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Luttinger’s theorem for Fermi liquids equates the volume enclosed by the Fermi surface in momentum space
to the electron filling, independent of the strength and nature of interactions. Motivated by recent momentum
balance arguments that establish this result in a nonperturbative fgdhidbshikawa, Phys. Rev. Let84,
3370(2000], we present extensions of this momentum balance argument to exotic systems which exhibit
guantum number fractionalization focusing @j fractionalized insulators, superfluids and Fermi liquids.
These lead to nontrivial relations between the particle filling and some intrinsic property of these quantum
phases, and hence may be regarded as natural extensions of Luttinger's theorem. We find that there is an
important distinction between fractionalized states arising naturally from half filling versus those arising from
integer filling. We also note how these results can be useful for identifying fractionalized states in numerical
experiments.
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I. INTRODUCTION tions implies that the lattice has a torus geometry; imagine

The last two decades have witnessed the experimental diditroducing a solenoid of flux in one of the holes of the torus,
covery of several strongly correlated materials that shovpnd adiabatically changmg its strength from zero to Zhe
properties strikingly different from that expected from con- CyStal momentum imparted to the system can then be calcu-
ventional theories based on Landau’s Fermi liquid picture/@ted in two different ways. First, in a trivial fashion that
These include the high temperature copper oxide superco®ly depends on the filling and is independent of the quan-

ductors, heavy fermion systems near a quantum criticalum phase, the system reaches in the thermodynamic limit,

point, and, more recently, the cobalt oxide materials. Internd Second, in way that depends essentially on the quantum

esting correlated quantum phases are also likely to emerge [[i'35€ tOf the systtltta.m. Co?]§|it(a|nc§ retqwtrhes the ;aqgalhty ofdt.he
the near future from ongoing experimental efforts in the are ioensse o\avothqeuznuIalr?tiEWph;seeaE:seontiaﬁyn%r;(rzlr\\”acozcs)?stle_nt
of cold atoms in optical lattices. It has then become imperahuamum phase has its own wéy of absorb,ing the filling de-
tive to theoretically investigate quantum phases of matte

. _ bendent crytal momentum that is generated in this
that differ fundamentally from the standard paradigm. In-p.0~occ ag mentioned, in the case of the Fermi liquid this

deed, in such a search for new theoretical models, it woulgs54s to Luttinger’s theorem.

be useful to know if general principles place constraints on  pere we begin by applying this argument to the case of
the possible quantum phases. Here, we will explore in detajlhosonig insulators at half filling, where the system in the
the consequences of one such constraint, arising from m@hermodynamic limit necessarily acquires an enlarged unit
mentum balance, which will be applicable to interactingcell (through broken translational symmetry or a spontaneous
many body systems on a lattice. This argument was firsflux) or develops topological order. For the latter case, the
applied to the case of one-dimensional Luttinger ligdids, momentum balance argument fixes the crystal momentum of
where it relates the Fermi wave vectky to the particle the degenerate ground states in the different topological sec-
density. It was later extended to Fermi liquidis dimensions  tors. A useful side result of this analysis will be a general
D=2, where it leads to Luttinger’s theorehrelating the  prescription to distinguish between betwee# afractional-
filling fraction to the volume enclosed within the Fermi sur- ized insulator(or spin liquid and a more conventional trans-
face on which the long lived Fermi-liquid quasiparticles arelation symmetry broken state, which is useful when the the
defined. Here, we will apply the same line of argument to aorder parameter for the translation symmetry breaking is not
variety of different phases in spatial dimensidds-1, and  obvious. This is relevant for numerical studies on finite sized
the constraint we obtain in this way may be viewed as anaspin systems that search for fractionalized spin liquid
logues of Luttinger’s theorem for these phases. In all casestates®
the filling fraction (number of particles per unit cell of the Next, we apply the same methods to the case of exotic
lattice) is fundamentally related to some intrinsic property of fermi liquids (FL" phase} proposed recently in Ref. 6. This
the phase. is phase which has conventional electron-like excitations
The momentum balance argument, introduced bynear a fermi surface, but also possesses topological order and
Oshikawa for Fermi Liquid$,proceeds as follows. Consider gapped fractionalized excitations. The question of interest
a system of interacting fermions at some particular filling onhere is whether the Fermi surface in these systems “violates”
a finite lattice at zero temperature. Periodic boundary condituttinger’s theorenygiven that these phases are not continu-
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ously connected to the free electron gas this is of course ndhose obtained from an exotic phase at half filling. For ex-
prohibited by Luttinger’s prodj, and if so whether there is a ample, if we consider featurelegs fractionalized insulators
generalization of Luttinger's theorem that can accomodatat integer and half integer filling, then at low energies they
these cases as well. Indeed, applying the momentum balancan be described by “even” and “od&, gauge theories,
argument to thecL" phases we find that while Luttinger’s respectively(in the terminology of Ref. il The different
theorem is violated by these Fermi volumes, this violation isground state topological sectors of the odd gauge theory can
not arbitrary but is constrained to be one of a few possibili-in certain geometries carry a finite crystal momentum, while
ties which is determined uniquely by the pattern of fraction-the crystal momenta associated with the different ground
alization. state sectors of an even gauge theory are always zero. This

