiffi
2

p
ðRrr

e Þ
2
;

8><>: V eee
e : ðRee

e Þ
2 ¼ 1; ð89Þ

V err
1 ; V rer

1 : Rre
r R

rr
e ¼ Rrr

1 ; V rre
1 : ðRer

r Þ
2 ¼ Ree

1 ;

V err
e ; V rer

e : Rre
r R

rr
1 ¼ �Rrr

e ; V rre
e : �ðRer

r Þ
2 ¼ 1;

V ree
r ; V ere

r : Ree
1 ¼ �1; V eer

r : �ðRre
r Þ

2 ¼ 1.

ð90Þ

The second hexagon is obtained from the first by replacing Rxy
z with ðR�1Þxyz ¼ ðRyx

z Þ
�1.

For example, the equation Rre
r R

rr
e ¼ Rrr

1 becomes ðRer
r Þ

�1ðRrr
e Þ

�1 ¼ ðRrr
1 Þ

�1.
Eliminating redundancies, we get this system of equations:

Ree
1 ¼ �1; Rre

r ¼ Rer
r ¼ �i; ðRrr

1 Þ
2 ¼ ,ð1þ Rre

r Þffiffiffi
2

p ; Rrr
e ¼ �Rre

r R
rr
1 ; ð91Þ

where , ¼ �1. The system has eight solutions, which all fit Eq. (70). Specifically, the solu-
tions have the form

Ree
1 ¼ �1; Rre

r ¼ Rer
r ¼ ia; Rrr

1 ¼ heiap=4; Rrr
e ¼ he�iap=4; ð92Þ

where the following combinations of h, a, and , are possible:

h e�7ip=8 e�5ip=8 e�3ip=8 e�ip=8 eip=8 e3ip=8 e5ip=8 e7ip=8

a �1 þ1 �1 þ1 �1 þ1 �1 þ1

, þ1 �1 �1 þ1 þ1 �1 �1 þ1

. ð93Þ
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Thus the properties of anyons are defined by the value of h, which satisfies h8 ¼ �1.

10.6. Final details

To choose the right solution and to complete the description of non-Abelian anyons, we
use Eq. (62) in conjunction with some general results from Appendix E.

The matrix element a11 = Æg1|n1æ (cf. Eqs. (80), (81), (86)) is equal to ,=
ffiffiffi
2

p
. But accord-

ing to Eq. (187), a11 ¼ ,r=dr, where dr is the quantum dimension of the r-particle, and ,r

is the Frobenius–Schur indicator. Therefore

dr ¼
ffiffiffi
2

p
; ,r ¼ ,. ð94Þ

The topological spin of the r-particle can be computed using Eq. (211):

hr ¼ d�1
r ðRrr

1 þ Rrr
e Þ ¼ h. ð95Þ

This result also follows from Eq. (215). Matching it with the expression of hr in terms of
the Chern number, we represent all eight cases in (93) by these formulas:

h ¼ eipm=8; a ¼ ð�1Þðmþ1Þ=2
; , ¼ ð�1Þðm

2�1Þ=8. ð96Þ

Thus, we have obtained almost all properties in Table 1. The remaining structure, namely
the topological S-matrix, can be found using general rules (see Appendix E).

11. The 16-fold way

Let us again consider the theory with Z2-vortices and free fermions whose spectrum is
gapped and characterized by the Chern number m. The properties of anyons in this model
depend on m mod 16. In the previous section we studied the case of odd m; now we assume
that m is even.

For even m, the vortices do not carry unpaired Majorana modes (see Appendix C),
therefore a vortex cannot absorb a fermion while remaining in the same superselection
sector. Thus, there are actually two types of vortices, which are transformed one to
another by adding a fermion. Two vortices of the same type may either annihilate
or fuse into a fermion. In the first case the vortices are denoted by e and m; they obey
the fusion rules (41). In the second case, we denote the vortices by a and �a; the fusion
rules are as follows:

a� e ¼ �a; �a� e ¼ a; e� e ¼ 1; a� a ¼ �a� �a ¼ e; a� �a ¼ 1. ð97Þ

Both sets of rules are Abelian, i.e., they do not contain ‘‘+’’ on the right-hand side.
The associativity relations can be found along the same lines as in the non-Abelian case.

First, the fermions must obey the trivial relation (72). The argument used in the derivation
of Eq. (71) remains valid, but we obtain two relations instead of one. Note that they are
not invariant individually; for example, the sign in both relations may be changed to ‘‘+.’’
Finally, we solve the pentagon equation. The fusion rules with e and m admit two non-
equivalent solutions, one of which is trivial; see Table 2. Both solutions are invariant under
the transformation

jwme
e i7! � jwme

e i; jwee
m i7! � jwee

m i; jwem
e i7! � jwem

e i ð98Þ
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(where jwxy
z is the basis vector in the corresponding fusion space), as well as trivial trans-

formations

jwxy
z i7!fxfyf

�1
z jw

xy
z i. ð99Þ

In the case of a and �a, there is only one solution, which doesn�t admit any nontrivial sym-
metry; see Table 3.

The braiding rules are found by solving the hexagon equations in conjunction with the
requirement that Ree

1 ¼ �1 and that transporting a fermion around a vortex is described by
the multiplication by �1. Then we compute the topological spin of the vortex and identify
each solution with a particular value of m mod 16. The results are summarized in Tables 2
and 3. (We have eliminated redundant solutions that can be obtained by the transforma-
tion (98).)

Let us mention a couple of interesting properties of these Abelian theories. For m ” 8
(mod 16), all three nontrivial particles (e, m, and e) are fermions. For m ” ±4 (mod 16),
the particles e and m are semions with trivial mutual braiding. (In comparison, the well-
known Kalmeyer–Laughlin state [69] has one semionic species.)

12. Odds and ends

What follows are some open questions, as well as thoughts of how the present results
can be extended.

1. Duan et al. [42] proposed an optical lattice implementation of the Hamiltonian (4). It
would be interesting to find a solid state realization as well. For example, the anisotrop-
ic exchange could be simulated by interaction of both lattice spins with a spin-1 atom
coupled to a crystal field.

2. The weak translational symmetry breaking in the Abelian phase has some interesting
consequences. A particularly unusual phenomenon takes place when the lattice has a
dislocation. A particle winding around the dislocation changes its type: eM m. Since
m = e · e, the fermionic parity appears not to be conserved. To restore the conservation
law, we must assume that the dislocation carries an unpaired Majorana mode. There-
fore, Abelian phases can also be used for the implementation of quantum memory.

3. Chiral phases (m „ 0) require that the time-reversal symmetry be broken. In the present
model, this is achieved by applying a magnetic field. However, a spontaneous breaking
of time-reversal symmetry occurs in the presence of odd cycles in the lattice. For exam-
ple, one can replace each vertex of the honeycomb lattice by a triangle. In this case, a
gapped m = ±1 phase is realized without external magnetic field [70].

4. The representation of a spin by four Majorana fermions might be useful for other mod-
els, even though it does not lead to an exact solution. In particular, one can consider a
variational mean-field state in which cj are decoupled from ba

j . It is unclear whether this
type of states occur in Heisenberg antiferromagnets. On the triangular lattice, such a
state has larger energy than the 120	 Neel-type state. It would be interesting if the form-
er could be stabilized by additional interactions and quantum fluctuations.

5. Topological phases with free fermions coupled to an effective Z2 gauge field have been
classified by m mod 16. However, this analysis does not include multilayer systems. One
can argue that if the interaction between the layers is weak enough, topological particles
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cannot tunnel between the layers. Thus, each layer is described by one of the 16 theories
studied above. In mathematical terms, we have the direct product of several unitary
modular categories (UMCs). Strongly interacting layers are roughly described by n
fermionic species interacting with ðZ2Þn-vortices, but a complete classification of such
phases is yet to be found.

6. In addition to the particle classification, the chiral central charge c� = m/2 is an impor-
tant robust characteristic, though its topological meaning is not so clear. It appears that
in multilayer systems the total value of m is shared between the layers, i.e., increasing m
by 16 in one layer while decreasing it in another does make a different topological phase.
More generally, a topological phase is characterized by a UMC and a real number c�
satisfying the relation (172). To prove or disprove this statement, a mathematical notion
of equivalence between topological phases is necessary. It may be based on local (or
quasilocal) isomorphisms between operator algebras.

7. A related question is whether the space-time boundary of an arbitrary topological phase
can be described by a two-dimensional conformal field theory (CFT) and when two
such theories have the same topological content. Two CFTs may be considered topolog-
ically equivalent if there is a consistent theory for a one-dimensional boundary between
them. Conjecturally, this is the case if and only if both CFTs have the same chiral cen-
tral charge c� ¼ c� �c and correspond to the same UMC.

8. Another topic to study is Bose-condensation of vortices, which occurs when a vortex
energy becomes negative due to some parameter change. The condensation of e-parti-
cles in the m = 0 phase is equivalent to the confinement of m- and e-particles. Thus, the
topological order is destroyed. In the m = 16 system, this process produces a phase with-
out anyons or fermions, but with the chiral central charge c� = 8. Under special circum-
stances, the boundary of this phase is described by the E8 CFT at level 1, though a
generic (nonconformal) perturbation drives it into a state with eight chiral bosons prop-
agating with different velocities.

9. The condensation of ee-pairs in two adjacent m = 1 layers leads to the binding of single-
layer vortices into rr pairs, which are equivalent to a or �a in the m = 2 phase. Thus the
direct product of two m = 1 theories is related to the m = 2 theory. It would be interesting
to have a general mathematical characterization of such relations. The notion of lax ten-
sor functor (see Remark E.26) can be useful in this regard.
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Appendix A. Numerical results on the stability of the vortex-free phase

The goal of this study is to compare the energy of the vortex-free phase with that of
other phases. The case Jx = Jy = Jz = 1 has been investigated most carefully. The energy
of the vortex-free phase equals E0 � �1.5746 per unit cell (i.e., per two sites, or one
hexagon). The actual computation was done for tori with periodic or antiperiodic
boundary conditions in each direction. The vortex-free phase and other periodic phases
with small period are computationally very simple, so dealing with large tori is not a
problem. However, the energy calculation for an arbitrary vortex configuration requires
finding the singular values of an N · N matrix, where N is the number of unit cells. With
our setup (MATLAB on a PC) we could handle matrices of size N 6 2500, which cor-
responds to systems of linear size L ¼

ffiffiffiffi
N

p
6 50. Although these numbers are pretty

large, finite-size effects are still appreciable due to the gapless nature of the spectrum
(see Section 6).

Let us first discuss the finite-size effects in the vortex-free phase. From now on, we con-
sider the relative energy, i.e., we subtract NE0 from actual results. The plot in Fig. 11A
shows the relative energy as a function of size for symmetric L · L tori. The oscillatory
behavior with period 3 is due the fact that e (q) vanishes at q = q* (see (34)). One may argue
that each period r of the torus contributes �|r|�1cos(2(q*, r)) to the total energy (there are
infinitely many such terms since the periods form a lattice). Interestingly enough, these
contributions almost cancel each other for periodic boundary conditions on the torus with
basis (Ln1, Ln2 + n1), where n1 and n2 are the basis vectors of the lattice (see figure in Eq.
(32)). The corresponding plot is shown in Fig. 11B.

The energy of an isolated vortex is Evortex � 0.1536 above the ground state.9 The calcu-
lation was done for tori with basis (Ln1,Ln2 + n1) for L = 9, . . . , 32. (We actually put four
vortices on the torus of twice this size because the number of vortices must be even). Then
the results were extrapolated to L =1 by fitting the curve E (L) = Evortex +
a1L

�1 + a2L
�2 to the data, separately for L = 3k, L = 3k + 1, and L = 3k + 2 (see

Fig. 12).
The energy of a vortex pair is smaller than 2Evortex if the vortices are close to each other:

by �0.04 for nearest neighbors and by �0.07 for next-nearest neighbors. (We did not try
to compensate the finite size effects, so the precision is poor). These numbers suggest that
inter-vortex interaction is rather strong and could, in principle, result in some configura-
tions having negative energy. However, our further calculations give evidence for the
contrary.

We have checked all periodic phases with unit cell containing 1, 2, 3 or 4 hexagons, see
Table 4. (As mentioned above, this computation requires much less computer resources
than the study of separate vortices or vortex pairs.) In all these cases the energy is positive
and increases as more vortices are added. The smallest energy per vortex is achieved by
phases 1 and 5—0.067 and 0.078, respectively.

All 14 phases have positive energies (relative to the vortex-free phase) for all nonzero
values of Jx, Jy, Jz.

9 No rigorous precision analysis was attempted, but the error in this and the other figures is expected not to
exceed 1–2 units of the least significant digit.
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Appendix B. Edge modes in phases Bm

It is understood that the edge spectrum depends strongly on particular conditions at the
edge. The calculations below are only meant to illustrate the universal feature of the spec-
trum—the existence of a chiral gapless mode.

Let us suppose that the honeycomb lattice fills the lower half-plane and is cut as
follows:

Row 0 consists of the Majorana operators bzj, which would be decoupled from the rest of
the system if not for the magnetic field. Performing the Fourier transform in the horizontal
direction, we compute effective couplings between the rows as functions of qx:

0 0.02 0.04 0.06 0.08 0.1
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Fig. 12. Extrapolation to infinite size: 4 equally spaced vortices on the torus with basis (2Ln1, 2(Ln2 + n1)).
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Fig. 11. Finite size effects in the vortex-free phase.
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iAðqxÞ ¼

0 ic 0

�ic a is �b

0 �is �a ir b

�b �ir a is �b

b �is �a ir . .
.

�b �ir a . .
.

. .
. . .

. . .
.

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
; where

r ¼ 2J ;

s ¼ �4J cos qx
2
;

a ¼ 4j sin qx;

b ¼ 4j sin qx
2
;

c ¼ �2hz.

ð100Þ
Let us first find edge modes ignoring the operators bzj, i.e., the first row and column in the
above matrix. If j = 0, then for 2p/3 < qx < 4p/3 the matrix has a null vector with ele-

Table 4
Numerical results for Jx = Jy = Jz = 1

Vortices are shown in gray; for periodic phases the unit cell is indicated by a parallelogram.
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ments w (2j) = 0 and wð2jþ 1Þ ¼ ð�2 cos qx
2
Þj, which corresponds to a zero-energy state

localized near the edge. If j is not zero but still small, we get this spectrum:

eðqxÞ � 12j sin qx; qx 2 ½2p=3; 4p=3�. ð101Þ

It is shown in Fig. 13A, assuming that j > 0, i.e., m = +1. The point where the energy curve
crosses zero, qx = p, corresponds to a left-moving gapless mode.

Now we take the operators bzj into account. If j = 0, then a zero mode exists for
qx 2 [�2p/3, 2p/3], whereas for qx 2 [2p/3, 4p/3] there are two modes with energies

eðqxÞ � �c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4cos2

qx
2

r
. ð102Þ

The spectrum for j > 0 is shown schematically in Fig. 13B. In this case a left-moving gap-
less mode occurs at qx = 0.

In conclusion, let us give a simple (but not completely rigorous) proof of Eq. (56). The
idea is due to Laughlin [71]: we put the system on a cylinder and run magnetic flux through
it. For simplicity, we consider a cylinder of the smallest radius, which is equal to the lattice
period divided by 2p. Thus the Hamiltonian is given by the matrix iA (qx); the variable qx
plays the role of the magnetic flux.

Let qx vary from 0 to 2p. When the energy of an edge state10 |wæ crosses zero, the spec-
tral projector P (qx) changes by |wæÆw|. For an arbitrary operator Q the quantity
Tr (QP (qx)) changes by Æw|Q|wæ. Let

Qjk ¼ gðjÞdjk; gðjÞ ¼
1 near the edge,

0 far away from the edge

�
ð103Þ

(the exact form of the function g is not important). Then Æw|Q|wæ � 1. Since Tr (QP (qx)) is
a periodic function of qx, the abrupt changes must be compensated by a continuous var-
iation, which we call ‘‘adiabatic.’’ Thus

medge ¼
Z

IðqxÞdqx; where IðqxÞ ¼ �TrðQ _P Þ; _P ¼ dP
dqx


 �
adiabatic

. ð104Þ

2π4π/32π/3
xq

xqε( )

π 2π xq

xqε( )

π

A B

Fig. 13. Schematic form of the edge spectrum in the simplest case (A) and with the operators bzj taken into
account (B). The shaded area represents the bulk spectrum.

10 We are using the first quantization formalism, therefore ‘‘states’’ are just superpositions of lattice points.
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The adiabatic evolution of the spectral projector may be represented by the Heisenberg
equation with a suitable Hamiltonian:

_P ¼ i½H ; P �; where H ¼ i½P ; _P �. ð105Þ
Indeed, P2 = P, hence P _P þ _PP ¼ _P and P _PP ¼ 0, implying that �½½P ; _P �; P � ¼ _P . There-
fore

IðqxÞ ¼ �iTr QHP � QPHð Þ ¼ �iTrðHPQ� HQP Þ ¼ �iTrðH ½P ;Q�Þ. ð106Þ
(These transformations are valid because each trace is represented by a finite sum.) The
last expression in Eq. (106) may be calculated using the spectral projector for the bulk.
Indeed, if the function g were constant, the commutator [P,Q] would vanish; thus the main
contribution comes from the region where g changes from 1 to 0.

In the final part of the proof, we take into account the periodicity of the bulk spectral
projector, representing the site index j as (s,k). As is usual, lattice cells are indexed by s; it
is an integer that increases in the positive y-direction. We may assume that the function g
depends only on s and satisfies limsfi1 g (s) = 1, limsfi�1g (s) = 0. Then

ð½P ;Q�Þtl;sk ¼ ðgðsÞ � gðtÞÞP tl;sk;
X
t

ðgðt þ rÞ � gðtÞÞ ¼ r.

Using these auxiliary identities, we pass to the momentum representation:

TrðH ½P ;Q�Þ ¼
X
s;k;t;l

Hsk;tlP tl;skðgðsÞ � gðtÞÞ ¼
X
r;k;l

H 0k;�rlP 0l;rk

X
t

ðgðt þ rÞ � gðtÞÞ

¼
X
r;k;l

H 0k;�rlP 0l;rkr ¼ �i

Z
Tr eH oeP

oqy

 !
dqy
2p

¼
Z

Tr eP ; oeP
oqx

" #
oeP
oqy

 !
dqy
2p

.

Substituting the result into (106) and (104), we get

medge ¼
Z

IðqxÞdqx ¼
�i

2p

Z
Tr eP ; oeP

oqx

" #
oeP
oqy

 !
dqxdqy ¼ m.

Appendix C. Quasidiagonal matrices

The goal of this appendix is to provide a formal argument for the existence of unpaired
Majorana modes on vortices for odd values of the Chern number m. However, the devel-
oped formalism may be interesting on its own right. It suggests a rather efficient approach
to problems like quantization of Hall conductivity in disordered systems without the use
of excessively heavy tools. Some of results (in particular, the ones concerning the flow of a
matrix and the Chern number) are actually poor man�s variants of known mathematical
theorems.11 A powerful theory, called noncommutative geometry [45] was used by Bellis-

11 Note for experts: we are effectively trying to build a K-theory on a manifold by considering functions that are
not continuous, but rather constant on cells that are dual to simplices. This seems to be an awkward approach,
but its possible advantage is the relation to a second-quantized case, see Appendix D.
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sard et al. [1] to prove rigorously that the Hall conductivity is quantized provided the elec-
tron are localized (see [72,73] for another proof). We will use similar ideas, but focus main-
ly on providing the intuition rather than mathematical rigor.