Finally, we apply these arguments to the case of neutradlistinction persists if these phases are doped to obtain exotic
superfluids. For conventional superfluids we argue that thisermi I|qU|ds and superfluids. The distinction is especially,
leads to a constraint on the Berry phase acquired on adiabastriking in the case ofL,,, where a Fermi volume that
cally moving a vortex around a closed Ioop, by relating it toviolates Luttinger’s theorem arises. In contrel'siteven obeys
the boson filling. Loosely speaking this is the quantity thatLuttinger’s theorem but, is nevertheless, an exotic phase.
determined the Magnus “force” on a moving vortex. Sincesimilar distinction will apply to the exotic superfluids—in
this relation between the Magnus force and the boson fillinghat case the relation between the Magnus force on a vortgx
is obtained using the same momentum balance argument thand the filling is the regular one f@F, ., but is unconven-
leads to Luttinger’s theorem when applied to a Fermi liquid,tional in the case oSF,
it may be viewed as a “Luttinger” theorem for superfluids.  An essential ingredient in the following arguments will be
Alternatively, since a similar relation between boson densitythe evolution of a quantum state under flux insertion. While
and Magnus force is known for superfluids with Galileanthis recalls the argument of Laughfffor the integer quan-
invariance’-8 this may be viewed as an extension of thosetum Hall effect, there is an important distinction that must be
results to the case of lattice systems. In contrast, while Galroted. In the case of Laughlin’s argument and a similar ar-
ilean invariance also constrains the zero temperature value gument for the forces on superfluid vortices given by
the superfluid stiffness, that constraint does not survive th¥Vexler!®the conclusions are derived by keeping track of the
inclusion of the lattice. In order to further bring out the simi- change in energy during the process of flux threading. More
larity of this relation in superluids to the Luttinger relation, recently, rigorous energy counting arguments for charge and
we consider fractionalized superfluid pha&fs (related to  spin insulators have been made by Oshikdwand
the exotic superconduct@C studied in Ref. §or equiva-  Hastings!® In contrast here we will follow Ref. 2 and rather
lently superfluid analogues of the fractionalized Fermi liquidkeep track of the change arystal momenturduring the quxXI
phases. We show that they too violate the conventional relahreading process, which will allow us to derive a differe
tion between vortex Berry phase and boson filling in exactlyset of rather general conclusions that apply to a variety of
the same way that Luttinger’s theorem is violatedrld. We  phases. We also note that while the subject of Magnus force
discuss caveats in the relation between the vortex Berrpn a vortex at finite temperatures, in the presence of quasi-
phase and the boson filling in conventional and fractionalparticle or superfluid phonon excitations, has been the sub-
ized superfluids which make the above relation less rigorougect of much lively debatgsee, for example Ref. 16our
at the present time than the analogous relation for Fermarguments will only apply to the case of zero temperature
liquids and insulators. and hence cannot address any of the issues under debate.

The relation between vortex Berry phase and boson filling The layout of this paper is as follows. Due to the length of
in lattice superconductors can lead to surprising conclusionte paper_we give in Sec |l a simplified overview of all
in some cases. For example, consider a conventional supgesults and a brief indication of the method used. Then, we
fluid (where the bosons are Cooper pairs of elecrais  pass to the technical details and in Sec. Il review the mo-
tained by doping a band insulator versus another convermentum counting procedure which will be applied to all the
tional superfluid obtained on doping a proximate Mottphases. Then, we consider conventional insulators in Sec. IV
insulator. One may imagine that only the doped charges pasndZ, fractionalized insulators in Sec. V using the momen-
ticipate in the superfluidity—indeed this is roughly what is tum balance argument and discuss how they may be unam-
expected for a quantity like the superfluid stiffnéakthough  biguously distinguished in numerical experiments in Sec. VI.
it is not strictly constrained in these lattice systéfnsHow-  We then review the momentum balance argurhémt con-
ever, a result of the discussion below will be that the Berryventional Fermi liquids in Sec. VII, which leads to Lutting-
phase acquired by a vortex in this system arises from counsgr’s theorem, and see how this is modified in a systematic
ing all charges in the systeand not just the charges doped way when applied t&, fractionalized Fermi liquids in Sec.
into the Mott insulatoy. In this sense at zero temperature all VIIl. Next we apply these arguments to conventional, neutral
particles participate in the superfluidity. In contrast, an exoticsuperfluids and, fractionalized superfluids, in Secs. IX and
superfluid phase&SF can display a phase where only the X, respectively. We conclude with some observable conse-
doped charges contribute to the Berry phase. quences that arise directly from these considerations.

A recurring theme throughout this paper will be the dis-
tinction between exotic phases obtained from a correlated Il. OVERVIEW OF THE MOMENTUM BALANCE
“band” insulator, i.e., one that has interger filling per site in ARGUMENT
the case of bosons and which could potentially form a con- In this section we summarize the results of the momentum
ventional translationally invariant insulating state, versusbalance argument applied to different phases. While the de-
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will define the “filling” v=N/L,L,, which is the number of
particles per unit cell.
Insulators: Consider the evolution of the ground state of
a many body system under the adiabatic insertion ofra 2
flux. For an insulator, it may be easily verified that the final
state must have an energy equal to that of the ground state, in
| [ the thermodynamic limit. That is, the system ends up either
L in the original state, or in a degenerate ground state. This is
: just because the change in energy under flux threading is
N | At related to the average curre(dtz:;’—('i. Since in the insulating
] state the current must vanish in the thermodynamic limit, the
! energy of the final state must equal that of the initial state.
\\ _:_’_ I If the insulator is at integer filling, i.eN=vL,L,, with the
|
\\ |
I
|
I~ |
L
|
~ |

filling v such thatve integer, then we haveAP,=2mL,,

L APy=2mL,), and scAP,=AP,=0 (mod 2m). This is com-
" patible with the system having a unique ground state which it
returns to at the end of them2flux threading. This is the
1 conventional featureless insulating stab@nd insulator for
Fermions, integer filling Mott insulator for bosons al-

¥ though in principle more complicated states are possible at
L] | integer filling as well.

The case of insulators at noninteger filling is more inter-
esting. For definiteness, consider bosons at half fillimg
=1/2). In order that the total number of particles be an inte-

0 ger, we need the total number of sitlegx< L, to be even. If
we first consider the case, odd andL, even, under flux

FIG. 1. Schematic figure showing flux threading in a cylinder NSertion in the geometry of Fig. 1 we will havaP,
geometry, with fluxdy=hc/Q. =m(mod2m). Therefore, the initial and final statéshich we
have argued to be denenerate in the thermodynamic)limit
ngst differ in crystal momentum and hence one is forced to

following sections, the results themselves are easily state&oncmde that the ground state is at least doubly degenerate

which is done below along with some heuristic supportingIh this everxodd geometry. Such a degeneracy can result
arguments. from one of two Qn‘ferent reasonsve assume that time re- _
Consider the system in a cylindrical geometry, as showﬁé erséaloiynfllwxeti;y(Ij?srgﬁtszggr};agiiuSll\)//ggilﬁgp ?hned ;h:tzg]eual
in Fig. 1 with dimensiond.,, L, (integers, and a total oiN ma bewheadin towards translation S mmétr br?alakin in
particles(bosons or spinless fermiondNow imagine adia- y 9 y y g

batically threading a flux of 2 through the center of the the thermodynamic limit. In this case we can form the sym-

cylinder—the particles are assumed to couple minimally tometrlc and antisymmetric combinations of the two ground

this flux with a unit charge. The total momentum impartedSﬁggin\f{g'Ct?aalselZ{ilgntra?rjr?;?;ﬂ'grt]o Se"?g::]gg]erbfen;k?; a iLrjr?-lt
to the system can be calculated using Faraday’s Iav!;' ) y Y 9

F,=-1/L,d¢/dt and integrating this force over time leads to E/Uzzr;[?ﬁttestgi\r/\?olzt;)ecsal Fooﬁeéigor; tlh:ti fct?]g g'sstt'gg]ui':r;]:aeém
the change in momentum : ple, Y g

towards a charge density wave stéeg., with a stripe pat-
2 tern with the charge on alternating columns in Fig. then
APx:L—N, (1) the relevant local operator is simply the charge density,

x which would distinguish these two states as being translated
which is only defined modulo 2 since the system is on a Versions of one another. It may of course happen that the
lattice. A more rigorous calculation in the following sections relevant local operator is less obviotsg., bond centered
arrives at the same result. A similar procedure performegharge densitybut nevertheless in principle this distinction
along the perpendicular directigfor which it is convenient between the two states can be made with some local opera-
to think of the system living on a torugjields the other tor. It may, however, happen that there exists no local opera-

tailed arguments leading to these results are contained in t

component of the crystal momentum tor that can distinguish these two states. Then, the system
will appear perfectly translation symmetric, although it is an
_2m insulator at half filling. Indeed this is precisely the property
APY‘L_N' 2 of the RVB spin liquid state proposed for spin 1/2 lattice

Y systems with one spin per unit cell—which can also be cast

This is the result of trivial momentum counting—we now in the language of the above discussion on identifying the
consider how this additional crystal momentum is accomospins with hard core bosons. Therefore, these degenerate
dated in the various different phases. For later purposes, wground states can only be distinguished via a nonlocal opera-
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tor. This is called topological order, where degeneracies arisquasiparticles can then be violated, but in a very specific
on spaces with nontrivial topology that are related to creatingvay. Flux threading creates a Ising vortex which carries crys-
a topological excitation which is highly nonlocal in the origi- tal momentums (in an odd<even system while the re-

nal variables. In the following sections we consider one conmaining momentum is absorbed by the quasiparticle excita-
crete theoretical realization of this scenario—the case of &dons. This leads to the modified Luttinger relation
deconfinedZ, gauge theory coupled to bosons carrying one
half the elementary unit of charge. The translationally sym- 1 Ve
metric state at half filling may be roughly visualized as a V= > + W
uniform state with a half charge at each lattice site. The

degenerate ground states correspond to the topological de- . . . o
generacy of the theory on a cylinder—which is related to theVNerep is an arbitrary integer representing filled bands. Note
presence or absence of an Ising flwison) in the hole of a the crqmal difference from Luttinger’s reIat|o_n in E®),
cylinder. In the following sections we explicitly demonstrate that arises from the extra factor of Clearly, this is related
and causes the ground state to evolve into this distinct top@t half filling, where the Fermi volume can shrink to zero.
logical sector. Thus, the way these topologically orderedrhus, the'('jlff(-':‘rence frqm the original Luttinger relation is
states accomodate the crystal momentum imparted to théery specific, i.e., the filling of exactly half a band, for the
system on flux threading, despite being translationally sym¢ase _szz fractionalization. We have commented earll_er on
metric, is by creating a vison excitation in the hole of thethe difference between odd versus ewgngauge theories.
cylinder which then carries the appropriate crystal momen&gain this distinction is crucial here and moreover is not
tum. Later we will draw a distinction between Ising gaugedirectly set by the filling as it was for the case of the trans-
theories where the vison carries a crystal momentodd Iatlonally symmetric insulating states. The above violation of
gauge theoriesand those where it does not carry momentumthe Luttinger relation only occurs in the case of the odd
(even gauge theorigs gauge theoryFLyyq _

Fermi liquids: The original application of the momentum  Superfluids: Finally, we consider the case of neutral su-
balance argument was to the case of Fermi liquids in Ref. 20erfluids. Here threading am2flux clearly inserts a vortex
This argument is reviewed in the following sections—herethrough the hole of the cylinder. This can also be visualized
we just note the main points. If we begin with spinless elec2S creating a vortex in the superfluid at the bottom of the
trons at a fillingw, then the flux threading excites quasipar- cylinder and dragging it all the way to the top. Clearly such
ticles around the Fermi surface. The total crystal momentund vortex will experience a “Magnus force” in the direction
carried by these excitations can be converted into an integr&erpendicular to its motion. Let us ignore for a moment the
over the volume enclosed by the Fermi surface, which leadlgttice and calculate the momentum imparted by this force
to the relation between the fillingvhich enters the trivial Fwm=2mayVv X2 wherev is the velocity andyy a constant
momentum countingand the Fermi volume. For an appro- that fixes the Magnus_force. The total momentum transferred
priate|y chosen System Size’ these lead to the relation to the SyStem is then Independent of the details of the vortex

motion and depends only on its net displacement—this
v= Ves +p 3) yields AP,=2mayL,. Equating this to the momentum ob-
2m? tained from trivial momentum counting) and reintroducing
the lattice heuristically by allowing the the momentum to
change in arbitrary integer multiples ofr2ve have

+p, (4)

whereVeg is the Fermi volume, ang is an arbitrary integer
which represents the filled bands. This is just Luttinger’s
theorem—in Ref. 2 it was also applied to Kondo lattice mod-
els where it yields the large Fermi surface expected in the v=aytp, 5
Kondo screened phase.

One can now ask the reverse question—given a phasaherep is an arbitrary integer. Thus, the fractional part of
whose low energy exciations are electron like Landau quasiey is completely determined by the boson fillimgThis can
particles, does this phase necessarily also satisfy Luttingerige viewed as the analogue of Luttinger’s theorem for bosonic
theorem? From the above momentum balance argument it 8ystem, since it is obtained using the same line of argument.
clear that in order to violate the Luttinger relation there mustit can also be viewed as an extension of the well known
exist an alternate sink for the momentum. From our previougquivalent result for Galilean invariant superfldidsihere
discussion of topologically ordered states, it is clear that ithe Magnus coefficient is the boson denpity the case of
topological order coexists with Fermi liquid-like excitations, lattice superfluids. While we have been interpretiag
then the momentum balance can be satisfied with a norgbove in terms of the Magnus force clearly this is not a well
Luttinger Fermi volume. In fact, the specific case of an ex-defined concept in a lattice system. In fact, the property that
otic Fermi liquid withZ, topological ordefFL" phas¢ was is sharply fixed by is the Berry phase acquired by a
proposed in Ref. 6 in the context of the heavy fermion sysvortex on adiabatically taking it around a big loop of sie
tems. This phase has low energy excitations identical to thagtlaquettes, which will be shown to beraN. This is re-
of a Landau Fermi liquid of electrons. but also a gappedated to the well known relatidnin Galilean superfluids be-
Ising vortex excitation. The Luttinger relation relating the tween the Magnus force and the Berry phase acquired by a
filling to the volume enclosed by the Fermi surface of thesevortex.
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Again, one can ask if the relation in E¢p) can be vio- Clearly, the initial and final wave functions, as well as the
lated in any kind of superfluid. Indeed, topologically orderedHamiltonian, transform under gauge transformations. Thus,
superfluid statesSF can be defined in complete analogy since the final Hamiltonian includes a unit flux quantum, we
with FL". For the particular case of an exotic superfluid stateneed to fix a gauge in order to consistently define the crystal
SF with Z, topological ordef, there exists in addition to the momentum of a state as the eigenvalue of the unit lattice
usual vortex excitation, an Ising vortex excitation as well.translation operator acting on the state and to compare it for
Threading 2 flux then creates both a regular vortex and anthe two states. We pick a gauge such that0 in the initial
Ising vortex—the latter can carry crystal momentum(in as well as the final Hamiltonian—this Hamiltonian is de-
the phase&F, 4)—in which case the remaining momentum is noted asH,. In this case, for a threaded fld,, we need to
associated with the Magnus force on the superfluid vortexinake a unitary gauge transformation
Then, in this case as well, the Magnus coefficiept asso-
ciated with the vortex Berry phase, satisfies Ha(T) — UgH A(T)u(—;l: Ho 9