A physical example of a quasidiagonal matrix is an electron hopping matrix T = (tjk) on
a d-dimensional lattice. It is a Hermitian matrix with the property that tjk is bounded in
magnitude and vanishes if the distance |j � k| between the sites j and k is greater than some
constant L. Furthermore, if T has a spectral gap, i.e., if the eigenvalues are bounded away
from zero, then the corresponding spectral projector P ¼ 1

2
1� sgnTð Þ is also quasidiago-

nal. More specifically, the matrix elements Pjk decay exponentially with distance.12

In general, a quasidiagonal matrix is a lattice-indexed matrix A = (Ajk) with sufficiently
rapidly decaying off-diagonal elements. Technically, one requires that

jAjkj 6 cjj� kj�a
; a > d;

where c and a are some constants, and d is the dimension of the space. Note that ‘‘lattice’’
is simply a way to impose coarse Rd geometry at large distances. We may think about the
problem in these terms: matrices are operators acting in some Hilbert space, and lattice
points are basis vectors. But the choice of the basis need not be fixed. One may safely re-
place the basis vector corresponding to a given lattice point by a linear combination of
nearby points. One may also use some kind of coarse-graining, replacing the basis by a
decomposition into orthogonal subspaces corresponding to groups of points, or regions
in Rd .

Let us outline the main results. We first consider quasidiagonal unitary matrices in one
dimension and define an integral topological characteristic called flow. Then we study pro-
jection matrices in two dimensions. The Chern number m(P) of a quasidiagonal projection
matrix P is expressed directly in terms of the matrix elements Pjk, see Eqs. (124) and (122).
This definition does not rely on translational invariance, but in the translationally invari-
ant case we reproduce Eq. (54).

After those preliminaries, we switch to questions related to Majorana fermions (all nec-
essary background is given in Section 5). From the mathematical point of view, we study
quasidiagonal real skew-symmetric matrices B satisfying the condition B2 = �1. In one
dimension, such a matrix is assigned a cutting obstruction MgðBÞ ¼ �1 with respect to
an arbitrary cut g dividing the chain into two parts. Let us explain the physical meaning
of this number. The matrix B defines a pairing of Majorana modes (in the exact sense stated
right after Eq. (27), but we will use a cartoon description for illustration). If we cut the
chain, the resulting pieces may carry unpaired boundary modes [64]. This happens when
an odd number of pairs is broken, as in Fig. 14B; otherwise one can modify the matrix near
the cut so that to avoid broken pairs, see Fig. 14C. More formally, let us consider quasidi-
agonal real skew-symmetric matrices B 0 that agree with B at infinity but have no nonzero
elements across the cut. We prove that if MgðBÞ ¼ �1, then no such B 0 exists that satisfies
the equation (B 0)2 = �1. Note that while MgðBÞ depends on the cut, the relative Majorana
number of two matrices on the same chain, MðA;BÞ ¼MgðAÞMgðBÞ is invariant.

The concept of Majorana number is also applicable in two dimensions. Let B2 = �1,
and let us construct another matrix B 0 by inserting a Z2-vortex at the origin. More exactly,

12 Indeed, the function f(x) = sgnx can be approximated by a sequence of polynomials pn(x) of degree nfi1
which converges exponentially on the spectrum of T. Therefore iP � pn(T)i < abn for some b < 1. On the other
hand, the matrix elements (pn(T))jk vanish if |j � k| > nL.
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B0jk ¼ �Bjk, where the minus sign occurs when the link (j,k) crosses some fixed ray r (an
analogue of the Dirac string). Note that the condition (B 0)2 = �1 is only true asymptoti-
cally (i.e., far away from the origin); it may or may not be possible to satisfy this equation
by altering the matrix elements near the vortex. In fact, the presence of an unpaired Major-
ana mode at the vortex is defined as locally unrepairable failure of the equation (B 0)2 = �1.
Such a mode is detected by an absolute Majorana numberMðB0Þ. For its construction, let
us regard B and B 0 as one-dimensional by keeping track of the radial direction only: we
divide the plane into concentric rings and map all sites in each ring to a single location
on a ray (see Fig. 15). To simplify the calculation, we cut out the interior of a sufficiently
large circle g; let |g| be the number of sites removed. The presence or absence of an
unpaired mode in this case is given by MgðB0Þ, which is defined using some annular neigh-
borhood of g. Extrapolating to |g| = 0, we get MðB0Þ ¼ ð�1ÞjgjMgðB0Þ ¼MðB;B0Þ. The
last number only depends on the matrix elements of B in some neighborhood of the inter-
section point between g and r. Finally, we show that MðB;B0Þ ¼ ð�1ÞmðP Þ, where m (P) is the
Chern number associated with the projector P ¼ 1

2
ð1� iBÞ. Thus, vortices carry unpaired

Majorana modes if and only if m (P) is odd.

C.1. The flow of a unitary matrix

C.1.1. Definition

Let us consider an arbitrary (possibly infinite) unitary matrix U = (Ujk). We refer to the
values of j and k as ‘‘sites’’ and define a ‘‘current’’ flowing from k to j:

fjk ¼ jUjkj2 � jUkjj2. ð107Þ
Since U is unitary,

P
jU

�
jlUjk ¼

P
jUljU �

kj ¼ dlk, therefore the current is conserved at each
site:

r
1

3
2

0 21 3

A

B

Fig. 15. A map from two to one dimension: annular regions around the vortex (A) are collapsed into points on a
ray (B).

η η η

A B C

Fig. 14. Cutting a Majorana chain: MgðBÞ ¼ 1 in cases (A) and (C) whereas MgðBÞ ¼ �1 in case (B). The dashed
lines in (C) show a possible way to reconnect the broken pairs.
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X
j

fjk ¼ 0. ð108Þ

Suppose that the sites are positioned on a line (more specifically, enumerated by integers),
and that the off-diagonal matrix elements of U decay fast enough. We will see later that the
condition

jUjkj 6 cjj� kj�a
; where a > 1; ð109Þ

is sufficient for our purposes. For now, let us simply assume that Ujk vanishes if |j � k| is
greater than some constant L. Then it is obvious that the total current through a ‘‘cross
section’’ g,

FðUÞ ¼
X
jPg

X
k<g

fjk; ð110Þ

does not depend on the choice of g. The number FðUÞ is called the flow of U. For example,
the matrix with entries Ujk = dj, k+s has flow s.

C.1.2. Integrality of the flow

A nontrivial property is that the flow is quantized, i.e., has an integer value. To prove
this statement, let us introduce the projector onto the sites M through N:

P½M ;N �
jk ¼

1 if M 6 j ¼ k 6 N ;

0 otherwise.

�
ð111Þ

The projector onto an infinite interval is defined similarly. Let P = P[0,1); then

FðUÞ ¼ TrðU yPUð1�PÞÞ � TrðU yð1�PÞUPÞ ¼ TrðU yPU �PÞ. ð112Þ
(Caution: In the last expression, the order of operations is important: we first compute the
matrix K = U�PU � P, and then its trace,

P
jKjj. It is not possible to use the cyclic prop-

erty of the trace, TrAB = TrBA, since it is only valid if one of the matrices has a finite
number of nonzero elements or, more generally, if the sum involved in the calculation
of the trace converges absolutely.)

Note that the matrices P and U�PU are orthogonal projectors. If they were finite,
their traces would be integers, and the difference would also be an integer. In the infinite
case, one may refer to the general notion of the relative index of two projectors [73,74].
However, we will proceed in a more pedestrian fashion and simply truncate the
matrices.

Let K = U�PU � P. It is clear that the matrix element Kjk vanishes if |j| or |k| is greater
than L, so K is not changed by the truncation to the interval [�L, L]. Hence

FðUÞ ¼ TrðU yPUÞtrunc � TrPtrunc; where Atrunc ¼def
P½�L;L�AP½�L;L�. ð113Þ

If A is an orthogonal projector and commutes with P[�L, L], then Atrunc is also an orthog-
onal projector. Obviously, P and K commute with P[�L, L], and so does the matrix U�

PU = P + K. Thus, both Ptrunc and (U�PU)trunc are orthogonal projectors. It follows that
FðUÞ is an integer.

In Eq. (112), the projector P may be replaced by another operator with the same
asymptotics at infinity. (In other words, we can ‘‘blur’’ the boundary between the left
and the right half-line.) Indeed, the expression Tr(U�A U � A) vanishes if the cyclic prop-
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erty of the trace is true, i.e., if the elements of A decay at infinity fast enough. Adding such
a matrix A to P will not change the result. Thus

FðUÞ ¼ TrðU yQU � QÞ ¼ TrðU y½Q;U �Þ; where Qjk ¼
djk for j; k ! þ1;

0 for j; k ! �1.

�
ð114Þ

(Here, we also assume that the matrix Q is quasidiagonal, i.e, |Qjk| is bounded by a rapidly
decaying function of |j � k|, cf. (109).)

C.1.3. Translationally invariant case

The flow can be easily calculated if U possesses a translational symmetry. Let us group
the sites by unit cells and index them as (s,k), where s is the number of the cell, and k refers
to a position type inside the cell. We assume that Usk, tl depends only on t � s, k, and l. In
this case, we can express FðUÞ in terms of the trace per unit cell (denoted by tr) and a posi-
tion operator X:

F ðUÞ ¼ trðU y½X ;U �Þ; where X sk;tl ¼ sdstdkl. ð115Þ

(For a proof, replace the factor s in the definition of X by the function g (s) such that
g (s) = s for |s| 6 N and g (s) = Nsgns for |s| > N, where N is large; then use Eq. (114).)

In the momentum representation, the operator U becomes eU lkðqÞ ¼
P

te
iðq;tÞU 0k;tl.

We may also use these simple rules:

½X ;A� ! i
deA
dq

; tr A!
Z p

�p

dq
2p

TreA. ð116Þ

Thus

F ðUÞ ¼ i

2p

Z p

�p
Tr eU y d eU

dq

 !
dq ¼ � 1

2pi

Z q¼p

q¼�p
d ln det eU ðqÞ� �

. ð117Þ

C.2. General setting

The result about the flow quantization can be extended to matrices satisfying condition
(109), which guarantees that the sum in Eq. (110) converges absolutely.

Another generalization is coarse-graining, which means to allow multiple states per
site. The sites are now described by orthogonal subspaces of the total Hilbert space.
This generalization is useful if want to treat a two-dimensional system as one-
dimensional.

Finally, we may try to apply the notion of flow to finite systems. Let us assume that the
unitarity condition,

P
jU

�
jlUjk ¼

P
jUljU �

kj ¼ dlk, is approximate and holds only if j and k
belong to some interval. In this case, one needs to restrict the sum (110) to the same inter-
val, and the result will not be an exact integer. But one can actually give an upper bound
for the deviation from the closest integer.

Setting the last generalization aside, let us put the integrality theorem into a rigor-
ous form. (The reader may safely skip this formalism and proceed to the next
subsection.)
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Theorem C.1. Let U be a unitary operator acting in the Hilbert space H ¼ �1j¼�1Hj and

represented by a matrix whose entries Ujk are linear maps from Hk to Hj. Suppose that the

off-diagonal entries are Hilbert-Schmidt operators satisfying the condition

kUjkkHS 6 cjj� kj�a
; ð118Þ

where c and a > 1 are some constants, and i Æ iHS is the Hilbert–Schmidt norm. Then the sum

in the expression for the flow,

FðUÞ ¼
X
jP0

X
k<0

ðTrðU y
jkUjkÞ � TrðU y

kjUkjÞÞ ð119Þ

converges absolutely and has an integer value.

Proof sketch. Let H� ¼ �j<0Hj and Hþ ¼ �jP0Hj. An operator A is said to be quasi-

trace-class relative to the decomposition H ¼ H� �Hþ if the matrix elements A++ and
A�� are trace class, whereas A+� and A�+ are Hilbert–Schmidt. By definition,
TrA = TrA++ + TrA��. An operator B is said to be quasi-bounded if B++, B�� are bound-
ed and B+�, B�+ are Hilbert-Schmidt. Both types of operators form Banach spaces with
respect to suitable norms; quasi-trace-class operators form an ideal in the algebra of quasi-
bounded operators.

One can show that the operator K = U�PU � P is quasi-trace-class. Also, the
operators P (L) = P[�L, L] U�P UP[�L, L] are almost projectors, in the sense that
limLfi1(P (L)2 � P (L)) = 0 with respect to the quasi-trace norm. Hence, P (L) can be
approximated by a projector, which has an integer trace. h

We omit the details and proceed to higher dimensions. Generally, our style will not be
very rigorous, but one can hopefully elaborate the results using the following definition.

Definition C.2. Let a positive integer d (the dimension) and a real number a > d be fixed.
A matrix ðAjk : j; k 2 ZdÞ with operator entries is called quasidiagonal if all its off-diagonal
entries are Hilbert–Schmidt, and there are some constants c and c 0 such that

kAjjk 6 c; kAjkkHS 6 c0jj� kj�a for j 6¼ k. ð120Þ
Note that if A is unitary, then iAjji 6 1 automatically. Quasidiagonal matrices form a

Banach algebra with the norm

kAkqd ¼ sup
j
kAjjk þ c sup

j 6¼k
jj� kjakAjkkHS; ð121Þ

where c is a sufficiently large constant.

C.3. Chern number

C.3.1. General definition of m(P)
Let P be an orthogonal projector represented by a quasidiagonal matrix in two dimen-

sions. (For simplicity, we assume that the matrix elements Pjk are scalars, though they may
be operators as well.) For each triple (j,k, l) we define a ‘‘2-current’’:13

hjkl ¼ 12piðP jkP klP lj � P jlP lkP kjÞ. ð122Þ

13 Another name of this object is ‘‘simplicial 2-chain.’’ More exactly, the 2-chain is the formal sumP
j<k<lhjklDjkl, where Djkl is a combinatorial simplex.
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It is clear that hjkl is antisymmetric in all three indices. Since P is Hermitian, hjkl is a real
number. Moreover, since P2 = P,

ðohÞkl ¼
def
X
j

hjkl ¼ 0. ð123Þ

Let us partition the plane into three sectors and define a quantity m (P), which will be
shown to generalize the notion of the Chern number:

ð124Þ

This sum converges absolutely. On the other hand, its value does not change if one reas-
signs any site from one sector to another (due to Eq. (123)). Therefore m (P) is a topological
invariant: it is constant, provided that A, B, C are arranged in the counterclockwise order.
We will see that m (P) is actually an integer, and its value agrees with Eq. (54) in the trans-
lationally invariant case.

C.3.2. Some properties and the translationally invariant case

Let us rewrite Eq. (124) in an operator form using the relation A + B + C = 1, where
the symbols A, B, C designate the projectors on the corresponding sectors:

mðP Þ ¼ 12piðTrðAPBPCPÞ � TrðAPCPBP ÞÞ
¼ 4piTrðAPBPCP þ BPCPAP þ CPAPBP � APCPBP � CPBPAP � BPAPCPÞ

¼ 4piTrðPAPBP � PBPAP Þ ¼ 4piTr½PAP ; PBP � ¼def
mðP ;A;BÞ. ð125Þ

Note that the value of m (P,A,B) will not change if we add arbitrary finite matrices to A
and B. Moreover, the commutator [PAP, PBP] is nonzero only in the region where the
supports of A, B, and C = 1�A � B touch each other, hence we can make arbitrary chang-
es away from the triple contact point. Thus the operators A, B, C do not have to be pro-
jectors or even commute with each other; it is only important that they are supported by
regions with the particular topological configuration (possibly with some overlap along
the boundaries and triple overlap at the center).

This freedom in the choice of A and B is very useful. As one application, we show
that m (P) is additive. Let P1 and P2 be projectors onto orthogonal subspaces
(i.e., P1P2 = P2P1 = 0) and let P3 = 1 � P1 � P2. We may replace A, B, and
C = 1 � A � B with

A0 ¼
X3

k¼1

PkAPk; B0 ¼
X3

k¼1

PkBPk; C0 ¼
X3

k¼1

PkCPk

which differ from A, B, and C only at the boundaries of the corresponding regions. Then

ðP 1 þ P 2ÞA0ðP 1 þ P 2ÞB0ðP 1 þ P 2Þ ¼ P 1AP 1BP 1 þ P 2AP 2BP 2;

mðP 1 þ P 2;A;BÞ ¼ mðP 1 þ P 2;A
0;B0Þ ¼ mðP 1;A;BÞ þ mðP 2;A;BÞ.

Thus
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mðP 1 þ P 2Þ ¼ mðP 1Þ þ mðP 2Þ; mð1� PÞ ¼ �mðP Þ. ð126Þ
Now, we calculate m (P,A,B) for a different topological configuration. Let
P(x) = P(1) + P(4) and P(y) = P(2) + P(1) be the projectors onto the right and the upper
half-plane, respectively (see the picture below). Then

ð127Þ

It follows that:

mðPÞ ¼ 2piTr½PPðxÞP ; PPðyÞP � ¼ 2piTr P ½½PðxÞ; P �; ½PðyÞ; P �� þ P ½PðxÞ;PðyÞ�P
� �

; ð128Þ

where the last term vanishes because P(x) and P(y) commute. Of course, P(x), P(y) may be
replaced by any topologically equivalent pair of operators, i.e., we may deform or blur the
boundaries of the corresponding half-planes.

In the translationally invariant case, the right-hand side of Eq. (128) can be calculated
by widening the fuzzy boundaries so that they turn into linear functions. Thus

mðPÞ ¼ 2pitr P ½½X ; P �; ½Y ; P ��ð Þ; ð129Þ

where X and Y are the operators of x- and y-coordinate (respectively), and tr is the trace
per unit cell. Passing to the momentum representation and using a two-dimensional ana-
logue of the correspondence (116), we recover Eq. (54).

C.3.3. The integrality of m(P)
We have seen m (P) has topological nature; let us show that it is an integer. Let

QðxÞ ¼ PPðxÞP ; QðyÞ ¼ PPðyÞP ; U ðxÞ ¼ expð2piQðyÞÞ; U ðyÞ ¼ expð�2piQðxÞÞ.
ð130Þ

The operator U(x) coincides with the identity matrix away from the x-axis, and U(y) is
equal to the identity away from the y-axis. We may proceed in two different ways.

First proof. Let us regard the two-dimensional lattice as one-dimensional by identifying all
sites in each vertical row. Then U(x) satisfies the hypothesis of Theorem C.1, hence it has
an integer flow. But the flow can be expressed using Eq. (114) with Q = Q(x). Thus

FðU ðxÞÞ ¼ Tr e�2piQðyÞQðxÞe2piQðyÞ � QðxÞ
� �

¼
Z 2p

0

Tr
d

du
e�iuQðyÞQðxÞeiuQðyÞ
� �
 �

du

¼ 2piTr QðxÞ;QðyÞ
# $

¼ mðP Þ. ð131Þ

Note an analogy with the Laughlin argument: the integration over u corresponds to the
adiabatic insertion of a magnetic flux quantum. h
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Second proof (sketch). Let us employ the notion of Fredholm determinant. It is a general-
ization of the determinant to infinite matrices that are close to the identity, specifically of
the form 1 + K, where K has a well-defined trace:14

detð1þ KÞ ¼def
expðTr lnð1þ KÞÞ ¼ 1þ Tr K þ �1

2
Tr K2 þ 1

2
ðTr KÞ2

� �
þ � � � . ð132Þ

The exact meaning of this definition is as follows: we first obtain a formal expression as a
power series in K and then evaluate each term. (If K is a matrix of size n, then all terms of
degree higher than n vanish.) We claim that

det U ðxÞU ðyÞ U ðxÞ� ��1
U ðyÞ� ��1

� �
¼ 1. ð133Þ

Indeed, the identity det (ABA�1B�1) = 1 is true at the formal power series level, assuming
that the cyclic property of the trace holds for any product of A � 1, A�1 � 1, B � 1,
B�1 � 1 containing at least one factor with A and at least one factor with B. On the other
hand, one can show that

det eiuyQ
ðyÞ

eiuxQ
ðxÞ

e�iuyQ
ðyÞ

e�iuxQ
ðxÞ

� �
¼ exp uxuyTr QðxÞ;QðyÞ

# $� �
. � ð134Þ

C.4. Majorana numbers

In this section we study real skew-symmetric matrices satisfying the equation B2 = �1.
Recall that such a matrix defines the ground state |Wæ of a Majorana system with a qua-
dratic Hamiltonian (cf. Eqs. (26) and (27)). First, we consider finite or general infinite
matrices (i.e., work in dimension zero), then proceed to quasidiagonal matrices in dimen-
sion one, and finally to dimension two.

C.4.1. Dimension zero: fermionic parity and the Pfaffian

A few more words about the Majorana system, then we will turn to matrices. Let us
group the sites (or the corresponding Majorana operators) into pairs (2k � 1, 2k) to
form ‘‘full’’ fermionic modes with the occupation number operators
aykak ¼ 1

2
ð1þ ic2k�1c2kÞ. Note that the operator �ic2k�1c2k has eigenvalue 1 if the mode

is empty and �1 if it is occupied. Thus the total fermionic parity is characterized by
the operator �k (�ic2k�1c2k). The fermionic parity of the ground state is equal to the
Pfaffian of the matrix B:Y

k

ð�ic2k�1c2kÞjWi ¼ ðPf BÞjWi; Pf B ¼ �1. ð135Þ

Let us recall some standard definitions. The Pfaffian of a skew-symmetric matrix is ex-
pressed as a sum over all partitions of the set {1, . . . , 2N} into pairs, or over all elements
of the permutation group S2N:

Pf A ¼ 1

2NN !

X
s2S2N

sgnðsÞAsð1Þ;sð2Þ � � �Asð2N�1Þ;sð2NÞ. ð136Þ

For example,

14 It is important that any matrix product that occurs in the problem has a trace satisfying the cyclic property.
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Pf
0 a12

�a12 0


 �
¼ a12; Pf

0 a12 a13 a14

�a12 0 a23 a24

�a13 �a23 0 a34

�a14 �a24 �a34 0

0BBB@
1CCCA¼ a12a34 þ a14a23 � a13a24.

The Pfaffian satisfies the equations

ðPf AÞ2 ¼ detA; PfðWAW T Þ ¼ PfðAÞ detðW Þ. ð137Þ

We will also need a generalization of the Pfaffian to infinite matrices, which is called Fred-
holm Pfaffian [75]. Let A and B be real skew-symmetric, B invertible, and A � B have a
well-defined trace. Then

PfðA;BÞ ¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð1þ KÞ

p
¼ exp 1

2
Tr lnð1þ KÞ
� �

¼ 1þ 1
2
TrK þ �1

4
TrK2 þ 1

8
ðTrKÞ2

� �
þ . . . ; where K ¼ AB�1 � 1. ð138Þ

This definition is understood as that of the Fredholm determinant: we first obtain a formal
expression as a power series in K and then evaluate each term. (For finite matrices of size
2N we get Pf (A,B) = (Pf A) (Pf B)�1; note that the terms of degree higher than N vanish).
The Fredholm Pfaffian has the following properties:

PfðB;BÞ ¼ 1; PfðA;BÞPfðB;CÞ ¼ PfðA;CÞ; ð139Þ
PfðA;BÞ2 ¼ detðAB�1Þ; PfðWAW T; VBV TÞ ¼ PfðA;BÞ detðV �1W Þ; ð140Þ
if A2 ¼ B2 ¼ �1; then PfðA;BÞ ¼ �1. ð141Þ

C.4.2. Dimension one: cutting obstruction and the relative Majorana number

Now, consider a matrix that describes the ground state of Majorana fermions on an
infinite chain. From a formal point of view, it suffices to say that B ¼ ðBjk : j; k 2 ZÞ is
quasidiagonal, real skew-symmetric, and that B2 = �1. Suppose that we cut the chain
between sites g � 1 and g. Is it possible to find a new matrix B 0 that contains no cross ele-
ments (i.e., has the form B0�� � B0þþ), satisfies the condition (B 0)2 = �1, and coincides with
B far away from the cut? The following quantity represents an obstruction for the con-
struction of such a matrix:

MgðBÞ ¼ PfðV ðgÞBV ðgÞ;BÞ ¼ �1; where V ðgÞ ¼ 1� 2P½g;1Þ. ð142Þ
Recall that P[g,1) denotes the projector onto sites g and higher; ðV ðgÞBV ðgÞÞjk ¼ �Bjk,
where the minus sign occurs when j and k lie on different sides of the cut.

We claim that the conditions on B 0 cannot be met if MgðBÞ ¼ �1. Indeed,

McðBÞMgðBÞ�1 ¼ PfðV ðcÞBV ðcÞ; V ðgÞBV ðgÞÞ ¼ detðV ðgÞ�1V ðcÞÞ ¼ ð�1Þc�g. ð143Þ
The same is true for B 0, hence the relative Majorana number,

MðB;B0Þ ¼def
McðBÞMcðB0Þ ð144Þ

does not depend on c. However, McðB0Þ ¼McðBÞ if |c � g| is large enough (since B and B 0

agree far away from the cut), while MgðB0Þ ¼ 1 (because B0 ¼ B0�� � B0þþ) and
MgðBÞ ¼ �1 (by assumption). We have arrived at a contradiction.
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From the physical point of view, the impossibility to construct a suitable matrix B 0 indi-
cates the presence of unpaired Majorana modes on both sides of the cut. This situation
may be described by matrices B0�� and B0þþ having one zero eigenvalue.

The cutting obstruction and the relative Majorana number can also be expressed as
Fredholm determinants. To this end, consider the quasidiagonal matrix

W ¼ V ð0Þ expðpX Þ; where X ¼ 1
2

PðxÞBþ BPðxÞ� �
; PðxÞ ¼def

P½0;1Þ. ð145Þ

Clearly, X is real skew-symmetric and commutes with B. Hence W is orthogonal, and
WBWT = V(0)BV(0). On the other hand, X is equal to B at +1 and vanishes at �1,
therefore W is equal to 1 at ±1. One can actually show that W � 1 has a well-defined
trace. It follows that:

M0ðBÞ ¼ PfðWBW T;BÞ ¼ detW . ð146Þ

Similarly, one can define X 0, W 0 as functions of B 0. Thus

MðB;B0Þ ¼ detðW �1W 0Þ ¼ detðe�pX epX 0 Þ. ð147Þ

C.4.3. Applications to two dimensions

Eq. (147) may be used as a more general definition of the relative Majorana number,
which works even if MgðBÞ and MgðB0Þ do not exist. For example, let B be a quasidiag-
onal matrix in two dimensions and B 0 = (1 � 2P(y))B(1 � 2P(y)). In other words,
B0jk ¼ �Bjk, where the minus sign occurs when j and k lie on different sides of the x-axis.
If we regard the system as one-dimensional (collapsing it in the y direction), the Majorana
number MðB;B0Þ is well-defined and can be expressed in terms of the projector
P ¼ 1

2
ð1� iBÞ. The calculation follows.

First, we obtain an expression for the operator X:

X ¼ iðPPðxÞP � ð1� P ÞPðxÞð1� PÞÞ.
Then we use the relation 1 � 2P(y) = exp(±ipP(y)):

MðB;B0Þ ¼ det e�pX e�ipPðyÞepX eipPðyÞ
� �

¼ exp ip2Tr X ;PðyÞ# $� �
.

Finally, we compute the trace of the commutator:

Tr½X ;PðyÞ� ¼ TrððP 2 þ ð1� PÞ2Þ½X ;PðyÞ�Þ
¼ TrðP ½X ;PðyÞ�P þ ð1� P Þ½X ;PðyÞ�ð1� P ÞÞ
¼ iTr½PPðxÞP ; PPðyÞP � � iTr½ð1� PÞPðxÞð1� P Þ; ð1� P ÞPðyÞð1� P Þ�

¼ 1

2p
ðmðPÞ � mð1� P ÞÞ ¼ 1

p
mðP Þ;

because m (1 � P) = �m (P). Thus

MðB;B0Þ ¼ ð�1ÞmðPÞ. ð148Þ

Eq. (148) can be applied to the geometry shown in Fig. 15. In this case, B and B 0 cor-
respond to two different Z2-field configurations: the first is regarded as vortex-free and
the second has a vortex at the origin. The specific assumptions are as follows: (i) B
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and B 0 are real skew-symmetric quasidiagonal matrices in two dimensions; (ii) B and
B 0 coincide, except that B0jk ¼ �Bjk for those links which cross the ray r; (iii)
B2 = �1 (therefore (B 0)2 = �1 far away from the vortex). Note that MgðBÞ and
MgðB0Þ may be defined for a sufficiently large loop g enclosing the vortex. Let |g|
be the number of sites inside the loop. Then the absolute Majorana numbers
MðBÞ ¼defð�1ÞjgjMgðBÞ and MðB0Þ ¼defð�1ÞjgjMgðB0Þ do not depend on g and indicate
the presence of unpaired Majorana modes in B and B 0, respectively. However, an un-
paired mode cannot exist in B since B2 = �1; therefore MðB;B0Þ ¼MðB0Þ. We con-
clude that

MðB0Þ ¼ ð�1ÞmðPÞ. ð149Þ

Appendix D. Some remarks on the chiral central charge

This appendix is an attempt to understand the physical and mathematical meaning of
the chiral central charge beyond the CFT framework. Recall that chiral central charge is
just the coefficient c� in the edge energy current formula (57). This definition will be
refined in Section D.1. It turns out that the edge energy current is a property of the bulk
ground state. The edge current is related to a bulk 2-current. Although the theory is in
its embryonic stage, it looks like a second-quantized version of the Chern number for
quasidiagonal matrices (cf. Section C.3).

In Section D.2, we discuss modular transformations of the partition function on a
space-time torus. In particular, the phase factor e�2pic�=24 appears in the description of
the Dehn twist along a time circle. However, other modular transformations are difficult
to define because space and time are not physically equivalent.

D.1. The edge energy current and a bulk 2-current

D.1.1. Energy current in the Hamiltonian formalism

Let us represent the Hamiltonian as a sum of local terms:

H ¼
X
j

Hj; ð150Þ

whereHj is a Hermitian operator acting only on spins in some neighborhood of the point j.
Note that the decomposition into local terms is not unique. We also assume that the
ground state |Wæ is separated from excited states by an energy gap; thus equal-time spin
correlators decay exponentially with distance [16]. We may slightly extend the notion of
locality so that Hj acts on all spins but

Hj; r
a
k

# $&& && 6 uðjj� kjÞ; ð151Þ

where u is some function with fast decay at infinity (faster than any power). Then the
equal-time correlators also decay faster than any power, provided the spectrum is gapped.

Microscopic energy current can be defined for any system with Hamiltonian (150) at
finite temperature. It is convenient to fix the temperature at T = 1 and vary the Hamilto-
nian instead. The thermal average of an operator X is defined in the standard way:

hX i ¼ TrðqX Þ; where q ¼ Z�1e�H ; Z ¼ Tr e�H . ð152Þ
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According to the Heisenberg equation,

dHj

dt
¼ �i½Hj;H � ¼

X
k

f̂ jk; where f̂ jk ¼ �i½Hj;Hk�. ð153Þ

Thus the operator f̂ jk characterizes the energy current from k to j. We denote its thermal
average by fjk:

fjk ¼ f ðHj;HkÞ; where f ðA;BÞ ¼defh�i½A;B�i. ð154Þ

(Note that this definition depends on the decomposition of the Hamiltonian into local
terms.) Of course, the energy current is conserved:

ðof Þk ¼
def
X
j

fjk ¼ 0. ð155Þ

Indeed,

ðof Þk ¼ f ðH ;HkÞ ¼ Trð�iq½H ;Hk�Þ ¼ Trð�i½q;H �HkÞ ¼ 0;

since q and H commute.
Let us try to apply the general formula (154) to a specific geometry. Let H(1) be the

Hamiltonian of an infinite two-dimensional system with a ground state |Wæ and gapped
excitations. To simulate an edge, we introduce another Hamiltonian,

ð156Þ
where y (j) is the y-coordinate of the point j. Thus the lower part of the system is
‘‘bulk material’’ characterized by the state |WæÆW|, whereas the upper part is ‘‘empty
space’’ (actually, a set of noninteracting spins in the maximally mixed state). By
definition, the chiral central charge is 12/p times the total energy current in the
negative x-direction.

D.1.2. Representing the ground state by local constraints

At this point, we have encountered a technical difficulty: the energy current does not
necessarily vanish in the bulk. The problem can be avoided if we describe the ground state
by a set of local constraints. (A local constraint is a local operator that annihilates the
ground state.) Hamiltonians that are explicitly written as sums of local constraints, e.g.,
the Rokhsar–Kivelson model [76,19], have provided a lot of insight into properties of
quantum many-body systems.

Proposition D.1. Any gapped local Hamiltonian H ¼
P

jHj whose ground state |Wæ has zero

energy can be represented as a sum of Hermitian local operators eH j such that eH jjWi ¼ 0.

Proof sketch. Without loss of generality we may assume that ÆW—Hj—Wæ = 0. (If not,
change Hj by a constant.) Let all excited states have energy greater or equal to D. Choose
a smooth function bwðeÞ such that
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bwð�eÞ ¼ bwðeÞ�; bwð0Þ ¼ 1; bwðeÞ ¼ 0 for jej P D.

Its Fourier transform, wðtÞ ¼
R bwðeÞe�et de

2p decays faster than any power of t though more
slowly than e�c|t| (because bw is smooth but not analytic). We set

eH j ¼
Z 1

�1
eiHtHje

�iHtwðtÞdt. ð157Þ

It is easy to check that
P

j
eH j ¼ H and eH jjWi ¼ 0. A locality condition of the form (151)

can be established using the bound of Lieb and Robinson [77] on correlation propagation
(cf. [16]). h

For our purposes, we can actually use an arbitrary gapped Hamiltonian X ¼
P

jX j

made up of local constraints for the given state |Wæ. It turns out that the chiral central char-
ge depends only on the ground state. Indeed, one can interpolate between different sets of
local constraints for the same state. Consider the situation where the constrains are Xj
in close proximity of the edge, gradually changing to X 0j deeper in the bulk. No energy cur-
rent is associated with the transition between X and X 0.

As an aside, we conjecture that there is a set of local constraints Yj such that the Ham-
iltonian Y ¼

P
jY
y
jY j is gapped. Thus excitations can be efficiently detected locally, by cou-

pling each Yj to an external indicator: Hdetector ¼
P

j Y j " j1ih0jð Þj þ Y yj " j0ih1jð Þj
� �

. A
stronger version of this conjecture asserts that the original Hamiltonian H can be

represented as
P

jY
y
jY j, where Yj are local constraints. This is true for the quadratic

fermionic Hamiltonian (18), which needs to be offset by its smallest eigenvalue (25) so that
the ground state energy becomes zero. It is easy to see that the matrix |iA| is symmetric and
that

P
j;k jiAjð Þjkcjck is equal to Tr |iA| times the identity operator. Hence

H ¼ 1
4

X
j;k

iAjk þ ðjiAjÞjk
� �

cjck ¼
X
j;k

Djkcjck; where D ¼ 1
4
ðiAþ jiAjÞ P 0

(meaning that D is positive semidefinite). The matrix
ffiffiffiffi
D

p
is quasidiagonal, provided A is

quasidiagonal and has a spectral gap around zero. Thus we can represent the Hamiltonian
in the desired form:

H ¼
X
m

Y ymY m; where Y m ¼
X
k

ð
ffiffiffiffi
D

p
Þmkck. ð158Þ

D.1.3. Bulk 2-current

In the disk geometry (i.e., when interaction is strong near the origin and vanishes at
infinity), the chiral central charge is 12/p times the energy current in the counterclockwise
direction. Let us divide the disk into three sectors, A, B, and C in the counterclockwise
order (see picture in Eq. (124), or in Eq. (160) below). In this setting, the energy current
is
P

k2B
P

l2Afkl.
Let us try to represent the chiral central charge c� in a form that would explicitly depend on

the bulk Hamiltonian rather than the edge. To this end, we construct a 2-current h such that

f ¼ oh; where ðohÞkl ¼
def
X
j

hjkl. ð159Þ

(A 2-current is an antisymmetric function of three lattice sites that decays fast enough as
the distance between any two sites increases.) Then in the three-sector geometry we have:

A. Kitaev / Annals of Physics 321 (2006) 2–111 61



X
k2B

X
l2A

fkl ¼
X
k2B

X
l2A

X
j

hjkl

 !
¼ �

X
j2A

X
k2B

X
l2C

hjkl.

Thus,

ð160Þ

The last sum is dominated by a neighborhood of the triple contact point betweenA,B, andC.
Unfortunately, there is no canonical expression for hjkl. Instead, we can define a canon-

ical object g which is a 2-current on the lattice and a 1-form on the space of local Ham-
iltonians. It satisfies the condition

og ¼ df . ð161Þ
A suitable 2-current h is obtained by integrating g over an arbitrary path H (b): b 2 [0, 1)
in the space of spin Hamiltonians. Here we assume thatH (b) is a sum of local terms Hj (b),
the corresponding thermal state has short-range correlators, H (0) = 0, and H (b) � bH(1)

as b fi1. Thus we implicitly accept the following conjecture.

Conjecture D.2. The ground state of a gapped local Hamiltonian on a two-dimensional

lattice can be transformed into the maximally mixed state without a phase transition.

(In this formulation, b changes from 1 to 0.) Note that usual symmetry-related phase
transitions are not a problem because H (b) is not required to be symmetric. Rather, we
should worry about a transition from a topological phase to a non-topological one.
However, in two dimensions the long-range topological order in the ground state is
destroyed at any finite temperature. Indeed, all topological excitations are point-like
and not confined, therefore they have a finite density at any non-zero temperature. This
argument does not apply to three-dimensional systems, where string-like excitations are
possible.