1 .
=3 +ay+p, (6)  with the operator

wherep is an arbitrary integer. Thus, the “Luttinger relation” 3 27 N
for a conventional superfluid in E¢B) is violated, in exactly Us=ex IL_E xn | (10
the same way thafEL 4, violates the Luttinger relation for <

conventional Fermi liquids. . L . . .
The final wave function in this gauge is, in obvious notation,

IIl. TRIVIAL MOMENTUM COUNTING |W)=Ugl|W;). To compute the crystal momentum of this

Consider a system ok particles, each with charg®, state, we must act on it with the unit translation operdtor

living on anL, XL, lattice wrapped into the form of a torus This defiges the initial and final nyStal momgna, Pt
with periodic boundary conditions along both directions. Thethrough T|Wi=exp(~iP)[¥;) and T|Wy)=exp-iPy)|¥y).
main result of this section is that if one adiabatically threadsTranslating the final state we find
flux hc/Q through one of the holes of the torus, the crystal
momentum difference between the initial and final state is TUUAT) = TUST HTUT YT,

P; — P =27N/L(mod 27) = 2mrvL (mod 2m), (7 _ (WG%_l)UTe_iPiN’i), (11)
where v=N/(L,L,) is the charge density in units @ (the

“filling” ). This result is independent of the eventual quantuMince the operatot/; commutes with theT as the time-
phase of the system in the thermodynamic limit, and we will yehendent Hamiltonian is translationally invariant in the uni-

refer to it as the “trivial” counting. Although this has been o, 45,ge. At the same time, it is straightforward to show
shown in Ref. 2, we include a derivation here for the sake of;

completeness, and to fix notation.
The Hamiltonian for an interacting set of particlésrmi-

ons or bosonscoupled to an external vector potential can be TUST = expl— i2aN/L)Ug. (12)
written down asH,=K,+V[i], with the kinetic energyKa, _ o
in the presence of a vector potenti, given by It is then clear thatP¢=P;+2mN/L,(mod 2m), or defining
the filling »=N/(L,L,), the change in crystal momentum is
L1 oA P,—P,=AP=2muL (mod 2m)
Ka=— =2 [t;eAiMeBB, + h.c]. 8 For TV-y ).
A 2% [t tl ] ® It is essential for this argument to go through that one has

+ . ] o ] a conservedl(1) charge, this permits us to couple the charge
B; creates a particle carrying char@eat sitei. The interac- 4 an inserted solenoidal flux. One can easily generalize the
tion termV[A] depends only on the density of the particles. 3rgument to cases where the charged particles carry spin and
Both t;; andV[] are invariant under lattice translations. For 5re coupled to spins fixed to the lattice such as in a Kondo
simplicity of presentation, we will assume thgtonly con-  |attice modef In this case, one can thread a flux which
nects nearest neighbor sites on a square lattice, with uniipuples to a single component of the spin of the charged
lattice spacing. carriers, and eliminate the vector potential using a unitary

To thread a unit fluxbo=hc/Q through the hole of the transformation which acts on the charged particles as well as
torus, say along they~axis as in Fig. 1, we can choose a the fixed spins.
uniform gauge in whict j.;=-®(t)/L, andA;; =0 for other As mentioned earlier, the result above has been derived
links, and adiabatically increasé(t):0—hc/Q. The state  without any assumption about the thermodynamic phase of
we reach on flux insertion can of course be written ashe system. Such an assumption is important for counting the
|W(T))=U+|¥(0)) with the unitary time evolution operator momentum in a second independent way, which provides
Ur=1; exp(—ingA(t)dt) where7; is the time-ordering opera- constraints on the various quantum phases of the system and
tor. In the final Hamiltonian, the vector potential correspondswe turn to this in the remaining sections. For convenience of
to flux &(T)=d,,. notation, we will seta=c=1 in most places.
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odd x even even x even

FIG. 2. Evolution of energy levels upon flux
> > threading in a conventional insulator with two-

fold broken translational symmetry on a cylinder.
—\// The two levels which become degenerate ground
states in the thermodynamic limit carry momenta

0> 0> \‘ 0, 7. (8 The two levels cross upon threading flux

alongy in a geometry with_,=even,L,=odd.(b)
The two levels return to themselves upon thread-

0 T o 0 T o ing flux alongy in a geometry withL,=even,
Ly=even.
(@) o —— (b) o ——>
IV. CONVENTIONAL INSULATORS clearly degenerate, the degeneracy reflecting the different

broken symmetry patterns. On a finite lattice, such a system
must thus have eigenstates with different crystal momentum,
Consider a conventional insulator with a unique groundwhich, in the thermodynamic limit, become degenerate and
state and a nonzero gap to current carrying excitations. Unallow us to construct linear superposition eigenstates which
der adiabatic flux threading, since the Hamiltonian is timebreak the translational symmetry.
dependent, the rate of change of energy is given by Let us consider such a system on a finite lattice, with
(dH/dt)=-%(J; (1)) A (t)/ &t where the current operator aspect ratio such that the thermodynamic broken symmetry
Jij=—iQtij(B?Bje“Aii“)—h.c.) for the Hamiltonian with Ki- gatte_rn ISL not fru_strated. If t_he insulator is stabilized at a
ensity v=p/q (with p, g having no common factoysthe
flux threading argument implies the ground state must evolve
underhc/Q flux insertion into a different state which has a
relative crystal momentumP=2m(p/q)L,, with an energy
equal to the ground state energy in the thermodynamic limit.
These states would be “quasi-degenerate” on a large finite
lattice 2°