Let us give an explicit formula for g. For any two operators A and B, we define the
Matsubara time-ordered average, as well as its ‘‘truncated’’ version:15

hAðsÞBð0Þi ¼ Z�1Trðe�ð1�sÞHAe�sHBÞ; where Z ¼ Tr e�H ; 0 6 s 6 1; ð162Þ
hhAðsÞBð0Þii ¼ hAðsÞBð0Þi � hAihBi. ð163Þ

Next, we define a function of three operators:

lðA;B;CÞ ¼ i

Z 1

0

hhAðsÞ½B;C�ð0Þiids. ð164Þ

Finally, we assume that the Hamiltonian H and the operators A, B, C depend on some
parameters, so that we can differentiate them. Now we can define g:

gðA;B;CÞ ¼ lðdA;B;CÞ þ lðdB;C;AÞ þ lðdC;A;BÞ; gjkl ¼ gðHj;Hk;HlÞ. ð165Þ

15 This notation is reminiscent of the formula A(s) = esH Ae�sH, but the latter may be problematic to use because
esH � exp(sbH(1)) diverges as b fi1. Thus the expression ÆA(s)B(0)æ should be viewed as a whole.
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Let us verify Eq. (161). Note that l (X, Y, H) = �iÆ[X, Y]æ because hX ðsÞ½Y ;H �ð0Þi ¼
d
ds hX ðsÞY ð0Þi and Æ[Y, H]æ = 0. We proceed as follows:

ogðB;CÞ ¼ gðH ;B;CÞ ¼ lðdH ;B;CÞ þ lðdB;C;HÞ þ lðdC;H ;BÞ
¼ ð�iZ�1Trðde�H ½B;C�Þ � ihdHih½B;C�iÞ � ih½dB;C�i þ ih½dC;B�i
¼ dð�iZ�1Trðe�H ½B;C�ÞÞ ¼ df ðB;CÞ.

D.2. Modular transformations beyond CFT

The modular invariance [62] is usually formulated in the CFT framework. In
this section, we demonstrate some modular properties of the partition function of
edge excitations, not assuming conformal, rotational, or any other symmetry. First,
let us generalize the transformation of the vacuum character16 under the Dehn
twist:

v1ðwþ 1Þ ¼ e�2pic�=24v1ðwÞ; ð166Þ
where w is the modulus of the torus and the subscript 1 refers to the vacuum sector.

In fact, the derivation of Eq. (166) does not require much more than the knowledge of
the energy-momentum tensor, or just its s x-component, which is exactly the energy cur-
rent I. (We use imaginary time, s = it.) In the thermodynamic limit, the coordinate trans-
formation17 (x, s) fi (x, s + n(x)) induces the action change dS ¼ iI

R
dn
dx dxds. If the

imaginary time is cyclic, then twisting it by a full circle results in the action change
dS ¼ i p

12
c� and the multiplication of the partition function by e�S ¼ e�2pic�=24. We now

describe a particular setting in which this result is applicable.
Let us consider the partition function Z = Tre�H/T of a spin system on a disk. As is

usual, we think of the evolution over the time period 1/T, making the edge into a torus
and the disk itself into the three-dimensional manifold M = D2 · S1. Let us suppose that
the temperature T is much smaller than the energy gap in the bulk, so that Z is mostly
determined by edge excitations. In fact, the partition function depends on full detail of
the edge Hamiltonian as well as some conditions in the bulk. For example, we may place
an anyon of type a somewhere in the disk, which slightly changes the edge excitation spec-
trum. In other words, we insert a particle worldline ‘ into the manifold M, or act by the
time-like Wilson loop operator Wa (‘). Thus a partition function Za is defined. If all edge
modes propagate with the same velocity v and can be described by a CFT, then
Za = va (�1/w), where w = iLT/v. In the limit wfi1,

16 Some care should be taken to make a proper connection between the physics of edge modes and the CFT
formalism. If all edge modes have the same chirality, characters correspond to representations of some chiral
algebra (as is usual in CFT). In general, the vacuum character v1 is defined as a sum over all fields with trivial
monodromy whereas va includes all fields that occur in the two-dimensional theory when an anyon of type a
emerges on the surface (see Fig. 9B).
17 For lattice models, one should consider the transformation (j, s) fi (j, s + nj). It should be possible to give an

exact quantum-mechanical interpretation of such a reparametrization by coupling the discrete derivative
gjk = nj � nk to the energy current operator f̂ jk ¼ �i½Hj;Hk �, where Hj, Hk are local terms in the Hamiltonian.
Such coupling is unambiguously defined only in the first order in gjk, but that does not affect the thermodynamic
limit.
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Za ¼ vað�1=wÞ ¼
X
b

SabvbðwÞ � Sa1v1ðwÞ; ð167Þ

because all characters vb (w) for b „ 1 are exponentially smaller than the vacuum character
v1(w).

The following argument does not depend on CFT. As already mentioned, twisting the
torus by n along a time circle leads to the action change by iIn/T, or the multiplication of
the partition function by e�iIn/T. (The sign in the exponent depends on the direction of the
twist; we choose it to be consistent with the CFT formula.) For the full twist, n = 1/T, we
get this equation:

Z 0a � e�2pic�=24Za. ð168Þ
Note that the finite-size quantization of edge modes might affect the energy current.
We therefore assume that the disk circumference L is much larger than the edge
correlation length ledge � v/T, where v is the maximum group velocity of any excitation
in the system.18 Small corrections proportional to exp(�L/ledge) are expected. Thus,
Eq. (168) and its estimated precision are in perfect agreement with the CFT formulas
(166) and (167).

With some more work, one can also derive an analogue of this CFT result:

vbðwþ 1Þ ¼ e�2pic�=24hbvbðwÞ; ð169Þ
where hb is the topological spin of b. In the non-conformal setting, the role
of the characters vb(w) is played by linear combinations of the partition func-
tions

eZb ¼
X
a

sb�aZa; ð170Þ

where sab are the entries of a topological S-matrix defined in terms of anyonic braiding, see
Eq. (223). (We distinguish it form the modular matrix S, though they actually coincide
when the latter is defined.) A calculation based on the insertion of a space-likeWilson loop
W bðe‘Þ shows that

eZ 0b � e�2pic�=24hbeZb. ð171Þ

This equation is indeed similar to (169) with one important difference: unlike va (w) and
va(�1/w), the numbers eZa and Za are not obtained by evaluating the same function.
Another problem is that the Dehn twist can only be performed along a time circle. It is
therefore not clear whether the full modular invariance can be established without confor-
mal symmetry, or at least a 90	-rotation symmetry of the space-time manifold.

Appendix E. Algebraic theory of anyons

This appendix is an attempt to present an existing but difficult and somewhat obscure
theory in an accessible form, especially for the reader without extensive field theory knowl-

18 A rigorous and completely general upper bound for the group velocity was obtained by Lieb and Robinson
[77]. It is consistent with the rough estimate v[ rJ, where J is the inter-spin interaction strength and r is its range.
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edge. (But we do assume some mathematical background and the willingness to follow
abstract arguments.) The presently available resources may be divided into three catego-
ries: the original field-theoretic papers where the relevant mathematical structure was dis-
covered [4,5], local field theory papers [6,7] (see Haag�s book [78] for a general reference on
this subject), and purely mathematical expositions [68,79,80]. Unfortunately, all these texts
have different focus and/or difficult to read. A nice elementary introduction can be found
in Preskill�s lecture notes on quantum computation [81], but more detail is needed for our
purposes.

The theory described below is applicable to two-dimensional many-body systems with
short-range interactions and an energy gap. Using some intuition about local excitations
in such systems, we characterize the properties of anyons by a set of axioms and derive
some corollaries. This approach is somewhat similar to what has been done rigorously
in local field theory. However, we avoid many difficulties by keeping the discussion at
the physical level until all essential properties are cast into a finite algebraic form, at which
point we enter the realm of mathematics.

More specifically, we claim that finite-energy excitations are classified by superselection
sectors: each sector consists of states that can be transformed from one to another by local
operations. (We do not care about rigorous definition here.) It is assumed that the full clas-
sification can be established by considering a small neighborhood of an arbitrary point (of
size compared to the correlation length). Another assumption is that local excitations can
be moved from one place to another by applying an operator along an arbitrary path.
Note that the quasiparticle transport need not be adiabatic, nor we require translational
symmetry. Topological properties, such as braiding rules, have invariant meaning inde-
pendent of possible disorder, cf. Fig. 10. Using some additional arguments, we will arrive
at a theory that may be called unitary braided fusion category (UBFC) (=unitary ribbon
category) in abstract language.19

With this approach, we get a weaker set of axioms compared to an analogous algebraic
structure in conformal field theory. Therefore some ‘‘obvious’’ properties require a proof.
(A similar situation occurs in local field theory, but our exposition is different in some
details and hopefully simpler.) For nonrelativistic quantum-mechanical models, the space
and time are not equivalent even if we use the imaginary time formalism. Thus the notion
of an antiparticle being a particle propagating back in time must be applied with caution.
The identity in Fig. 16A illustrates a standard use of this notion. (Shown in the figure are
space-time diagrams; time goes up.) On the left-hand side of the identity a particle a anni-
hilates with its antiparticle �a that was created as part of an �aa pair. If space and time were
related by a rotational symmetry, then the zigzag on the particle worldline could simply be
removed. In our formalism, this equation is satisfied by a suitable choice of normalization
factors for the creation and annihilation operators of particle–antiparticle pairs. However,
the relation in Fig. 16B is a nontrivial theorem; it follows from the positivity of Hermitian
inner product, see Section E.2. (In the categorical language, this result reads: ‘‘Any unitary
fusion category admits a pivotal structure.)’’

19 Note for experts (the general reader should not worry about this): a fusion category is a k-linear semisimple
rigid tensor category with finite-dimensional morphism spaces and finitely many simple objects such that
End(1) = k, see [30]. We take k ¼ C. A unitary fusion category is automatically pivotal, spherical, and
nondegenerate. In the presence of braiding, these properties imply the existence of a ribbon twist.
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Having formulated fusion and braiding axioms, we will touch upon another question:
What UBFCs can be realized by a Hamiltonian with given symmetry properties? The sim-
plest case is where there is no built-in symmetry or associated conservation laws. That is,
we assume that the system consists of spins (or other bosonic degrees of freedom) and the
Hamiltonian is in generic position. (Fermions are excluded because their number is always
conserved modulo 2.) Thus, any effective conservation law for quasiparticles must have
topological nature. In Section E.5, we formulate this condition as a certain nondegeneracy
property of the braiding rules. Theories satisfying this axiom are called unitary modular
categories (UMC).20

Unfortunately, UMC does not capture one important robust characteristic of the phys-
ical system, namely the chiral central charge c�. However, there is a beautiful relation
[7,61] that fixes c� mod 8:

D�1
X
a

d2
aha ¼ e2pic�=8; where D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiX
a

d2
a

r
; ð172Þ

da is the quantum dimension of the superselection sector a (see Section E.2) and ha is the
topological spin (see Section E.3). The left-hand side of Eq. (172) is denoted by H; its alge-
braic meaning will be explained in Section E.5. Roughly, H = S�1TSTST, where S is a so-
called topological S-matrix and T is the diagonal matrix with entries ha. We will see that H
is a root of unity, hence Eq. (172) implies that c� is rational.

The standard proof of Eq. (172) is based on the assumption that the system admits con-
formally invariant edge modes under suitable boundary conditions. Then one can employ
the modular invariance of the partition function on a space-time torus, which is estab-
lished in the CFT framework [62]. It is not known whether the conformality hypothesis
is true in general. One may, however, hope to find a proof that would not depend on con-
formal symmetry. In Section D.2 we made partial progress toward this goal. Specifically,
we showed that the matrix T ¼ e�2pic�=24T corresponds to the Dehn twist along a time cir-
cle. While S can also be regarded as a modular transformation in a suitable mathematical
theory, it is not clear whether that theory is applicable in the same context as the expres-
sion for T .

In the remaining part of the appendix we do not discuss the chiral central charge.
Our primary goal is to define a unitary braided fusion category (UBFC) and its special
case, unitary modular category (UMC). The definition is rather long, so we break it

20 The term ‘‘modular’’ refers to the possibility to define a Hilbert space associated with a torus, on which the
modular group acts. More generally, one can construct a so-called modular functor and a topological quantum field
theory [67,68,79] (but we do not cover these topics).

a

a

a

a

a a b

c

a b

c

A B

Fig. 16. Some ‘‘obvious’’ identities.
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into several parts. Each part contains some physical motivation, formal axioms in
terms of basic data and equations, as well as some corollaries. Note that our formula-
tion of the axioms does not involve the mathematical notion of category, so we call
the corresponding objects ‘‘theories’’ (e.g., ‘‘fusion theory’’ instead of ‘‘fusion catego-
ry’’). Only later do we introduce the powerful but heavy language of categories and
functors (also known as ‘‘abstract nonsense’’). It is surely overkill for most of the
problems considered in this paper, but the concept of tensor functor may actually
be useful in the study of phase transitions in anyonic systems, e.g., Bose-condensation
of spinless particle and weak symmetry breaking. (The last topic is considered in
Appendix F.)

E.1. Fusion theory

In this section we consider anyons on a line (though the physical system is two-di-
mensional). The motivation for the definitions has been provided in Section 10.4
(especially in Section 10.4.2). Each particle is characterized by a superselection sector
label (describing its ‘‘anyonic charge’’). The position and local degrees of freedom
may be ignored, but the order of particles is important. The main element of the
fusion theory is the space V ab

c —the state space of particles a and b restricted to have
total anyonic charge c. More exactly, vectors in this space correspond to different
ways of splitting c into a and b, or equivalence classes of local operators that effect
the splitting.

E.1.1. Splitting and fusion operators

While V ab
c may be called ‘‘splitting space,’’ the corresponding fusion space is denoted by

V c
ab. If w 2 V ab

c is a splitting operator, then wy 2 V c
ab is a fusion operator:

ð173Þ

where w and w� label the corresponding vertices. One may also use Dirac�s notation, i.e.,
write |wæ instead of w and Æw| instead of w�. By definition, the Hermitian inner product cor-
responds to the operator multiplication. Specifically, if n; g 2 V ab

c , then

ð174Þ

Similarly, one can define splitting and fusion of multiple particles. The most general
process is one transforming particles b1, . . . ,bm into a1, . . . ,ak. It can be performed in
two steps: first, fusing all the particles into one, and then splitting it as required. Therefore

V a1...ak
b1...bm

¼ �
c
V a1...ak

c " V c
b1...bm

. ð175Þ

For example, the identity operator acting on particles a and b can be decomposed as
follows:
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ð176Þ

where j stands for both wj and wyj — basis vectors in V ab
c and V c

ab, respectively.
The description of splitting and fusion will be complete when we understand relations

between different spaces V a1...ak
c . That is the topic of the following subsection.

E.1.2. Basic data and equations

The basic data include a set of superselection sectors, fusion rules, and associativity
relations. The latter satisfy so-called pentagon and triangle equations. An additional
condition (requiring the nondegeneracy of certain operators) will be formulated in
Section E.2.
Superselection sectors (also called ‘‘particle types,’’ or ‘‘labels’’): they form a finite

set M.
Fusion rules: For any combination of a, b, c 2M there is a fixed finite-dimensional Hilbert

space V ab
c . The numbers Nc

ab ¼ dimV c
ab ¼ dimV ab

c are called fusion multiplicities. The choice
of a special element 12M (the vacuum sector) is also considered part of the fusion rules.
Associativity relations: For each a, b, c, d 2M there is a canonical unitary isomorphism

between two Hilbert spaces:

ð177Þ

Note that both spaces in question are simply different representation of the same physical
space V abc

u —that of the particles a, b, and c restricted to have total anyonic charge u.
Therefore one may regard the isomorphism F abc

u as equality. This view is formally justified
by the pentagon equation and MacLane�s coherence theorem, which will be formulated
later. At a cruder, combinatorial level associativity may be expressed as follows:P

eN
e
abN

u
ec ¼

P
f N

u
af N

f
bc.

From the physical perspective, splitting off (or fusing with) the vacuum sector is trivial.
In any splitting diagram all lines labeled by 1 may be simply erased. To guarantee the con-
sistency of this procedure, we require that the spaces V a1

a and V 1a
a are not only one-dimen-

sional, but canonically isomorphic to C. In other words, these spaces are endowed with
fixed unit vectors jaai 2 V a1

a and jbai 2 V 1a
a . The canonical isomorphisms are given by

the formulas

aa : C! V a1
a : z 7! zjaai; ba : C! V 1a

a : z 7! zjbai; ð178Þ

where z 2 C. These isomorphisms must satisfy so-called triangle equations (see be-
low).Pentagon equation: The graphic representation of this axiom is shown in
Fig. 17A. Its exact meaning is this: for any x, y, z, w, u 2M the following diagram
commutes:
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ð179Þ
Arrow labels are abbreviated: for example, the arrow on the left (labeled by F xyz

q ) actually
designates the map

P
qF

xyz
q " idV qw

u
, where idV qw

u
is the unit operator on V qw

u .
According to MacLane�s coherence theorem [82], any sequence of F-moves between

two given trees results in the same isomorphism between the corresponding spaces:
the equality of all such isomorphisms follows from the pentagon equation. (Actually,
the theorem is a bit more general and also includes a- and b-moves, but we ignore them
for the moment.) This result may be regarded as a combinatorial statement. Indeed, let
us consider the graph Cn whose vertices are binary planar trees with n leaves and whose
edges correspond to F-moves. (The graph C5 is shown in Fig. 18A). Then the theorem
says that any cycle in the graph can be filled with pentagons and quadrilaterals. The lat-
ter correspond to the obvious fact that independent F-moves commute; such moves can
be nested as in Fig. 17B or occur in disjoint branches. MacLane actually shows that any
two directed paths between the same pair of vertices can be transformed one to the other
using the pentagon and quadrilateral equations; the proof is by induction on a suitable
parameter.

Let us also mention a beautiful geometric proof of the coherence theorem: the
graph Cn together with the set of 2-cells (i.e., the pentagons and quadrilaterals) can
be realized by the vertices, edges, and 2-faces of some convex polytope Kn of dimen-
sion n � 2. This polytope appeared in the work of Stasheff [83] and now bears his
name; it is also called associahedron. More exactly, this term refers to a certain com-
binatorial type of a polytope while its exact shape may vary. The faces of Kn in all
dimensions are associated with general (not necessarily binary) planar trees. In partic-
ular, the edges correspond to trees with one degree-3 vertex, the quadrilaterals corre-

Fpzw
u

Fxrw
u

Fs
yzw

Fxyt
u

Fxyz
q

x z wy

u

r
s

x z wy

u

r
q

x z wy

u

p
q

x z wy

u

p t
x z wy

u

t
s

F

F

F F (outer)(outer)

(inner)

(inner)

A B

Fig. 17. The pentagon equation (A) and a ‘‘quadrilateral identity’’ (B). (The latter is satisfied automatically.)
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spond to trees with two degree-3 vertices, and the pentagons correspond to trees with
one degree-4 vertex. Described in Fig. 18B is a concrete geometric realization of Kn
(cf. [84]). It is fairly easy to show that the convex hull of the points
ðx1; . . . ; xn�1Þ 2 Rn�1 obtained this way is characterized by one equation and nðn�1Þ

2
� 1

inequalities:Xn�1

j¼1

xj ¼ g1n;
Xl�1

j¼k
xj P gkl ð1 6 k < l 6 nÞ; where gkl ¼

def
X

k6u<v6l

luv. ð180Þ

Triangle equations: The three equations in Fig. 19 guarantee that adding or removing triv-
ial lines commutes with F-moves. Let us write the first equation in a more conventional
form:

ð181Þ

Lemma E.1. a1 = b1.