A. No broken symmetry

netic energy as in Eq@8). Let us assume a linear rate of
change ofAj(t) (for j=i+X) over a time intervalT for
threading one flux quantur®y=2, i.e., the electric field
Ej=-0A;/ dt=(2m/QL,T)X is a constant over the interval
The total change in energy is thus

;
SE= J dt(dH/dt) = 27l , (13)
0

C. Flux threading in the conventional broken symmetry
where the average current in units @fis insulator

_ T The manner in which the set of quasi-degenerate states in
I = 1U(#HQLT) Y f dt(J; j+x(1)) . (14)  a broken symmetry insulator evolves under adiabatic flux
P-o insertion is fixed by momentum balance. Let us again work
Clearly 1=0 in an insulator in the thermodynamic With a system with a twofold broken symmetry in the ther-
limit"—there is no current flow, and thugE=0! modynamic limit.
However, if we thread one flux quantum into the system it If the filling » andL, are such that 2L, =m(mod 2m),
can be eliminated using a gauge transformation which leavelux insertion causes a momentum changeA&;=. This
the spectrum invariant, as is well known and was shown irimplies we must have two quasi-degenerate states differ in
the previous section. Since the system has a unique grourfdcrystal momentum byr, and flux threading must lead to an
state with a charge gap, a#E=0, this means the final state interchange of these two states. This is depicted schemati-
and the initial state in théy;=0 gauge must be the same. cally in Fig. 2a) where the two states on a finite size system,
Clearly, there is no change in crystal momentum on threaddenoted by{0), |m), begin with some splittingwhich must

ing flux ®,, which implies vanish in the thermodynamic limitand then evolve as the
inserted fluxd changes. They are degenerate and cross at
2mvL, = 0(mod 2m) (159  ®= since the Hamiltonian is invariant under time reversal,

but they cannot mix since thecrystal momenta of the two
arrive at the result: @onventionalinsulator with a unique States differ byr even at this point. If the geometry is chosen

ground statéi.e., no broken symmetpand a nonzero gap to such that zrvL,=0(mod 2m) _these two sta_tes will no longer
charged excitations is only possible at integer fillifg? exchange places on threadithg- 27 [see Fig. 20)]. They no
longer cross atb== though they still carry relativer

momentun?!

for anyL,. This is only possibly ifv is an integer. Thus we

B. Conventional insulator with broken translational
symmetry

Imagine tuning the interactiokw[n] in the above Hamil- D. Local operators to detect broken symmetry states

tonian in Eq.(8), such that the ground state of the system in In the presence of spontaneous translational symmetry
the thermodynamic limit is an insulator which breaks trans-breaking, there are local operators which can distinguish the
lational symmetry. The thermodynamic ground state isdifferent insulating ground states obtained in the thermody-
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namic limit by taking linear combinations of the degenerateplaquette is a property that can be checked with local opera-
momentum eigenstates a&)=(|0)+|7))/V2 and|2)=(|0)  tors, and hence also corresponds to a conventigmaifrac-
—|m)) /2. For example, broken translational symmetry alongtionalized state.

say thex direction means it can be detected by some local V. Z, FRACTIONALIZED INSULATOR T'

Hermitian operatolO;, since(1|(0;—0;.5)|1)# 0, and simi- _ _ _
larly for state|2). How does this manifest itself on a finite " thé context of the insulating phase of the high tempera-
size system where such linear combinatidtis |2) are not ture superconductors the question has k_)een raised of wh_ether
eigenstates of the Hamiltonian? a Mott m;ulator that breaks no symmetrles could bg obtained
. . . - at half filling. The analogous question for our bosonic system

To answer this, consider the matrix elemé@iOj|m) of o'\ hether g translationally invariant insulating state can be
the local operator between the eigenstates on the finite Sygag|ized at half filling. Since the hard-core boson state at half
tem. SinceQ, is defined locally, it is not translationally in- filling may be viewed as a spi§=1/2 system withS°®
variant and such matrix elements will be nonzero in genera:0 andU(1) spin rotation invariance, this is equivalent to

on a finite system. However, knowing th@0)=|0) and  asking whether &=1/2 magnet may be in a spin liquid
T|m)=~|m) we can rewrite this matrix element in the ther- State. The answer, after several years of workessand one
modynamic limit as specific route to realizing such an insulator is ¥igfraction-
alization. The properties of such a phases well as some
- - - A microscopic models which realize them are now kngén.
2((0[0m) = (1|01[1) = (2|0;[2) = (1|(O; - TOT H|1) The Z, fractionalized insulatotf”, is a translationally in-

_ A oa variant insulator. It isinconventionain that supports gapped

= (1[G - Oup[1) # 0. (16) fractionally chargedexcitations, chargons, which carry elec-
R tromagnetic charg€/2 as well as &, Ising charge. These
Thus, the matrix element of this local opera®r between chargons interact with &, Ising gauge field in its deconfin-
states of the quasi-degenerate ground state manj@lénd  ing phase. The deconfinement is reflected in the presence of
|7), survives in the thermodynamic limit and implies trans-yet another exotic gapped neutral excitation, the Ising vortex
lational symmetry breaking. The local operator could be, foror “vison,” which acts as a bundle of flux as seen by the
instance, the energypr charge or curreptdensity. chargons which carry Ising char§e.

This is the crucial difference between broken symmetry It is known that theZ” phase can be realized at half odd-
insulators and translationally invariant fractionalized insula-integer or integer fillingsWhy doesnt the existence of a
tors dealt with in the next section. In the latter case, matrixranslationally invariantZ™ insulator at half integer filling
elements of all local operators between states forming theontradict the earlier theorem for (conventional) insulators?
quasi-degenerate ground state manifold vanish in the thermd-he resolution of this apparent paradox is that although these
dynamic limit. The system size dependence of the matrisinsulators do not break translational invariance, the ground
element of local operators between states forming the quasstate of these fractionalized insulators is not unique in a mul-
degenerate ground state manifold thus distinguishes an instiply connected geometryin which the flux-threading ex-
lator with translational symmetry breaking from a uniform periment is carried owt The presence of thg, vortex, the
fractionalized insulator. However, constructing such localvison, directly leads to a twofold degeneracy of the ground
operators needs some knowledge of the kind of broken synstate of the system on a cylindgourfold on a torug This
metry, in contrast to our general conclusions in the earliedegeneracy may be viewed as a result of having or not hav-
section regarding the momenta and evolution of the quasing a vison threading each hole of the cylindgarus. Since
degenerate manifold of ground states which does not rely othe vison is a gapped excitation in the bulk of the system,
such information. We return to this issue in Sec. VI. there is an infinite barrier for the tunneling of the vison

In this section we have focused on conventional insulatingstring” out of the hole of the cylindeftorus in the thermo-
states of a half filled system, and argued that they necessariffynamic limit. Thus the vison/no-vison states do not mix in
break a lattice symmetry. One case, however, needs to bdbe thermodynamic limit which is crucial to obtaining lead-
looked at separately, and that is the case of exaetux ing a “topological degeneracy’—i.e., degeneracy which de-
through every elementary plaquette, which could be selfpends on the number of holes in the system.
generated in the thermodynamic limit. Note, this situation At this point we introduce the following terminology for
can preserve time reversal symmetry, and hence should iibe Z, fractionalized insulators. The translationally symmet-
admitted in our discussion. It is possible for such a system t#ic Z, fractionalized insulator at half odd-integer fillin@-
be essentially an insulator at half filling, although it appeardeger filling will be denoted asZ,yy(Zg,e). While in the
to possess translation symmetry, in that all unit cells appediormer case, translation symmetry of a half filled insulator
identical. This issue is resolved by studying more carefullyimplies that the state must be exotic, it is of course possible
the meaning of translation invariance—it turns out that theto have a completely conventional insulator at integer filling.
operators that generate unit translations do not commute duéevertheless, &, fractionalized insulator may also exist at
to the presence af flux in the elementary plaguette. Hence, integer filling and we refer to this aéz;en). We will see
the smallest mutually commuting translations necessarily erbelow that these two classes of exotic insulators are in fact
close an area equal to two unit cells, and in this sense welosely related to two classes 8§ gauge theorieZ3™, z&e"
obtain unit cell doubling. Note, the emergenceroflux per in the terminology of Ref. 11.

245118-7



ARUN PARAMEKANTI AND ASHVIN VISHWANATH PHYSICAL REVIEW B 70, 245118(2004)

The presence of topologically degenerate states and theimg on the filling, it is then possible to show that one recovers
evolution under flux threading allows us to satisfy the mo-conventional insulating phases such as a uniform band insu-
mentum balance condition. The relevant case to consider istor (for N=even integey;, or broken symmetry states such
the translationally symmetric insulator at half filling, on a as bond-centeredvith N=odd integer, andJ>h) or site-
cylinder with an odd number of rows. In this case, trivial centered(with N=odd integer andh>U) charge density
momentum counting tells us thatZlux threading leads to a wave states. Thus, the above effective Hamiltonian in this
degenerate state with crystal momentarmWe will argue  limit is capable of describing well understood conventional
below, this momentum is accounted for i}y, since flux  insulators.
threading effectively adds a vison into the hole of the cylin- However, this Hamiltonian has a richer phase diagram.

der, which carries crystal momentum The parameter regime where an exotic fractionalized insula-
_ o tor is expected for the above Hamiltonian is easily deter-
A. Effective Hamiltonian for Z° mined. ForK> h, the Ising gauge field will be in its decon-

The effective description of is via a set of gapped fining phase, so we can pi€koy; ~ 1. Similarly, since we are
charge®/2 bosongchargongalso carrying an Ising charge, interested in the msu_latlng phas_e, let us v_vork_ in the limit of
interacting with each other and minimally coupled to anl@rge chargon repulsiob/t>1 with 2N, which is twice the
Ising gauge field in its deconfining phase. In order to placdilling fraction of the chargeQ bosons, being an integer. In
the following discussion on a more concrete footing we conthis limit, it is clear that it is energetically favorable to also
sider a definite Hamiltonian that can describe such a systen$€t the chargon number=2N at each sit¢which is possible
and use it to derive properties of the states. Since we will b§NCe 2 is an integey as a starting point to understand the
interested in universal properties that characte rize the statésulator. The density of charg@-bosons in the insulator is
the results themselves are more general than the particul#St »=N, andv could thus either be an integer or a half odd
effective Hamiltonian used. The simplest Hamiltonian which!ntéger in theZ" phase corresponding to even/odd integer

can describe &, fractionalized insulator is values of . .
In the above regime of parameters, the system clearly has
HA(Z') =Hg + Hp, (17)  acharge ga@(U) for adding am, particle(chargon which
where is a charge?/2 and Ising-charged excitation that can propa-
gate freely(since the gauge field is deconfinett also has
H,=—KX [ o? -hD o (18) an energy gaf(K) to changingailj —=1 on a bond which
g ij - ij? _ . .
oo Gi) changesHDofj—>( 1) on adjacent plaquettes corresponding
to creating gapped visons. It thus describes an exotic insula-
Hi =12 ofi(bbie A2 +h.c) + U (n - 2N)?, tor
€0 [
(19) B. Flux threading in Z"

where ¢** are Pauli matrices describing the Ising gauge . . .

fields, andd denotes the elementary plaquette on a square Below, we W'I.l con_S|der the effect of thr_ead.mngqu on
lattice. The chargons, created bg/ are minimally coupled the Z, fractionalized insulators in the cylindrical geometry,
to the Ising gauge field, as well as to the external vectoMS'"9 the eﬁecn_ve Haml_lton|a(119)_. 'I_'h|s W'”. be done_ n
potential A; with electromagnetic charg@/2. The second two steps. We first consider the limit of being deep in the

term inH,,, describes repulsion between chargons at the San{éac_tionalized phas@i.e.., set the vispn hopping to zerb;
site. =0 in Eg.(19)] where it can be easily argued thatr 2lux

threading leads to the insertion of a vison through the hole of
the cylinder. The momentum balance argument then allows
As to read off the crytal momenta of the visons in the differ-

ent situations. Then, we turn back on a finite vison hopping
h+ 0, and use continuity arguments to conclude that these
crystal momenta assignments remain unchanged.