Proof. Let x = u and w = 1. Then first and the third triangle equations coincide, except
that the right arrow is b1 in Fig. 19A and a1 in Fig. 19C. But the right arrow is the com-
position of the other two, therefore it is the same in both cases. h

Lemma E.2 (cf. [80], Lemma XI.2.2). The first triangle equation (together with the penta-

gon and quadrilaterals) implies the second and the third.

A B

Fig. 18. The graph of F-moves between binary planar trees with n = 5 leaves (A) and the procedure used to assign
coordinates x1, . . . ,xn�1 to each tree (B).
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The statement of the lemma refers to formal tree calculus. Moves between
trees are bidirectional (therefore we may represent them by lines rather then
arrows). The quadrilaterals express the commutativity of disjoint F-, a-, and b-
moves.

Proof. Let us prove the equation in Fig. 19B.
First, we join an additional trivial branch to the trunk of each tree and show that the

resulting equation is equivalent to the original one. In the diagram on the right, the old
and the new equations constitute the top and the bottom of a triangular prism,
respectively. The sides of the prism are commutative quadrilateral, therefore the top
triangle commutes if and only if the bottom one does.

We now consider the bottom of the prism, which may be identified with triangle
4-7-5 in the new diagram. In this part of the argument it is not important that the
leftmost branch of each tree is trivial, so we represent it by a solid line. The outline
of the diagram corresponds to the pentagon equation. Triangles 3-1-6 and 4-2-5 are
instances of the equation in Fig. 19A, which is true by hypothesis. The quadrilater-
als 1-2-4-3 and 6-3-4-7 also commute. Thus the required triangle 4-7-5 commutes as
well.
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x1w

α x

x w

u

x

1

u

1x w

w

x w

u βu
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1xw
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Fig. 19. The fundamental triangle equation (A) and its corollaries (B and C).
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The equation in Fig. 19C is proved analogously. h

E.1.3. Examples

Several concrete theories have been presented in the main text, see Tables 1–3. Let us
now describe some general constructions leading to infinite series of examples.

1. Let the label set M be a finite group and the fusion rules correspond to the group mul-
tiplication. That is, the space V x;y

z is one-dimensional (with a basis vector wx;y
z ) if z = xy,

otherwise V x;y
z ¼ 0. The associativity relations are trivial. Note that if the group M is

non-Abelian, this fusion theory does not admit braiding.
2. The associativity constraints in the above example can be deformed as follows:

ð182Þ

where the vertices of the trees correspond to basis vectors and f (x,y,z) are some phase
factors. In this case the pentagon equation reads

f ðxy; z;wÞf ðx; y; zwÞ ¼ f ðx; y; zÞf ðx; yz;wÞf ðy; z;wÞ. ð183Þ

This is a cocycle equation, i.e., f is a 3-cocycle on M with values in U(1). One can show
that the triangle equations do not put any additional restriction on f but rather define a
and b:

ax ¼ ff ðx; 1; 1Þ�1wx;1
x ; bw ¼ ff ð1; 1;wÞw1;w

w ; ðf is an arbitrary phaseÞ. ð184Þ
The basis change wx;y

xy ! uðx; yÞwx;y
xy will result in a new cocycle g such that

f ðx; y; zÞ�1gðx; y; zÞ ¼ uðx; yÞuðx; yzÞ�1uðxy; zÞuðy; zÞ�1. ð185Þ
The right-hand side of this equation is the coboundary of the 2-cochain u, i.e., g
and f belong to the same cohomology class ef . Thus, the associativity relations are
classified by H3 (M,U(1)).For a concrete example, let M ¼ Z2 ¼ f1; ag. It is known
that H 3ðZ2;Uð1ÞÞ ¼ Z2, i.e., Eq. (183) has one trivial and one nontrivial solution.
The nontrivial solution is given by f (a,a,a) = �1, the other seven values being
equal to 1. This particular fusion theory admits two braidings: the counterclock-
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wise exchange of two a-particles is characterized by either +i or �i. Such particles
are called semions. Recall that Case 2 in Table 2 represents two independent spe-
cies of semions.

3. Let M be the set of irreducible representations of a finite group G and let
V ab

c ¼ HomC½G�ðc; a" bÞ. In other words, elements of V ab
c are intertwiners between c

and a " b, i.e., linear maps that commute with the group action. The associativity rela-
tions are given by 6j-symbols. This theory admits trivial braiding.

4. Examples 3 and 1 (with M = G) can be combined in what is called representation theory
of Drinfeld�s quantum double [85,80]. Models with anyons described by this theory were
proposed in [86] (gauge-symmetric Lagrangian) and in [24] (lattice Hamiltonian not
constrained by an external symmetry). This construction can be deformed by an arbi-
trary cohomology class ef 2 H 3ðG;Uð1ÞÞ, see [87,88].

5. A very interesting set of fusion theories is based on a Temperley–Lieb category, see e.g.,
Chapter XII in book [68]. These theories are also known as ‘‘representations of quan-
tum SU(2).’’

E.1.4. Calculations with planar graphs

The rules we have described allow us to work not only with trees but with arbitrary ori-
ented planar graphs. In particular, loops can be removed using Eq. (174). If we encounter
a subgraph like shown in Eq. (174) but with different labels at the top and at the bottom
(say, c 0 and c00), then its value is zero. Let us illustrate that by a concrete example, using the
fusion theory from Table 1 for , ¼ þ1:

In general, we consider planar graphs that satisfy the following conditions:

1. Vertices are associated with fusion/splitting spaces V u1;...;us
l1;...;lr

; the indices are represented
by prongs. There may also be external labels (terminals) at the bottom and the top
of the graph. Bottom terminals and upper indices are called sources, lower indices
and top terminals are called targets.

2. Each edge connects a source to an identically labeled target. (In pictures we use a single
label for the whole edge.)

3. The edges are transversal to the horizontal direction and oriented upwards. (We do not
show the orientation in drawing because it is obvious.)

To each vertex we also assign an element of the corresponding space V u1;...;us
l1;...;lr

.
Using associativity relations and Eqs. (174) and (176), we can compute the value

of the graph, X 2 V a1;...;ak
b1;...;bm

, where a1, . . . ,ak and b1, . . . ,bm are the external labels.
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Note that we may freely add or remove edges labeled with 1, thanks to the triangle
equations.

A general calculation strategy is based on the idea that X can be represented by a set of
maps X c : V b1;...;bm

c ! V a1;...;ak
c for each label c; this representation is closely related to the

decomposition of identity (176). Thus we apply Eq. (176) first, and then start shrinking
and removing loops as illustrated above. For example:

We will see that for theories with particle–antiparticle duality, condition 3 can be dis-
pensed with. The formalism will be revised so that edges can bend, changing their direc-
tion from upward to downward and back, and vertices can rotate by 360	 as in
Fig. 16B.

E.2. Particle-antiparticle duality

In this section we complement the fusion theory by the following condition.

Duality axiom. For each label a there is some label �a and vectors jni 2 V a�a
1 ; jgi 2 V �aa

1 such
that

haa " g F a�aa
a

�� ��n" bai 6¼ 0.

Note that the matrix element in question corresponds to a physical process in which the
�a-particle from an a�a-pair annihilates with a different copy of a:

ð186Þ

(The dotted lines and the associated labels, i.e., 1, aa, ba may be ignored.)
Let haa " g F a�aa

a

�� ��n" bai ¼ u, assuming that |næ and |gæ are unit vectors. We will see
that the spaces V a�a

1 and V �aa
1 are one-dimensional, therefore |u| is uniquely defined. The

number da = |u|�1, called quantum dimension, plays an important role in the theory. In
particular, da = 1 for Abelian particles (i.e., such that a · �a = 1), otherwise da > 1. If
�a = a, then we may set |næ = —gæ so that u itself has an invariant meaning.
Specifically,

ð187Þ

74 A. Kitaev / Annals of Physics 321 (2006) 2–111



where ,a is a uniquely defined phase, which is actually equal to ±1 (see below). This num-
ber is called Frobenius–Schur indicator; in the present context it was introduced by Freden-
hagen et al. [89].

E.2.1. Physical motivation for the duality axiom
The existence of antiparticles follows from a locality principle mentioned at the begin-

ning of this appendix: a quasiparticle can be moved from one place to another by applying
an operator that acts on spins along a path connecting the given points. (We are still con-
sidering anyons on a line, therefore the path is unique.) The action on different spins can
be performed at once or in any particular order. For example, to move a particle from
point 3 to point 1 on its left, it may be natural to move it first to some middle point 2,
and then to the final destination. But it is also possible to act on the interval [1,2] before
[2,3]. The intermediate state must be a particle–antiparticle pair.

For a slightly more rigorous argument, let X be an operator that moves a particle of
type a from 3 to 1, acting on spins along the interval. We can represent it as follows:

ð188Þ

where Yk and Zk act on disjoint sets of spins in some regions around [1,2] and [2,3], respec-
tively. Let Px

½s� (s = 1,2,3) be the projector onto states having particle x at point s; such
operators can be realized locally (to act in the gray circles in the above picture) if we only
allow states that are not excited away from the given three points. Finally, we define new
versions of X, Yk, and Zk:

X 0 ¼ Pa
½1�P

1
½2�P

1
½3�XP1

½1�P
1
½2�P

a
½3� ¼

X
k

Z 0kY
0
k;

Z 0k ¼ P1
½2�P

1
½3�ZkP

a
½3�; Y 0k ¼ Pa

½1�Y kP
1
½1�P

1
½2�.

ð189Þ

The operator X 0 still moves a from 2 to 3, but Y 0k and Z 0k overlap geometrically and there-
fore no longer commute. It is clear that each operator Y 0k creates an a-particle at point 1
and some particle at point 2, whereas Z 0k removes the second particle as well as the original
particle at point 3. Thus each product Z 0kY

0
k effects the process shown in Eq. (186), up to an

overall factor. This factor is nonzero for at least one value of k.

E.2.2. Some properties and normalization conventions

Lemma E.3. For each label a the corresponding label �a is unique. Moreover,

N1
ab ¼ N1

ba ¼ db�a.

Proof. Recall that N 1
ab ¼

def
dimV 1

ab ¼ dimV ab
1 . We first show that this number is equal to one

if b = �a and zero otherwise. Let n, g be as in the duality axiom, and let u be the correspond-
ing matrix element. For an arbitrary element w 2 V ab

1 we have:
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Therefore

To prove that N 1
ba ¼ db�a, we do a similar calculation with w0 2 V ba

1 , putting (w 0)� on the left
of n. h

Corollary E.4. �1 ¼ 1 and ��a ¼ a.
Let us now set new normalization conventions. In the definition of da we assumed that
|næand |gæare unit vectors, i.e., n�n = g�g = id1. However, it is more convenient to multiply
n and g by

ffiffiffiffiffi
da

p
(and some suitable phase factors) so that the zigzag on the left-hand side of

Eq. (186) could be simply removed. The so normalized operators for the creation of par-
ticle–antiparticle pairs will be represented as smooth ‘‘cups’’ with a triangle mark at the
bottom. The adjoint operators are ‘‘caps’’ obtained by flipping the pictures about a hor-
izontal line:21

ð190Þ

In all four cases, the triangle points from a to �a as we follow the line. The four operators
are defined up to a single phase and satisfy the following relations:

ð191Þ

ð192Þ

Eq. (191) and the first equality in (192) are true by definition. The second equality can be
proved analogously to Lemma E.3; the last two equalities are obtained by passing to ad-
joint operators. Roughly, the normalization conditions may be described as follows: oppo-
sitely oriented triangles cancel each other.

So far the label a was fixed. Repeating the same procedure for �a, we get a new set of
basis vectors in V a�a

1 ; V �aa
1 ; V 1

a�a; V
1
�aa, which must be related to the old ones:

ð193Þ

Combining these relations with Eqs. (191) and (192), we get:

j,aj2 ¼ d�a=da ¼ j,�aj�2
; ,að,��aÞ

�1 ¼ 1.

Thus,

21 This notation is not standard, but it is convenient for calculations. In the notation used in [68,79,80], cups and
caps are not decorated but each particle has a fictitious degree of freedom: it is considered as either a going up or �a
going down. This prevents noninvariant phases from appearing in formulas.
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d�a ¼ da; ,�a ¼ ,�a; j,aj ¼ 1. ð194Þ
In general, the number ,a depends on the arbitrary phases in the definition of cups and
caps. However, if a = �a, then ,a is defined uniquely and coincides with the Frobenius–
Schur indicator.22 In this case, ,a ¼ �1.

Now, we are in a position to relax the requirement that edges are transversal to the hor-
izontal direction.

Definition-Proposition E.5. A line is an alternating sequence of 2n cups and caps without
triangle marks. It may be open or closed. Such an object has a canonical normalization
given by n triangles pointing forward and n triangles pointing backward (relative to a
chosen path direction). All such decorations are equivalent.

Let us also renormalize the inner product on splitting spaces:

ð195Þ

(Triangles may be added in one of the two consistent ways; one may also flip the c-loop to
the left.) This renormalization does not violate the unitarity of associativity relations. The
inner product on fusion spaces is defined through the antilinear isomorphism
V ab

c ! V c
ab : w7!wy. When computing either type of inner product, we stack two trees with

branches touching each other and connect the roots by a loop. Stacking the trees root to
root might produce a different result, but it turns out to be the same since we can actually
rotate vertices by 360	, see below.

Finally, we rewrite Eq. (176) in a form that is consistent with the new rules:

ð196Þ
(the elements wab

c;j 2 V ab
c form a complete basis).

E.2.3. Raising and lowering of indices
Let us define the following linear maps:

ð197Þ

They are obviously invertible, hence Nc
ab ¼ Nb

�ac ¼ N �a
b�c ¼ N�c

�b�a ¼ N
�b
�ca ¼ Na

c�b. Unfortunately,
this does not save us from the need to distinguish between lower and upper indices because

22 In category theory, ,a is not a scalar but rather a morphism from a to ��a, which are regarded as different (albeit
isomorphic) objects. Thus the arbitrariness goes away, but the Frobenius–Schur indicator has to be defined in a
more complicated fashion.
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the simultaneous raising and lowering of indices on the two ends of a line results in the
factor ,a. For example:

ð198Þ

However, as the following theorem shows, we do not have to tie the types of indices to the
orientation of the corresponding vertex. This way, one obtains an isotopy-invariant calcu-
lus for planar graphs, see Table 5. We will continue using the previous notation, though.

Theorem E.6. The maps Aabc , Babc are unitary with respect to the inner product ÆÆ Æ | Æ ææ,
and the following diagram (in which the arrows may be traversed in both directions)

commutes:

ð199Þ

Note that the commutativity of this diagram is equivalent the ‘‘pivotal identity’’ in
Fig. 16B. The proof of the theorem is preceded by two lemmas.

Lemma E.7. The composition of any two adjacent arrows in Eq. (199) is unitary.

Proof. Due to symmetry, it suffices to consider just one particular case, e.g., the arrows
connected at the upper left corner. Let X ¼ ðBb�c

�a Þ
�1Aab

c : V ab
c ! V b�c

�a . For arbitrary elements
n 2 V ab

c ; g 2 V b�c
�a we have:

Therefore X�1 = X�. h

Now consider the two paths from top to bottom of the hexagon (199):

ð200Þ
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From the physical point of view, these operators (which are actually equal) correspond to
the CPT symmetry.

Lemma E.8. U y
l ¼ U�1

r .

Proof. Let n 2 V ab
c and g 2 V �c

�b�a. Then

h

Proof of Theorem E.6. Let us consider the path around the diagram (199) in the coun-
terclockwise direction, W ¼ U�1

r Ul. This operator is a composition of six arrows, therefore
it is unitary (due to Lemma E.7). On the other hand, Lemma E.8 implies that W ¼ U y

lUl is
Hermitian and positive semidefinite. It follows thatW is the identity operator, i.e., the dia-
gram commutes.

Thus, Ul = Ur; let us denote this operator simply by U. It is unitary by Lemma E.8. Any
arrow in the diagram is a composition of U (or U�1) and some number of arrow pairs.
Therefore all the arrows are unitary. h

E.2.4. Quantum dimension and fusion rules
This is a key identity:

dadb ¼
X
c

Nc
abdc. ð201Þ

To prove it, we use Eq. (196), the pivotal property, and Eq. (195)

Eq. (201) implies that the matrix bN ðaÞ ¼ ðNc
ab : b; c 2 MÞ has eigenvector v = (dc:c2M),

and the corresponding eigenvalue is da. Note that all the entries of v are positive. Accord-
ing to the Perron–Frobenius theorem (about matrices with nonnegative entries), all eigen-
values of bN ðaÞ satisfy the inequality

jkjðaÞj 6 da. ð202Þ

Thus, the quantum dimension da is the largest eigenvalue of the matrix bN ðaÞ.
The proof of Eq. (201) also motivates a definition of quantum trace. It is a number

assigned to any element X 2 V a1...an
a1...an

. Such an element acts as an operator in the space
V a1...an

c for each c; we denote this action by Xc. The quantum trace is defined as follows:
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ð203Þ

E.3. Braiding and topological spin

Braiding is an additional piece of algebraic structure characterizing anyons. It is
defined by a set of elements Rab 2 V ba

ab that represent transposition of two
particles:

ð204Þ

They must satisfy the Yang–Baxter equation, i.e., a line can be moved over or under a
crossing between two other lines:

ð205Þ

More generally, a line can slide over or under an arbitrary vertex. It is sufficient to
postulate this property for three-prong vertices representing splitting and fusion, and
for lines tilted left and right. Furthermore, splitting and fusion are related by the
decomposition of the identity (196), whereas changing the slope of the intersecting line
is equivalent to replacing R with R�1. Thus the number of independent conditions is
reduced to two:

ð206Þ

The description of braiding in terms of basic data amounts to specifying the action of Rab
on splitting spaces:

ð207Þ

Note that Rab
c is a unitary map, therefore Nc

ab ¼ Nc
ba.

To express Eq. (206) in terms of Rab
c , we join the two lines at the bottom of each graph

and perform equivalence transformations. These include F-moves as well as R-moves—ab-
sorbing a line crossing by a vertex. Thus we obtain the diagrams in Fig. 20; the bottom-
most arrow in each of them combines an R-move with the first or the second equation in

A. Kitaev / Annals of Physics 321 (2006) 2–111 81



question. We may now forget about the topological meaning of braiding and only keep
track of the linear maps involved:

ð208Þ

ð209Þ

These commutative diagrams are known as hexagon equations. They actually look nicer in
the tensor category formalism, see Eqs. (274) and (275).

Note that braiding with label 1 is trivial:

ð210Þ

(The proof is analogous to that of Lemma E.2.) Due to this property, we need not worry
about lines labeled by 1, e.g., ones that are implicitly attached to each cup and cap.

y xz

p

u

y xz

r

u

y xz

q

u

y xz
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u
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u

q

y z x
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r
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q
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R-1

F
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Fig. 20. The hexagon equations.