The Hamiltonian(19) has a local, invariance under the
transformationb; — a;b; and of; — @jofja; where a;=+1.
Such gauge rotations are generated by unitary transform
tions using the operatdg=II;G; with

éi=exp|:i7ZT(1—ai)( 2 Uﬁ+2ni>:|. (20)

j=nn(i) . . L
1. Flux threading with static visons

Local Z, invariance implies tha,E_éi,HA(f)]:O. Since we

wish to work with eigenstates ¢i,(Z") which are invariant ~_ Consider atfirst the limit of being deep in the fractional-
under such gauge transformations, translationally invariang€d Phaséi/K— 0 by settingh=0 identically(i.e., 1o vison
physical states have to satisfy hopplng, so that we can choosgﬁf 1 evgrywheré. Let us
adiabatically thread flux 2 in the y direction for the above
éi|phys> = (+1)|phys. (21)  system on a cylinder such that the starting from the initial

R eigenstatd¥(0)) in the absence of flux, the final state
Let us choosés,=+1 everywhere.
It is instructive to first consider the limh, U>K, t,. In
this case, since> K, the gauge theory is confining. Depend- |V (T)) = U P(0)), (22
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FIG. 3. (a) Schematic figure showing a vison threading the hole
of a cylinder in the absence of vison tunneling terms. The dal
(light) bonds correspond tof;=-1(d{;=+1). We can detect the

presence of the vison by evaluating the Wilson loop operﬁ@rﬁ-

along the contou€ taken around the cylinde¢b) The translation
operator along th& direction moves the darkafj =-1) bonds by
one lattice spacing fronL,, 1) to (1, 2) at eachy. This is accom-

PHYSICAL REVIEW B 70, 245118(2004

each loopC around the cylinder, we conclude that there must
be a vison threading the hole, and we shall refer to this as
lv=1). Let us evaluat&\V, for the two state$¥; ;) above. We
easily find W.=1 in the initial state. In order to find the
eigenvalue oM/ in the final state, we note that sinbe0,

the initial assignment ot does not time evolve, and we
only need to evaluate the effect of the unitary transformation
Ug on We. This yields the result that the eigenvalue in the
final state is\WL=-1.

Thus, forh=0, threading a 2 flux adds a vison to the
hole of the cylinder and interchanges the two ground states
on the cylinder,Jv=0)«|v=1). (In fact, in the absence of
dynamical matter fields, i.e.t,=0, the operatorU,
=Tljjecqo]; commutes with the Hamiltonian and can be

. J - . - . .
viewed as the “vison creation operator” introducing a vison

rlﬁnto the hole of the cylinder and changing the sign/éf.)

Momentum balance then tells us that adding a vison into
the hole of the cylinder must change the momentum of the
system by ZrvL,. The only situation where this is a non-
trivial crystal momentum is for the case B4, 0n a cylinder

plished equivalently by acting with the gauge transformation operaWith an odd number of rOwsLy_OdO)' Then we expect the
tor G; (which changes the sign @f: on all bonds emanating from tWO statesp=0) and|v=1) to differ by crystal momentum

i) acting on each of the circled sites.

.
UT:Ttexp<—iJ HA(f,t)dt),
0

(23)

where 7; is the time-ordering operator. We can go to the

A;=0 gauge by making a unitary transformatibia(Z", T)
—UgHAZ" , T)UZ=Ho(Z") (corresponding to zero fljx
Since the chargons carry a char@¢2, the hc/Q flux

. In all other cases, i.e., fdr, even, or ofZ,, ., the vison
carries no momentum.

As we shall see in the next subsection, this is consistent
with a direct computation of the vison momentum in the pure
Ising gauge theory. We now switch back on the vison hop-

ping h=# 0 and ask how these conclusions might be affected.

2. Vison state in the presence of dynamical gauge fields

Turning on a nonzerd, gives dynamics to the gauge

quantum threading the cylinder appears as an Aharonovie|q. |n this case the loop produtt¥. no longer commutes
Bohm flux of o for the chargons. The gauge transformation,yit the Hamiltonian; we cannot use its eigenvalues to label

which returns the Hamiltonian to its original form thus also ihe states. Let us first see what effect this ha<x

acts on the Ising gauge fields to remove this extrélux.
Hence we have

Us=U,, with (24)
Uy= exp(iLzE xiﬁi) , (25)
u,= I1 o (26)

ijecut

and “cut” refers to the set of links for whick=L,, x;=1
(shown in Fig. 3. Thus, the final state in th&; =0 gauge is

o/, The
two statesv=0) and|v=1) both carry zero crystal momen-

tum, and will now mix to give eigenstates of the Hamil-
tonian. Thus, on flux threading there is no level crossing—
threading a®, flux returns us to the original ground state.
For Z 44 0n a cylinder with ever,, the two low lying states
carry zero crystal momentum, and a similar conclusion ap-
plies.

The situation is more interesting fdf.,, on a cylinder
with anodd L. Now, the statef =0) and|v=1) cannot mix
since they carry different momenta. Thus, even in the pres-
ence ofh+# 0 (so long as we remain in the same phases
can continue to distinguish them and we can continue to
label them as no-vison/vison states by their momentum, al-

|‘Iff>=u4]1‘,uT|\Ifi>. Since the system is an insulator, the finalthough they are not eigenstates of tiié operator any
state on threading flusby must be one of the states which longer. In this case, the crossing of the two states on thread-
forms part of the degenerate ground state manifold in théeng a®, flux continues to occur, since the crystal momentum

thermodynamic limit.

Let us define the loop operath=Hcoi1j where the loop
C is taken around the cylind¢see Fig. 3. Clearly, sinceh
=0, this operator commutes with the Hamiltoniéir®). We

must change byr in order to satisfy momentum balance.
Thus we may conclude that for the caseZgf,, on an odd
length cylinder, the two degenerate ground stdtesvison
and vison through the hole of the cylingeliffer by crystal

can use this operator to check whether there is a visomomentums. This is the result of the momentum balance
through the hole of the cylinder. Namely, if we are in aargument applied tdZ, fractionalized insulators. We wiill

(reference state Withoilj =1 everywhere, theW/-=1 and this
is the no-vison statl =0). If on the other hand=-1 for

sometimes simply refer to this result f@f,, as “the vison
carrying momentumr per row of the cylinder,” omitting to
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point out each time that the vison in question lives in theTVT T‘l—V (30)
hole of the cylinder.