82 A. Kitaev / Annals of Physics 321 (2006) 2–111



To each label a we associate a complex number ha, called topological spin:

ð211Þ

It may also be characterized by any of the following relations:

ð212Þ

Note the following properties of the topological spin:

jhaj ¼ 1; h�a ¼ ha. ð213Þ

Indeed,

This is yet another expression for the topological spin:

ð214Þ

(To prove it, we need to put a left-oriented cap on both sides of the equation and rotate the
resultant figure-eight on the left-hand side by 90	.) In particular, if �a ¼ a, then we have the
following representation for the invariant scalar Raa

1 :

Raa
1 ¼ h�a,a. ð215Þ

Remark E.9. Eq. (215) provides a simple physical interpretation for the Frobenius–Schur
indicator ,a. Suppose that the system is rotationally invariant, so that not only the
topological spin but also the usual spin sa has physical meaning. Of course, sa may take
different values subject to the constraint e2pisa ¼ ha. Let us consider a pair of identical
particles with trivial total topological charge. What values does the total angular
momentum of this composite object take? This question may be answered as follows.
Assuming that both particles are in the same spin state sa and barring additional ‘‘isospin’’
degrees of freedom, the 180	 rotation is characterized by the phase factor eipsaeipsaRaa1 ¼ ,a.
Thus, the total angular momentum is even if ,a = 1 and odd if ,a = �1.

It is interesting that the effect of moving one particle around another is fully character-
ized by the topological spin:

Rba
c R

ab
c ¼

hc
hahb

idV ab
c

. ð216Þ

Proof. Consider the following element of the space V ab
ab:
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ð217Þ

Acting by it as an operator on the space V ab
c , we obtain the required identity. h

Theorem E.10 (Vafa [90]). The topological spins are roots of unity. More specifically,

hna ¼ 1, where the integer n „ 0 depends only on the fusion multiplicities.

Proof. Let us use this fact from linear algebra: for any integer matrix X there is an integer
matrix Y (the adjugate) such that YX = (det X)I. Therefore, if

Q
bh

Xab
b ¼ 1 for all a, then

hdetX
b ¼ 1 for all b.

To find multiplicative relations between topological spins, we consider determinants of
R- and F-moves. Such determinants generally depend on the choice of basis in the source
and the target space. So, let us fix a basis in each space V ab

c and replace the linear maps in
the hexagon Eqs. (208) and (209) by their determinants. Dividing the first equation by the
second, we get:

det �
p
ðRxy

p R
yx
p Þ " idV pz

u


 �
det �

q
idV yq

u
" ðRxz

q R
zx
q Þ


 �
¼ det �

r
idV yz

r
" ðRxr

u R
rx
u Þ


 �
.

Note that the determinants here are actually invariant and can be expressed in terms of
topological spins using Eq. (216):

Y
p

hp
hxhy


 �Np
xyN

u
pz Y

q

hq
hxhz


 �Nu
yqN

q
xz

¼
Y
r

hu
hxhr


 �Nr
yzN

u
xr

;

Y
p

hN
p
xyN

�p
zvþN

p
xzN

�p
yvþN

p
yzN

�p
xv

p ¼ ðhxhyhzhvÞNxyzv ; Nxyzv ¼
def
X
q

Nq
xyN

�q
zv; ð218Þ

where we have substituted v for �u.
For our purposes, it is sufficient to consider the case where x = y = a and z = v = �a.

Thus we obtain a system of equations described by a square matrix:Y
b

hXab
b ¼ 1; where Xab ¼ 4Naa�a�adab � 2Nb

a�aN
�b
a�a � Nb

aaN
�b
�a�a. ð219Þ

It remains to show that X is nondegenerate. For this purpose, we may divide the ath row
of X by Naa�a�a so that the matrix becomes 4I � Y; the eigenvalues of Y are bounded by a
suitable multiplicative matrix norm:

Y ab ¼ ðNaa�a�aÞ�1 2Nb
a�aN

�b
a�a þ Nb

aaN
�b
�a�a

� �
; jeigenvaluejðY Þj 6 max

a

X
b

jY abj ¼ 3.

Thus the matrix 4I � Y cannot have a zero eigenvalue. h

E.4. Verlinde algebra and topological S-matrix

In this section, we investigate some properties of fusion, based on the axioms stated
above. First, let as consider a fusion theory with particle–antiparticle duality, but without
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braiding. The Verlinde algebra is an associative *-algebra spanned by elements ea : a 2M
which satisfy the following relations:

eaeb ¼
X
c

Nc
abec; eya ¼ e�a. ð220Þ

The basis element ea 2 Ver may be represented by the matrix bN ðaÞ ¼ ðNc
ab : b; c 2 MÞ; this

representation is faithful. Since bN ð�aÞ ¼ bN ðaÞy, the algebra operation � corresponds to tak-
ing the adjoint matrix. Therefore, Ver is actually a finite-dimensional C*-algebra. Eq. (201)
says that the linear map Ver ! C : ea 7! da is a homomorphism.

If braiding is defined, then Nc
ab ¼ Nc

ba, therefore the Verlinde algebra is commutative. A
finite-dimensional commutative C*-algebra splits into several copies of C. Therefore we
have —M— distinct homomorphisms from Ver to C, which we refer to as fusion characters:

kj : Ver ! C; kjðaÞkjðbÞ ¼
X
c

Nc
abkjðcÞ. ð221Þ

The vector vj = (Kj(c) : c 2M) is a common eigenvector of the matrices bN ðaÞ, the eigen-
values being equal to Kj(a). Note that the matrices bN ðaÞ are normal, therefore eigenvectors
corresponding to distinct eigenvalues must be orthogonal. Thus the following orthogonal-
ity condition holds:X

a

kjðaÞkkðaÞ� ¼ 0 if j 6¼ k. ð222Þ

We will now construct a map from the set of labels to the set of fusion characters. Spe-
cifically, we are to show that some of the characters are given (up to a constant factor) by
the columns of the topological S-matrix S = (sab : a, b 2M), where

ð223Þ

The normalization factor 1=D with D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiP

ad
2
a

q
is chosen so that S is unitary under cer-

tain conditions.
Let us study properties of the numbers sab. First, we observe these symmetries:

sab ¼ sba ¼ s�a�b ¼ s�b�a ¼ s��ab ¼ s�b�a ¼ s�a�b ¼ s��ba. ð224Þ

Indeed, up to normalization we have:

Factors of the form sax/s1x often arise via this equation:

ð225Þ

For example, let us repeat the calculation done in proof of Eq. (201), but now with an
additional line passing through the loops:
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The first and the last expression are equal to saxsbx
s2
1x

id�x and
P

cN
c
ab

scx
s1x

id�x, respectively. Thus,

saxsbx
s1x

¼
X
c

Nc
abscx. ð226Þ

Comparing this equation with Eq. (221), we conclude that

sax
s1x
¼ kjðaÞ for some j ¼ jðxÞ. ð227Þ

In other words, for each x the map a´ sax/s1x is a fusion character.
In the next section, we will see that if braiding is sufficiently nontrivial, then the S-ma-

trix is unitary. In this case, the map from labels to fusion characters is one-to-one, and Eq.
(226) may be cast into a form known as Verlinde formula:

Nc
ab ¼

X
x

saxsbxs�cx
s1x

. ð228Þ

E.5. Braiding nondegeneracy = modularity

Let us recall the definition of a superselection sector: it is a class of states that can be
transformed from one to another by local operators. From the physical perspective, the
operators we use must respect any unbroken symmetry present in the Hamiltonian, e.g.,
the U (1) symmetry associated with the conservation of electric charge. Another example
is the number of fermions modulo 2, if that number is not conserved as an integer. (Here,
we speak about actual fermions forming the system rather than effective Majorana modes
obtained by a nonlocal transformation.) However, in the model studied in this paper the
superselection sectors are stable with respect to all local operators. More generally, we
may consider an arbitrary system built of spins or other bosonic degrees of freedom,
and ask for properties that are stable to a generic perturbation. In this case, the superse-
lection sectors have purely topological nature: some signature of a nontrivial excitation
x „ 1 will be preserved even if we cut out a piece of material containing the quasiparticle.
It is quite reasonable to assume that the presence of such an excitation can actually be
detected by an Aharonov–Bohm measurement, i.e., by moving a test particle a around
x. Thus, we arrive at the condition that the braiding is nondegenerate, which must be true
for any anyonic system not complicated by external symmetries.

Definition E.11. Braiding is said to be nondegenerate if for each label x „ 1 there is some
label a such that the operator RaxRxa is not identity.

Theorem E.12. In a theory with nondegenerate braiding, the following operator Sz acting in

the space Lz ¼ �bV bz
b is unitary:
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ð229Þ

Note that the standard S-matrix corresponds to z = 1. The operator Syz differs from Sz by
the orientation of crossings. (This is easy to show by considering a matrix element of Sz.)
The converse of Theorem E.12 is also true and can be proved easily: if the standard S-ma-
trix is unitary, then the braiding is nondegenerate.

Lemma E.13. The operator RaxRxa is trivial for all labels a if and only if x is mapped to the

trivial fusion character j (x) = j (1), i.e., if sax/s1x = da for all a.

Proof. The triviality of RaxRxa means that for all c, Rax
c R

xa
c ¼ idxac , i.e., hc

hxha
¼ 1 whenever

Nc
xa 6¼ 0. We calculate sx�a ¼ s�ax using Eq. (223):

Dsx�a ¼
X
c

Nc
xa

hc
hxha

dc ¼
X
c

Nc
xadc ¼ dxda.

Thus, sax/s1x = da. Conversely, if the operator RaxRxa is nontrivial, then

DRe sx�a ¼
X
c

Nc
xaRe

hc
hxha


 �
dc <

X
c

Nc
xadc ¼ dxda;

therefore sax/s1x „ da. h

The proof of Theorem E.12 is based on the following equation, which is useful on its own
right:

ð230Þ

Indeed, the condition j (x) = j (1) means that the fusion character kj(x):a´ sax/s1x is trivial,
i.e., sax/s1x = da. On the other hand, if kj(x) is nontrivial, then it is orthogonal to the trivial
character, i.e.,

P
adas

�
ax ¼ 0. The above equation combines both cases.

Proof of Theorem E.12. By Lemma E.13, the nondegeneracy condition implies that
j(x) = j(1) if and only if x = 1. Thus, the linear combination of loops in Eq. (230) is a pro-
jector onto label 1. We apply it as follows:

ð231Þ

h

Theories with a unitary S-matrix are often called modular due to their relation to
the group of diffeomorphisms of the two-dimensional torus considered up to topolog-
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ical equivalence (namely, isotopy). Let us discuss this subject at a speculative level.
The first thing to note is that a system of spins or electrons can in principle be put
on a torus whether or not the braiding is nondegenerate. However, as indicated ear-
lier, degeneracy generally occurs due to some external symmetry. If it is a gauge sym-
metry, then putting the system on the torus involves some choice. For example, in the
case of U (1) symmetry, one may run an arbitrary magnetic flux through each basic
circle of the torus. Those fluxes can be detected by Aharonov–Bohm measurements,
but they cannot be changed by intrinsic operations, which include splitting, fusion,
and moving particles around the torus. Mathematically, such operations form a so-
called skein algebra, which may be defined in terms of graphs on the torus up to
equivalence transformations. (Recall that a planar graph without external lines can
be transformed to a number, therefore the skein algebra of the plane is simply C.)
The skein algebra is a finite-dimensional C*-algebra; in general it is a direct sum of
several blocks, each block being isomorphic to the algebra of operators on some
finite-dimensional Hilbert space. Physically, different blocks correspond to different val-
ues of external parameters such as the magnetic fluxes. Modular theories are special in
that there is only one block. In other words, the torus is characterized by a single
finite-dimensional space.

The Hilbert space of the torus is actually M ¼ CM . A basis in this space may be asso-
ciated with effective anyonic charge that is detected by an Aharonov–Bohm measurement
along some circle. Different circles correspond to different bases. The S-matrix effects a
transition between two bases. Other important matrices are C ¼ ðd�ab : a; b 2 MÞ (which
corresponds to a 180	-degree rotation) and T = (hadab : a, b 2M) (which corresponds to
a Dehn twist). We will justify this description by showing that S, C, and T obey the mod-
ular relations up to a phase factor H:

ðST Þ3 ¼ HC; S2 ¼ C; C2 ¼ I ; ð232Þ

where

H ¼ D�1
X
a

d2
aha. ð233Þ

As a corollary, note that H is a root of unity. Indeed, S4 = I, therefore
H4|M| = (det T)12 is a product of topological spins, which are roots of unity by
Theorem E.10.

Let us actually study relations between more general operators acting in the space
Lz ¼ �bV bz

b (which corresponds to a punctured torus, with z being the anyonic charge
of the puncture). The operator Sz has been already defined, whereas

ð234Þ

Theorem E.14. The operators Sz, Cz, and Tz satisfy the following modular relations:

SyzT zSz ¼ HT yzS
y
zT
y
z ; Sz ¼ SyzCz; C2

z ¼ h�z . ð235Þ
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Proof. The calculation of SyzT zSz parallels the proof of Theorem E.12, but the nondegen-
eracy condition is not necessary. First, let us apply the S-matrix to the row vector with
entries dahaX

a

dahasa�x ¼
1

D

X
a;c

daNc
ax

hc
hx
dc ¼

1

D

X
c

dxdc
hc
hx
dc ¼ Hdxh

�
x .

The result may be written as follows:

ð236Þ

Then we replace the single line by two lines and simplify the result (cf. Eq. (217)):

ð237Þ

Attaching a graph representing w 2 V �yz
�y to the first and the last expression, we get SyzT zSzw

and HT yzS
y
zT
y
zw, respectively.

Now, we show that Sz ¼ SyzCz. If w 2 V bz
b , then

The formula C2
zw ¼ h�zw follows from (217). h

E.6. Gauge freedom and Ocneanu rigidity

In the preceding sections, we defined a theory of anyons as a solution to a certain
system of algebraic equations for F abc

u , aa, ba, and Rab
c . Specifically, these are the penta-

gon equation, the triangle and hexagon equations as well as unitarity conditions. (The
unitarity conditions are algebraic in the real and imaginary part of the corresponding
matrices.) The set of solutions is some real algebraic variety. This description, however,
does not take into account a gauge degree of freedom. Indeed, two solutions are phys-
ically equivalent if they are related to each other by a simultaneous basis change in the
spaces V ab

c . In the examples studied in this paper, quotienting over such transformations
makes the set of solutions discrete. In other words, the algebraic structure is rigid, with
the physical consequence that the properties of anyons are stable to small perturbations
of the Hamiltonian. Is it true in general? The affirmative answer was obtained by
Ocneanu, but he did not publish his proof. The only written proof I know of is due
to Etingof et al. [30], but it is more general and hence complex; in particular, it does
not depend on the unitarity or the pivotal property. Meanwhile, the proof of Ocneanu
rigidity for unitary theories is not very difficult and may be interesting to a mathematical
physicist.
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To prove that a solution to an equation system is rigid, one needs to study infinitesimal
deformations. Let us call a deformation of F, a, b, R permissible if it satisfies the equations
in the first order of Taylor expansion. The deformation is called trivial if it can be obtained
by a change of basis, also in the first order. (By restricting our attention to the first order,
we potentially make the space of permissible deformations larger and the space of trivial
deformation smaller.) Our goal is to calculate the quotient, permissible modulo trivial, and
show that it vanishes. The analysis consists of several steps.

First, we only consider F and the pentagon equation. The resulting deformation prob-
lem resembles the definition of H 3ðG;RÞ for a group G. In fact, it is exactly that in example
2 of Section E.1.3. Associated with an arbitrary fusion theory is a cochain complex defined
by Crane and Yetter [91] and independently by Davydov [92]. It is a sequence of real spac-
es and linear maps

C1!d
1

C2!d
2

C3!d
3

� � � ð238Þ
whose third cohomology space H 3ðCÞ ¼def

Kerd3=Imd2 classifies the nontrivial deformations
of the theory. (The first and the second cohomology spaces have natural interpretation
too.) We will use the term ‘‘tangent cohomology’’23 proposed by Davydov.

It is well known that any finite group has trivial real cohomology in all dimensions
nP 1. Likewise, the tangent cohomology vanishes for an arbitrary unitary fusion theory
(actually, any fusion theory). The proof of this statement is based on the same idea as the
corresponding proof for groups. In the latter case, one uses averaging over the group,
which is well defined because the group is finite. For a unitary fusion theory, one needs
to take the quantum trace (actually, a partial quantum trace) and average it over the label
set with weight da=D

2.
The next step is to include a, b and to consider the triangle equations. This is just a tech-

nical detail that involves trivial changes to the deformation theory [93]. (The argument is
quite general and applicable even if the label set is infinite, in which case the cohomology
may not vanish.) The rigidity of braiding follows from the vanishing of H2 (C) in conjunc-
tion with Vafa�s theorem (see Theorem E.10).

E.6.1. Gauge freedom in the description of anyons

An isomorphism between two fusion theories, A and A0 is given by a bijection between
the label sets (we simply assume that they are equal) and a collection of unitary maps24

Cab
c : ðV 0Þabc ! V ab

c ; these data are enough to relate one system of associativity constraints
to the other:

ð239Þ
For example, let A0 be obtained from A by changing left and right, i.e.,
ðV 0Þabc ¼ V ba and ðF 0Þabcu ¼ ðF cba

u Þ
�1. If theory A has braiding R, then Cab

c ¼ ðRab
c Þ

�1

23 Etingof, Nikshych, and Ostrik call it ‘‘Yetter cohomology’’ in recognition of Yetter�s further work in this area.
24 The direction of these maps is chosen to be consistent with the definition of a tensor functor (see Definition

E.25).
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is an isomorphism (for a quick demonstration, apply the Yang–Baxter braid (205)
to both trees above). However, we will be mostly interested in the case where
ðV 0Þabc ¼ V ab

c so that Cab
c may be called ‘‘basis change’’; examples can be found in

Sections 10.4 and 11.
By analogy with Eq. (239), one can write similar equations for aa versus a0a and ba ver-

sus b0a. However, the physical meaning of a and b is rather elusive, so it is not clear whether
we obtain the most general form of equivalence this way. A reasonable notion of isomor-
phism between two theories, namely tensor functor arises naturally in the categorical for-
malism (see Section E.7.3). To state it in concrete terms, we just need to supplement the
basis change with an overall phase factor c so that

aa ¼ Ca1
a ca0a; ba ¼ C1a

a cb0a. ð240Þ

Finally, the braiding rules are changed as follows:

Rab
c Cab

c ¼ Cba
c ðR0Þ

ab
c . ð241Þ

Thus, we have defined the family of theories A0 that are isomorphic to a given theory A.
However, their parametrization by Cab

c and c is redundant. In particular, F, a, b, R do not
change if we replace Cab

c and c with Uab
c and u such that

Uab
c ¼

hc
hahb

Cab
c ; u ¼ h1c; ð242Þ

where hx are arbitrary phase factors. In the categorical language, the tensor functors de-
fined by (C,c) and by (U,u) are isomorphic.

Thus we have entities of dimension 0, 1, and 2: theories of anyons, 1-isomorphisms (i.e.,
isomorphisms between theories), and 2-isomorphisms (i.e., isomorphisms between 1-iso-
morphisms). Let us define three sets indexed by a complementary dimension:

1. 2-automorphisms h of a given 1-isomorphism (C,c).
2. Equivalence classes of 1-automorphisms (C,c) of a given theory A up to 2-

isomorphisms.
3. Equivalence classes of theories with given fusion multiplicities up to 1-isomorphisms.

The first set is an Abelian group, the second is a group (see Appendix F), the third does
not have any special structure.

E.6.2. Infinitesimal deformations and the vanishing of tangent cohomology

Let us define infinitesimal analogues of sets 1, 2, 3; we will eventually prove that they
are trivial. The constructions involved are typical to cohomology theory, following a pat-
tern that may already be recognized by studying set 1. We are eventually interested in set 3,
which classifies solutions of the pentagon equation up to a basis change. In this subsection,
we ignore braiding and all attributes of the vacuum sector (i.e., c, a, b, and the triangle
equations); these things will be considered later.

For a fixed fusion theory with associativity constraints F abc
u , let

ha � 1� iXa; Cab
c � idV ab

c
� iY ab

c ; ðF 0Þabcu � F abc
u idV abc

u
� iZabc

u

� �
; ð243Þ
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where Xa is an infinitely small real number and Y ab
c , Zabc

u are infinitely small Hermitian
operators acting in V ab

c and V abc
u , respectively.25 Now, let us substitute the expressions

for h and C into Eq. (242), assuming that Uab
c ¼ idV ab

c
. We get:

Y ab
c ¼ ðd

1X Þabc ¼
defðXb � X c þ XaÞidV ab

c
. ð244Þ

An infinitesimal analogue of set 1 is the space of deformations X = (Xa:a 2M) such that
d1X = 0. One can deal with Eq. (239) and the pentagon equation in an analogous way.

To present the results in a more convenient form, let us get rid of the lower index c. (In
a categorical formulation of the theory, it does not appear at all.) Note that the set of oper-
ators Y ab

c for all c represents the action of a single element Y ab 2 V ab
ab, which may be con-

structed as follows:

ð245Þ

(cf. Eq. 196). For ðd1X Þabc this procedure yields:

ð246Þ

More generally, we can use the following definition.

Definition E.15. Let Cn be the set of self-adjoint elements in �a1;...;anV
a1...an
a1...an . The tangent

complex of the fusion theory is the sequence of R-linear maps

C0!d
0

!d
1

C2!d
2

C3!d
3

� � � ; dn ¼
Xnþ1

k¼0

ð�1Þkf nk ; ð247Þ

where the maps f nk : Cn ! Cnþ1 are defined as follows:

ð248Þ

25 To be rigorous, Zabcu acts in the space �eV ab
e " V ec

u , the representation of V abc
u corresponding to the ((ab)c)

label grouping. But that is not so important as we always identify different groupings (=trees) using F.
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(For n = 0 we use V £

£ ¼
def V 1

1 ¼ C, hence C0 ¼ R. Correspondingly, f 0
0 ; f

0
1 : 1 7!

P
aidV a

a
,

therefore d0 ¼ f 0
0 � f 0

1 ¼ 0.)
Note that C is indeed a cochain complex, i.e., dn+1dn = 0, which follows from this easily
verifiable identity:

f nþ1
k f nm ¼ f nþ1

mþ1f
n
k for 0 6 k 6 m 6 nþ 1. ð249Þ

(It is part of structure that makes C into a cosimplicial space.)
The reader may check that Eq. (239) becomes Z = d2Y. Therefore, the infinitesimal ana-

logue of set 2 is given by solutions to the equation d2Y = 0 modulo elements of the form
Y = d1X. Similarly, the pentagon equation may be written as d3Z = 0, and the solutions
should be considered modulo d2Y. Thus, low-dimensional cohomology of the tangent
complex has the following meaning:

• H 0ðCÞ ¼ R;
• H1 (C) classifies infinitesimal 2-automorphisms of the identity 1-automorphism;
• H2 (C) classifies infinitesimal 1-automorphisms (i.e., basis changes that leave the asso-

ciativity constraints invariant) up to 2-isomorphisms;
• H3 (C) classifies infinitesimal deformations of the fusion theory up to 1-isomorphisms

(i.e., arbitrary basis changes).

Theorem E.16. Hn(C) = 0 for all n > 0.

Proof. We will use a standard method of proving vanishing cohomology results, namely
contracting homotopy. Let

ð250Þ

We will show that dv + vd = 1 or, more exactly,

vnþ1dn þ dn�1vn ¼ idCn for n > 0. ð251Þ

If this is true, then any X 2 Kerdn can be represented as dn�1vnX 2 Im dn�1, hence
Hn (C) = 0.

Eq. (251) is an immediate corollary of this identity:

vnþ1f nk ¼
idCn if k ¼ 0;

f n�1
k�1 vn if k; n > 0.

�
ð252Þ

Let us rewrite it using graphic notation:
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(the case k > 1 is trivial). The equation for k = 0 is also obvious, whereas the one for k = 1
follows from this identity:

where we have used Lemma E.7. (Note that we did not use the pivotal property or the pos-
itivity of the inner product; this sheds some light on why the result holds in a more general
setting [30].) h

E.6.3. Technicalities related to the unit and braiding
Let us now take into account additional structure that was neglected in the above anal-

ysis. We will get more variables and more equations, but the old equations will not change.
The new degrees of freedom are characterized by infinitely small real numbers g, Aa, Ba
and Hermitian operators W ab

c which are defined as follows:

c � 1� ig; a0a � ð1� iAaÞaa; b0a � ð1� iBaÞba; ð253Þ
ðR0Þabc � Rab

c ðidV ab
c
� iW ab

c Þ. ð254Þ

(Recall that c is part of the definition of a 1-isomorphism.) It has been previously shown
that any infinitesimal deformation of the associativity constraints F can be compensated
by a suitable basis change C. Although a, b, and R may still remain deformed, the problem
is reduced to the case where F is fixed. Furthermore, any infinitesimal basis change not
affecting F has the form (242), hence a, b, or R are not altered either. The only parameter
to tune is c � 1 � ig.

Let us first show that any permissible deformation of a and b is trivial, where ‘‘permis-
sible’’ means satisfying the triangle equations and ‘‘trivial’’ means satisfying Eq. (240).
Taken to an infinitesimal form, the first triangle equation (see Fig. 19A) and Eq. (240)
read:

Ax ¼ Bw for all x;w; g þ Aa ¼ g þ Ba ¼ 0 for all a. ð255Þ
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Clearly, the first condition implies the second if we put g = �A1.
Thus, we may assume that the whole fusion theory, i.e., F, a, and b are fixed. It remains

to show that the braiding deformation W vanishes, provided it satisfies an infinitesimal
version of the hexagon equations. Instead of using the hexagon equations directly, we will
rely on the fact that braiding defines an isomorphism between the given fusion theory A
and the theory A0 in which left and right are changed. Thus ðRab

c Þ
�1ðR0Þabc is an automor-

phism of A. It follows that d2W = 0, hence

W ab
c ¼ ðd

1X Þabc ¼ ðXb � X c þ XaÞidV ab
c

.

for some X 2 C1. It is important that the right-hand side is a scalar times the identity,
which enables us to calculate the deformation of Rba

c R
ab
c ¼ hc

hahb
easily:

h0c
h0ah

0
b

� hc
hahb

ð1� 2iðXb � X c þ XaÞÞ.

But the topological spin is rigid due to Vafa�s theorem, hence Xb � Xc + Xa = 0.

E.7. Categorical formalism (aside)

Categories and functors are the language used by mathematicians to describe fusion,
braiding, and related concepts. I originally tried to write an exposition of the theory of
anyons using this formalism, but found it too awkward. I still think that functors are nec-
essary for the understanding of phase transitions and other advanced properties of anyon-
ic systems, but most things can be explained in more elementary terms. This section is a
remainder of the abandoned plan. Please be warned that these notes are very incomplete,
e.g., there is no discussion of duality and related concepts: rigid, pivotal, and spherical cat-
egories (not to mention that we focus on semisimple categories—this restriction is natural
for the intended applications).

Let us outline the main elements of the theory. An abstraction called tensor category
generalizes the notion of fusion theory. While anyonic fusion has a compact description
in terms of basic data, a category is a huge collection of ‘‘objects’’ related by ‘‘morphisms.’’
However, these relations form a regular structure that does not leave much freedom of
choice. A rather trivial example is the category Hilb, whose objects are all possible
finite-dimensional Hilbert spaces and the morphisms are all linear maps. A more interest-
ing category Rep (G) is defined as follows: the objects are finite-dimensional unitary repre-
sentations of a compact group G and the morphisms are intertwiners. We may also think
of a fusion theory as a category: the objects are finite sequences of particle labels, and the
morphisms between (b1, . . . ,bm) and (a1, . . . ,ak) are fusion/splitting operators, i.e., ele-
ments of the space V a1...ak

b1...bm
. Another way to turn a fusion theory into a category will be

described later.
By definition, a tensor category is equipped with an operation h that is analogous

to fusion. The role of the vacuum sector is played by a special object 1. In the cate-
gories Hilb and Rep (G), the operation h is the usual tensor product and 1 is the set of
complex numbers C regarded as a one-dimensional space or the trivial representation
of G.
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Yet another example: the matrix categoryMatm, m. In this category,26 objects are m · m
matrices whose entries are finite-dimensional complex linear spaces, morphisms between
matrices are entrywise linear maps, and

ðA�BÞjl ¼ �
k
Ajk " Bkl; 1jk ¼

C if j ¼ k;

0 if j 6¼ k.

�
ð256Þ

(If the matrix entries are finite-dimensional Hilbert spaces, we use the notation Matym;m be-
cause in this case each morphism has a Hermitian adjoint.) Note that (Ah B) h
C = Ah (B h C) and Ah 1 = A = 1 h A; tensor categories with this property are called
strict. In general, the equalities are replaced by isomorphisms F, a, and b satisfying the
pentagon and triangle equations.

A tensor functor is a map from one tensor category to another, a classic example being
the embedding Rep(G) fi Hilb. Tensor functors have some physical applications, such as
transformations of particles by global symmetries (see Appendix F). They are also related
to the gauge freedom in the description of anyonic fusion, cf. Eqs. (239), (240), and (242).
However, our main goal is to understand the status of the isomorphisms F, a, b. To this
end, we will find an embedding of an arbitrary tensor category into a strict one by a tensor
functor that preserves distinction between morphisms (such functors are called faithful). In
particular, any unitary fusion theory with label set M embeds into the matrix category
MatyM ;M . The embedding theorem implies

MacLane�s coherence theorem. All morphisms composed of F, a, b and having the same
source and target are equal.

Indeed, in the strict category the source and the target are the same object, and any
composition of F, a, and b is the identity morphism (i.e., equality). Thus all such compo-
sitions in the original category are mapped to the same morphism. Since the functor pre-
serves distinction between morphisms, the original morphisms are also equal.

E.7.1. The basics of category theory

A category is a collection of objects and morphisms. The set of morphisms from A to B
in a category C is denoted by CðA;BÞ.
Morphisms are anything that can be composed: if f : Afi B and g : Bfi C, then

gf : Afi C. It is only required that (hg) f = h (gf) and that every object A has an identity
morphism idA such that fidA = idBf = f for any f : Afi B. (Example: objects are vertices
of a given graph, morphisms are paths of arbitrary length, identity morphisms are paths
of length 0.)

A morphism f : Afi B is called an isomorphism if there is a morphism f�1 : Bfi A such
that f�1f = idA and ff�1 = idB. Notation for isomorphic objects: A @ B.

For applications in quantum mechanics, the basic example is the category Hilb of
finite-dimensional Hilbert spaces. Among its objects are the set of complex numbers C

and the one-dimensional space corresponding to the first level of a harmonic oscillator.
These two spaces are isomorphic but different. (The isomorphism maps the complex
number 1 to a normalized wavefunction w, but this map is not canonical because there
is no reason to prefer w over �w.) So, it does not generally make sense to ask whether

26 The more scientific name for this creature is Cm-mod-Cm, the category of finite-dimensional bimodules over
the algebra Cm (the product of m copies of C).
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two given objects are equal (unless they are the same by definition). Morphisms between
two given objects may be compared for equality though. For two objects, X and Y, a
reasonable question is whether X @ Y. Of course, two spaces are isomorphic if and only
if they have the same dimension. But we also want to keep track of isomorphisms, for
they may not commute: a sequence of isomorphisms may result in a nontrivial automor-
phism u:Xfi X, u „ idX. (For Hilbert spaces, it is natural to consider unitary
isomorphisms.)

The next example has motivation in superselection theory. Let us consider an infinite
spin system which is almost in the ground state, with excitations being allowed only in
some finite region. Quantum states of such a system are classified by superselection sectors.
For each sector a the state belongs to some finite-dimensional Hilbert space Xa, which
depends on specific constraints on the excitations. We are going to consider different sets
of constraints (called ‘‘objects’’) and transformations from one object to another (called
‘‘morphisms’’).

Definition E.17. Let M be some set. The category VecyM is defined as follows.

• An object X 2 VecyM is a collection of finite-dimensional Hilbert spaces (Xa : a 2M), of
which only finitely many are nonzero.

• A morphism f : X fi Y is a collection of linear maps fa : Xa fi Ya (for each a 2M). The
identity morphism idX : X fi X consists of the unit operators acting in Xa.

• Additional structure: The set VecyMðX ; Y Þ of morphisms from X to Y is a complex linear
space. For any f:X fi Y we define the adjoint morphism f�:Y fi X such that (f �)a = (fa)

�.

A unitary isomorphism is an isomorphism f such that f �1 = f �.
An simplified version of this construction is the category VecM: we use complex linear

spaces instead of Hilbert spaces and do not consider adjoint morphisms.
For each a 2M we define the object [a] such that ½a�a ¼ C and [a]b = 0 for b „ a. Objects

isomorphic to [a] are called simple. For any object Y,

Y a ¼ VecyMð½a�; Y Þ. ð257Þ

From the physical perspective, simple objects correspond to quantum states (e.g., a parti-
cle pinned to a point), whereas [a] is a reference state in the given superselection sector. For
a more formal example, consider the category Rep (G) whose objects are finite-dimensional
unitary representations of a compact group G and whose morphisms are intertwiners. Let
M be the set of irreps considered up to isomorphism, and let [a] be a particular irrep in the
given isomorphism class. Then, we may identify the category A ¼ RepðGÞ with VecyM this
way: Y a ¼

def
Að½a�; Y Þ.

Remark E.18. Our definition of VecM and VecyM resembles the construction of a vector
space using coordinates. An invariant characterization is also possible, though somewhat
complicated. When the label set M is unspecified, VecM is called a semisimple C-linear

category, and VecyM is called a unitary category.
The concepts of functor and natural morphism are central in category theory. They are

extremely general and therefore hard to grasp. We will try to illustrate them by simple
examples, which are still rather abstract. More meaningful (though less direct) examples
can be found in the next subsection.
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Definition E.19. A functor F : A! B maps each object A of the category A to an object
FðAÞ of the category B and each morphism f : A fi A 0 to a morphism
Fðf Þ : F ðAÞ ! F ðA0Þ such that

F ðf2f1Þ ¼ F ðf2ÞF ðf1Þ; F ðidAÞ ¼ idFðAÞ.

A morphism (or natural transformation) between two functors F ;G : A! B is a collection
h of morphisms hA : F ðAÞ ! GðAÞ such that for any f:A fi A 0 this diagram commutes

ð258Þ

We have already mentioned one example of a functor, namely the embedding
F : RepðGÞ ! Hilb. Acting on morphisms, it maps the set of intertwiners to the set of
all linear maps between two representation spaces. A natural morphism h : F ! F may
be constructed as follows: hA is the action of some fixed group element on the representa-
tion space of A. Indeed, for this particular choice of the functors F ¼ G the commutative
diagram (258) simply says that F ðf Þ is an intertwiner.

Example E.20. Let H be a finite-dimensional Hilbert space. We define a unitary functor
H : Hilb! Hilb by tensoring with H on the left (notation: H ¼ ½H"�):

HðAÞ ¼def H " A; Hðf Þ ¼def
idH " f .

A linear map u : H fi G between two spaces defines a natural morphism U = [u"] between
the corresponding functors:

UA ¼
def u" idA.

The functor H ¼ ½H"� has some special properties, namely the map f 7!Hðf Þ is linear
and Hðf yÞ ¼ ðHðf ÞÞy. Such functors are called unitary.

Proposition E.21.

1. Any unitary functor F : Hilb! Hilb is naturally isomorphic to the left-tensoring functor

[H "] for some space H, namely H ¼ F ðCÞ. This isomorphism is unitary.
2. Any natural morphism U : [G "] fi [H "] has the form [u "], where u ¼ UC.

Proof. The idea is very simple: any space is a direct sum of one-dimensional spaces, any
one-dimensional space is isomorphic to C, therefore F and U are completely characterized
by their action on C. Let us go through the detail to see how the formalism works.

1. Let A be an arbitrary finite-dimensional Hilbert space. Elements of A may be associated
with morphisms C! A. An orthonormal basis corresponds to a set of morphisms
wj : C! A such that wykwj ¼ dkjidC and

P
jwjw

y
j ¼ idA. Since F is a unitary functor,

F ðwkÞ
y
F ðwjÞ ¼ dkjidF ðCÞ;

X
j

F ðwjÞF ðwjÞ
y ¼ idFðAÞ.
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The same is true for the functor H ¼ ½F ðCÞ"�. We define a morphism
hA : F ðAÞ ! HðAÞ as follows:

hA ¼
X
j

HðwjÞhCFðwjÞ
y
;

where hC : F ðCÞ ! HðCÞ ¼ FðCÞ " C is an equality (indeed, X ¼ X " C for any space
X). It is obvious that hyAhA ¼ idFðAÞ and hAh

y
A ¼ idHðAÞ, hence hA is a unitary isomor-

phism. To show that h is natural, consider another object A 0 with an orthonormal basis
fw0jg and a linear map f ¼

P
j;kcjkw

0
jw
y
k, where cjk 2 C. It is easy to check that

hA0Fðf Þ ¼
X
j;k

cjkHðw0jÞhCF ðwkÞ
y ¼ Hðf ÞhA.

2. Let G ¼ ½G"� and H ¼ ½H"�. For an arbitrary object A with an orthonormal basis {wj}
we have UAGðwjÞ ¼ HðwjÞUC (due to the naturality of U). Hence

UA ¼ UAidGðAÞ ¼ UA

X
j

GðwjÞGðwyjÞ
 !

¼
X
j

HðwjÞUCGðwyjÞ ¼ UC " idA.

h

Adding another level of abstraction, we can reformulate Proposition E.21 as follows:
The category Fun�(Hilb, Hilb) of unitary functors from Hilb to Hilb is isomorphic to the

category Hilb. (One may replace Hilb by the category of finite-dimensional complex linear
spaces, omitting the unitarity condition.) By analogy, we obtain the following result.

Proposition E.22. The category FunyðVecyM ; Vec
y
N Þ is isomorphic to the category MatyN ;M

whose objects are N · M matrices of finite-dimensional Hilbert spaces with a finite number of

nonzero entries in each column and whose morphisms are entrywise linear maps between such

matrices. (If M is finite, then MatyN ;M ffi VecyN�M .)

E.7.2. Fusion in categorical terms

Fusion theory may be formulated as additional structure on the category C ¼ VecyM .
Let us assume that the label set M contains a special element 1 and that V ab

c , F abc
u , aa,

ba are defined and satisfy the pentagon and triangle equations as well as unitarity
conditions. If in addition M is finite and the duality axiom E.2 holds, then the resulting
construction is called unitary fusion category. (For a general definition of fusion category
see [30].)

The use of categorical formalism has mathematical as well as physical motivation. Let
A and B be spatially confined excitations such that A is located on the left of B. Each exci-
tation may be described by an object in the category C. If we consider both excitations
together, we will obtain a new object, A h B, which may be called ‘‘physical tensor prod-
uct.’’ If A and B do not have local degrees of freedom, i.e., A @ [a], B @ [b], then
ðA�BÞc ffi V ab

c . A nice property of the physical tensor product is that (A h B) h -
C = A h (B h C) (provided A, B, and C are arranged on the line in that particular order).
Mathematically, the operation h is only associative up to a canonical isomorphism, but
we will find some abstract representation of objects in which the isomorphism becomes
an equality.

The tensor product of two objects, A;B 2 C is defined by the equation

A. Kitaev / Annals of Physics 321 (2006) 2–111 99



ðA�BÞc ¼ �
a;b
V ab

c " Aa " Bb. ð259Þ

This operation is neither commutative nor a priory associative. Different ways to
multiply several objects may be described by parenthesis structures, or trees. For
example,

The operation h is a functor, meaning that for any morphisms f : Afi A 0 and g : Bfi B 0

there is a morphism f h g : Ah Bfi A 0 h B 0 such that

ðf2f1Þ�ðg2g1Þ ¼ ðf2�g2Þðf1�g1Þ; idA�idB ¼ idA�B. ð260Þ

(The tensor product of morphisms is defined in the obvious way:
ðf�gÞc ¼

P
a;bidV ab

c
" fa " gb.)

We may define a unitary isomorphism between (Ah B) h C and Ah (B h C):

F A;B;C : ðA�BÞ�C ! A�ðB�CÞ; ðF A;B;CÞu ¼
X
a;b;c

F abc
u " idAa " idBb " idCc ; ð261Þ

where F abc
u is the associativity map (177). Similarly,

aA : A! A�½1�; bA : A! ½1��A ð262Þ

(the definition is obvious). It is important that the isomorphisms FA, B, C, aA, bA are nat-
ural, i.e., for any morphisms f : Afi A 0, g : Bfi B 0, and h : Cfi C 0 we have

F A0;B0;C0 ððf�gÞ�hÞ ¼ ðf�ðg�hÞÞF A;B;C;

aA0f ¼ ðf�id ½1�ÞaA; bA0f ¼ ðid ½1��f ÞbA.
ð263Þ

Proposition E.23. The functor property (260) and the naturality (263) imply all quadrilat-

eral identities of the tree calculus.

Indeed, there are two kinds of such identities. In the example shown in Fig. 17B, one of
the commuting moves occurs inside a subtree descending from the other. The inner move
plays the role of f in the naturality condition. If both moves occur in disjoint subtrees, one
should use the functor property.

E.7.3. Main definitions

Among things we are going to define, tensor category is just a general formulation of
properties of the operation h. Tensor functor is a new concept though. For an elemen-
tary but important example, let the label types and fusion spaces be fixed but the asso-
ciativity constraints vary. Given two sets of associativity constraints, we may ask
whether they are equivalent up to a basis change, cf. Eqs. (239) and (240). This type
of equivalence is a special case of tensor functor. Note that two basis transformations
may differ by trivial factors, cf. Eq. (242); the corresponding tensor functors are said
to be naturally isomorphic.
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Definition E.24. A tensor category Ĉ is a category C endowed with a functor
� : C � C ! C, a special object 1 2 C, and natural isomorphisms

F A;B;C : ðA�BÞ�C ! A�ðB�CÞ; aA : A! A�1; bA : A! 1�A ð264Þ

such that the following diagrams (variants of the pentagon equation in Fig. 17A and the
triangle equation in Fig. 19A) commute:

ð265Þ

ð266Þ

The tensor category Ĉ is called strict if FA, B, C, aA, bA are equalities. It is called semisimple

if the base category C is VecM. It is called unitary if C ¼ VecyM , the functor h is unitary, and
the isomorphisms F, a, b are unitary.

Semisimple tensor categories admit a compact description in terms of ‘‘basic
data,’’ which is just slightly more general than that of a fusion theory. Indeed, by
analogy with Propositions E.21 and E.22 one can show that any functor of two
arguments, h : VecM · VecMfi VecM is given by a set of finite-dimensional spaces
V ab

c . However, the unit object is not necessarily simple, an example being the cate-
gory MatM, M or MatyM ;M with the multiplication rule and the unit (256). (Note that
these tensor categories are strict.) In physical terms, the nonsimplicity of the unit
means that the vacuum is not unique; thus simple objects in MatyM ;M are boundaries
between vacua.

Definition E.25. Let Ĉ ¼ ðC;�; 1; F ; a; bÞ and Ĉ
0 ¼ ðC0;�0; 10; F 0; a0; b0Þ be tensor catego-

ries. A tensor functor Ĝ : Ĉ ! Ĉ
0
is a functor G between the corresponding base categories,

plus two natural isomorphisms,27

CA;B : GðAÞ�0GðBÞ ! GðA�BÞ; c : 10 ! Gð1Þ; ð267Þ

such that the the following diagrams commute:

27 The direction of arrows is a convention, which is slightly inconvenient for our purposes.
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ð268Þ

ð269Þ

The tensor functor Ĝ ¼ ðG;C; cÞ is called unitary if all three of its components are unitary.
This definition seems complicated, but basically it says the following: we may identify
GðA�BÞ with GðAÞ�0GðBÞ and Gð1Þ with 1 0 (by means of C and c) so that

GðF X ;Y ;ZÞ ¼ F 0GðX Þ;GðY Þ;GðZÞ; GðaX Þ ¼ a0GðX Þ; GðbX Þ ¼ b0GðX Þ.

Remark E.26. A lax tensor functor is defined likewise, but CA, B and c are not required to
be isomorphisms. In physics, this construction describes a situation in which theory Ĉ is
obtained from Ĉ

0
as a result of Bose-condensation, cf. note 9 of Section 12.

Definition E.27. A morphism between two tensor functors, Ĝ ¼ ðG;C; cÞ and
Ĥ ¼ ðH;U;uÞ is a natural morphism h : G ! H satisfying these additional commutation
relations:

ð270Þ

The morphism h is called a (unitary) isomorphism if all the maps hX are (unitary) isomor-
phisms.

Let us see how these definitions work for fusion theories. Let C and C0 have label setsM
andM 0, respectively. We already know that an arbitrary functor G : C ! C0 is described by
some matrix ðGa

a0 : a 2 M ; a0 2 M 0Þ of finite-dimensional Hilbert spaces. Then the supple-
mentary components of the tensor functor, C and c are characterized by some unitary lin-
ear maps

Cab
c0 : �

a0;b02M 0
ðV 0Þa

0b0

c0 " Ga
a0 " Gb

b0 ! �
c2M

V ab
c " Gc

c0 ; c : C! G1
10 . ð271Þ

Note that since the original c (the map form 1 0 to Gð1Þ) is an isomorphism,
G1
a0 ¼ 0 if a 0 „ 1 0. Eqs. (268) and (269) impose certain algebraic relations on Cab

c0

and c. A unitary isomorphism between two tensor functors is described by a
set of unitary maps haa0 : G

a
a0 ! Ha

a0 satisfying the equations that follow from Eq.
(270).
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Returning to the example of basis transformations, let C ¼ C0, h = h 0, but pos-
sibly F „ F 0, a 0 „ a, b 0 „ b. Thus we fix the label types and fusion spaces while
allowing different associativity relations. Let us further assume that G is the
identity functor, i.e., Ga

a ¼ C and Ga
a0 ¼ 0 if a 0 „ a. In this case, Cab

c is just a
unitary operator acting in the space V ab

c ¼ ðV 0Þ
ab
c , and c is a phase factor. Then

Eqs. (268) and (269) become (239) and (240), respectively. In this setting, an
isomorphism between two tensor functors is described by unital complex numbers
ha satisfying Eq. (242).

E.7.4. The embedding theorem

Now, we will see the ‘‘abstract nonsense’’ in action. While we manipulate with defini-
tions, some combinatorial magic happens behind the scenes. Basically, we turn pentagons
into rectangles; this process may be viewed as a proof that the 2-skeleton of the Stasheff
polytope is simply connected.

Theorem E.28. For any tensor category Ĉ ¼ ðC;�; 1; F ; a; bÞ there exists a strict tensor

category Ĉ0 ¼ ðC0;�0; 10Þ and a faithful tensor functor Ĝ ¼ ðG;C; cÞ from Ĉ to Ĉ0 (where

‘‘faithful’’ means that the images of distinct morphisms are also distinct).

Proof ((borrowed from [94]).). Let C0 be the category of functors from C to itself, h 0

the operation of composing two functors (usually denoted by #), and 1 0 the identity
functor. We assume that functors act on the left, i.e., ðX # Y ÞðW Þ ¼def

X ðY ðW ÞÞ. For
any object X we set GðX Þ ¼ ½X��, i.e., GðX ÞðW Þ ¼def X�W . The isomorphism CX,Y

between two functors may also be defined in terms of its action on a test object
W:

CX ;Y : ½X�� # ½Y��! ½ðX�Y Þ��; CX ;Y ðW Þ¼def F �1
X ;Y ;W :X�ðY�W Þ! ðX�Y Þ�W .

Finally, we define

c : idC ! ½1��; cðW Þ ¼def
bW : W ! 1�W .

Now, we simply rewrite Eqs. (268) and (269), applying them to W:

These are the conditions we need to check. But the first and the second of them are iden-
tical to Eqs. (264) and (265), respectively. The third condition is a different type of tri-
angle equation, which is shown in Fig. 19B. It follows from the standard one by Lemma
E.2.
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To see that the functor G is faithful, we set W = 1 and observe that a morphism
h:X fi Y is mapped to GðhÞð1Þ ¼ h�id1 : X�1! Y�1. Thus,

a�1
Y ðGðhÞð1ÞÞaX ¼ h

(due to the naturality of a). It follows that distinct morphisms remain distinct. h

Note that if C ¼ VecyM , then C0 ¼ MatyM ;M . The functor G takes a simple object a to the
matrix whose [b, c] entry is V ab

c .

E.7.5. Braiding

Let us be brief and just give some definitions.

Definition E.29. A braiding in a tensor category Ĉ ¼ ðC;�; 1; F ; a; bÞ is a collection of
isomorphisms

RA;B : A�B! B�A ð272Þ

which are natural with respect to A and B, i.e., for any morphisms f:A fi A 0,: g:B fi B 0 this
square commutes:

ð273Þ

It is also required that the following diagrams are commutative:

ð274Þ

ð275Þ

Definition E.30. A braided tensor functor is a tensor functor that commutes with braiding.
More exactly, let Ĉ ¼ ðC;�; 1; F ; a; bÞ and Ĉ

0 ¼ ðC0;�0; 10; F 0; a0; b0Þ be tensor categories fur-
nished with braidings R and R 0, respectively. A tensor functor Ĝ ¼ ðG;C; cÞ from Ĉ to Ĉ0 is
called braided if the following diagram commutes:
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ð276Þ

Example E.31. Let Ĉ be an arbitrary braided tensor category and let Ĉ0 be defined as
follows:

C0 ¼ C; A�0B ¼ B�A; 10 ¼ 1; F 0X ;Y ;Z ¼ F �1
Z;Y ;X ; a0 ¼ b; b0 ¼ a; R0A;B ¼ RB;A.

Then the identity functor G ¼ idC supplemented with CA;B ¼ R�1
A;B and c = id1 is a braided

tensor functor from Ĉ to Ĉ
0
. (We omit the proof.)

Appendix F. Weak symmetry breaking

A complete, yet to be discovered description of topological quantum order must
include fusion and braiding rules (characterized by a unitary braided fusion category
(UBFC), see Appendix E) as well as symmetries of the underlying microscopic Hamilto-
nian. The no-symmetry case was considered in Section E.5. On the other hand, in our
study of Abelian anyons in the honeycomb lattice model (see Section 7.2) we observed
a rather strange property: the translation by a lattice vector interchanges two superselec-
tion sectors. This phenomenon may be called a ‘‘weak breaking’’ of the translational
symmetry.

Let us now consider an arbitrary two-dimensional many-body system with a symmetry
group G. For simplicity, we assume that the system consists of spins (or other bosonic
degrees of freedom) rather than fermions. There are several ways in which the ground
state can break the symmetry that is present in the Hamiltonian. First, the symmetry
may be spontaneously broken in the usual sense, i.e., there may be a local order param-
eter. If such an order parameter does not exist, we may look for finer signs of symmetry
breaking, in particular, for nontrivial action of G on superselection sectors. Such an
action is described by a homomorphism X1:Gfi C1, where C1 is some finite group
defined below.

But even if G does not permute the superselection sectors, there is still possibility
for subtle symmetry-breaking properties, some of which were studied by Wen [95,96]
under the rubric of ‘‘projective symmetry groups’’ (PSG). While Wen�s approach is
rather indirect, one may instead investigate the action of symmetry transformations
on superselection sectors. For a simple example, let us consider the Hamiltonian (3)
with Jm < 0 (note the analogy with Wen�s model [96]). The ground state of this
Hamiltonian may be obtained from the Jm > 0 state by putting an m-particle on
every plaquette (so that any missing m-particle would now be regarded as an
excitation). Therefore an e-particle picks up the phase factor �1 when it winds
around a plaquette. It follows that the translations by two basis lattice vectors
commute up to a minus sign when we consider their action on the nontrivial
superselection sector e.
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Mathematically, the up-to-sign commutation means that the translational group
G ¼ Z� Z is replaced by a central extension Gefi G with kernel Z2. If general, central
extensions are classified by the cohomology group H2 (G,U (1)). For each superselec-
tion sector a we get an extension Ga. The whole collection of extensions is character-
ized by a cohomology class X2 2 H2 (G,C2), where C2 is some finite Abelian group (see
below).

However, this is not the end of the story. Even without anyonic excitations (or if
anyons exist but do not complicate the group action in any way), the system may have
nontrivial properties such as the integer quantum Hall effect. The latter is described by
a Chern–Simons term in the effective action for the electromagnetic field. Dijkgraaf and
Witten [97] showed that a general topological action for a gauge field in 2 + 1 dimen-
sions is characterized by an element of the cohomology group H 4ðBG;ZÞ, where BG is
the classifying space of G. (The group G is assumed to be compact.) An analogue of
the Chern–Simons action exists even for finite groups. In this case, BG = K (G, 1)
(where K (G,n) is the Eilenberg–MacLane space) and H 4ðBG;ZÞ ffi H 3ðG;Uð1ÞÞ (where
the first H refers to the topological cohomology and the second to the group
cohomology).

The four-level classification of symmetry-breaking phenomena is summarized in Table
6. It has the flavor of topological obstruction theory (see e.g., [98]). One may hypothe-
size that there is a somehow relevant topological space Y such that p1 (Y) = C1,
p2 (Y) = C2, p3 (Y) = 0, p4ðY Þ ¼ Z, and all higher homotopy groups vanish. We now
argue that the analogy with obstruction theory has precise mathematical meaning in
dimensions 1 and 2.

Suppose that the symmetry remains unbroken in dimension 0, but can be removed (if
so is desired) by introducing a small perturbation to the Hamiltonian. That is obviously
possible if the system consists of spins, while the Z2 symmetry associated with fermions
can never be removed. The properties that survive the perturbation are described by a
unitary modular category (UMC) A and a chiral central charge c�, but we ignore the
latter.

The action of the symmetry group G on superselection sectors can be described
algebraically as well as topologically. To begin with algebra, consider the 2-grou-
poid C ¼ AutðAÞ. It has a single object, the morphisms are invertible unitary braid-
ed tensor functors A! A, and the 2-morphisms are natural isomorphisms between
such functors.28 If the functors are considered up to isomorphisms, we obtain the
group C1 that was mentioned above. The Abelian group C2 consists of all automor-
phisms of the identity functor. Note that C1 may act on C2 in a nontrivial way.
The 2-groupoid C is characterized by this action and a cohomology class
h 2 H3 (C1,C2).

On the topological side, one can consider the classifying space X = BC, which is a
topological space with a basepoint. I claim that X is connected, p1ðX Þ ¼ C1,
p2ðX Þ ¼ C2, and all higher homotopy groups vanish. Furthermore, the action of G on
superselection sectors is described by a continuous map f:BGfi X defined up to a homot-

28 As explained to me by Ezra Getzler, higher groupoids may be nicely defined as Kan complexes [99]; this
approach also allows one to endow the morphism sets with topology. In the definition of C no topology is
assumed. It would be interesting to see what changes (if anything) when a natural topology is included.
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Table 6
Four levels of symmetry breaking in a two-dimensional quantum system

Effective dimension
in which the symmetry
is broken

Mathematical description Examples

0 A local order parameter taking values in the coset space G/H,
where H is a subgroup of G

Ferromagnet; Neel phase

1 Nontrivial action of the symmetry group on superselection sectors,
which is characterized by a homomorphism X1:Gfi C1

Abelian phases Ax, Ay, Az in the honeycomb lattice model

2 The action of G on each superselection sector a is described by a
central extension Ga; the whole set of extensions is characterized
by an element X2 2 H2(BG, C2)

Hamiltonian (3) with Jm < 0; a number of models in [95,96]

3 None
4 Effective topological action for a G-gauge field; such actions are

classified by H 4ðBG;ZÞ
Integer quantum Hall effect
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opy (some explanation is given below). One may ask if f is homotopic to a constant map.
The first obstruction to such a homotopy is given by a homotopy class of maps
X1:BGfi K (C1,1); such classes are in one-to-one correspondence with group homomor-
phisms Gfi C1. If this obstruction vanishes, one can define X2 2 H2 (BG,C2) = H2 (G,C2).
If X2 = 0, then f is homotopic to identity, or equivalently, the action of G on A is
trivial.

Note that X can be represented as a fibration with base K (C1,1) and fiber K (C2,2). Its
structure is characterized by the element h 2 H3 (C1,C2). If h „ 0, then the fibration does
not have a cross section. In this case, the homomorphism X1:Gfi C1 must satisfy a cer-
tain constraint, namely the inverse image of h by X1 must vanish. Thus, some seemingly
possible types of symmetry breaking in dimension 1 may be forbidden due to an
obstruction in dimension 2.

In conclusion, I conjecture a ‘‘physical’’ interpretation of the space X and the map
f. Specifically, X parametrizes quantum states in the universality class described by the
unitary modular category A. Each point of X is associated with a set of states that
differ from each other locally; thus all finite-energy excitations of a given gapped
Hamiltonian are represented by the same point. The original unperturbed system cor-
responds to some x0 2 X. To define the map BGfi X, let us assume that G is a com-
pact Lie group which acts on each spin independently according to a faithful
representation Gfi U (m). The Hilbert space of the spin, Cm may be embedded in
a large space CM . Each embedding u has an associated state g (u) 2 X. The space E
of embeddings is contractible in the limit Mfi1, therefore its quotient with respect
to the natural G-action may be regarded as a model of BG. Furthermore, since x0 is
symmetric, the map g : Efi X factors through BG. Thus the map f : BGfi X is
defined.

Remark F.1. It is not clear how to define the ‘‘extended classifying space’’ Y that
has nontrivial homotopy in dimension 4. One may conjecture that Y ¼ X � KðZ; 4Þ,
but this definition seems contrived. It may well be the case that the very idea to
classify the Chern–Simons action as symmetry breaking in dimension 4 is wrong.
Indeed, the Chern–Simons action is not fully described by homotopy theory
because the fundamental homology class of the source (physical) manifold is
involved.
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