The above result is consistent with the vison momentum
computed using(i) the pure Ising gauge theofgs shown in [H( 11 al i }VL 1 (3D
the next subsectign(ii) variational wave functions foZ, i jenn()
spin liquids (as shown in Sec. VP and, (iii) arguments
presented for short-range dimer modékor 7,

A side result of this analysis of identifying the vison crys-
tal momenta in various situations is an unambiguous way 0
cpstmgwshlng fractlo_nallzed states fr(_)m sFates with trgn;la- TV[ ,1T_1: (H (- 1)2N>V[ 1= exinWNLy)V[ N
tion symmetry breaking for the half filled insulator. This is X i X X
described in detail in Sec. VI. (32)

where the sites havex;=L, and correspond to the circled
sites in Fig. 8b). Using the constraint in Eq28), this re-
guces to

Thus, for the second stat§4=1>=V[X’1|v=O>, acting with

, : . _ the translation operator leads to
C. Vison momentum computed directly in the pure Ising P

gauge theory To=1)= ('Arleﬁ”l)ﬂv =0), (33

In order to check our deduction about the vison momen-
tum, let us directly compute this quantity in a puglsing
gauge theory without dynamical matter fields. If the charge _
gap in the insulator is large, this is the effective description =exp(i2mNLy)|v = 1). (39
of the insulatorZ". Namely, in the limitU>t, in the Hamil-
tonian(19) and for integer values of\, a good caricature of
the insulating state is to sef=N at each site and only con-
sider fluctuations of the Ising gauge fields. This reduces the
constraint on the physical Hilbert space to

=expi2aNL)V] Jv =0), (34

In other wordsj) for even N, namely inZ, ., the statgv
=1) carries zero crystal momentum andii) for odd 2\,
namely inZ,,,, the vison staté =1) carries momentunal,.
As before, we can now turn on a nonzero fialdn I*evenp
the two ground states will mix and split in a finite system,
since they carry the same momentum quantum number. The
o - same is true fofZ4, with evenL,. However, forZ,y, with
Gi*phys = (- )™ exp I—(l @) 2 o [[phys =phys  oqq L,, the two ground states carry relative momentan
J=nn() thus they cannot mix even on a finite system with nonzero
(27)  and can be distinguished by their momentum.
Finally, we may introduce dynamical matter fields. Al-
though the operator in Eg29) no longer can be identified as
a vison creation operator, the low energy structure of the
system, i.e., topological degeneracies, will not change as
long as we are in the same phase. Also, since the crystal
11 o = (- AN (28)  momenta of these low lying states on the cylinder can only
j=nn(i) be one of 0,7 (from time reversal invariange continuity
requires that the crystal momentum assignments made before
for the low lying states continue to hold in the presence of
dynamical matter fields. This constitutes a direct check of the
results deduced above using momentum balance arguments.

or equivalently, focusing only on the nontrivial case of
a=-1

in the subspace of physical states.

Again, if we begin withh=0, one ground statp =0) of
the gauge theory on a cylinder may be obtained as the refer-
ence stater’=1 projected into the physical subspace, and for
this one has the loop operatdi-=1. A seconddegenerate
state may be obtained by acting on this ground state with

D. Momentum computation from variational wave functions
for the vison

So far, we have discussed bosonic models for the insula-
: torsZ". However, as mentioned earlier, we can view a hard-
V= 11 o (290  core boson as &=1/2 spin, and the insulating stat&

needt with 2N an odd integer as &, fractionalized spin liquid
insulator. Such spin liquid insulators have long been of in-

which commutes with thél, for h=0. The subscriptéL,, 1)  terest in connection with frustrated magnets and the high
on V' are a mnemonic for the column on which th&op-  temperature superconductors. TQe=1/2 chargon excita-
erators act as shown in Fig(a3. The resulting state has tions in the bosonic language correspondStol/2 excita-
Wc=-1. Let us compute the momentum of these two statedions (called spinongin the spin liquid. What do the visons
Clearly, the statéy=0) has zero momentum since it is trans- in Z,, correspond to?
lationally invariant by construction. To compute the momen- To answer this, we note, following Anderséhthat one
tum of the second state, we first ngee Fig. 8)] that can represent of the ground state wave function for spin lig-
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uids with short-range antiferromagnetic correlations bylations are performed on finite sized systems, states that are
“Gutzwiller projecting” a superconducting wave function, degenerate in the thermodynamic limit are only approxi-
i.e., restricting to configurations with a fixed number of elec-mately so in these systems. The problem is particularly se-
trons per site. Such a picture also emerges from mean-fiekdere when gaplesZ, charged matter fields are present, in
studies of frustrated magnets using a fermionic representavhich case the splitting between topological sectors that dif-
tion for the spins. This suggests that perhaps excitations der by the presence of a vison can be large and go down to
the spin liquid may also be related to excitations in the suzero only algebraically with system siZa contrast to the
perconductor. Following this line of thought, ti&=1/2  exponentially small splitting in the absence of such gapless
spinon in the spin liquid may be viewed as a projected Bo-gauge charged matter fie)dSecond, if degeneracies arise as
goliubov quasiparticle of the superconductor. Similarly it isa result of broken translation symmetry, rather than topologi-
natural to expect that thiec/ 2e vortex in the superconductor cal order, the relevant order parameter for this translation
becomes the visoff. symmetry breaking may be hard to identify, and hence we
We can check this possibility by computing the momen-would like to have available a prescription for distinguishing
tum of a projectechc/2e Bardeen-Cooper-SchrieffdBCS)  such states even if the order parameter is not known. Below
vortex threading the cylinder, with odd/even number of elecwe use insights from the momentum balance arguments to
trons at each site, and seeing if it agrees with the results faiesolve both of these issues. Indeed we will see that the
Zoad Ze,en Obtained above. To do this, we write the BCS stateanalysis of the previous sections, with their focus on finite

(with total electron numbeN,) as sized systems and crystal momentum guantum numbers, are
for N2 ideally suited to addressing these questions. We begin by
|BC3Ne)>:<E ¢ka¢C_k,¢) : (36)  addressing the second of these two questions first—i.e.,

k

given a set of states comprising the low energy manifold of

where ¢, denotes the internal pair state of the Cooper paithe system as the thermodynamic limit is approached, how
formed by (k, 1) and (=k, | ), which carries zero center of does one distinguish topologically ordered states from a con-
mass momentum. ventional translation symmetry broken state?

To get the spin liquid state at half filling, we have to
chooseN.=N, the number of lattice sites, and Gutzwiller
project this state by acting with the operat®g=II;(1
—n;;n;) which eliminates configurations in which two elec-  Consider a system of bosons on a lattice at half filliog
trons occupy the same site. The variational ansatz for thequivalently a spin 1/2 system with one spin per unit)cell
spin liquid ground state is thePg|BCSN)), and it is a trans- ~ As discussed previously, a translationally invariant insulating
lationally invariant state with zero momentum. To construct aPhase implies the presence of topological or@though it
BCS hc/2e vortex threading the cylinder, we need to pair is possible to have topologically ordered phases that also
states with(k+q/2,1) and (-k+q/2, | ) with q=(27/L)x  break translation symmefryAssume that a group of low
and amp|itude¢k; th|s |eads to thd\l_partic'e vortex state |y|ng states haVe been identiﬁed—under What Conditions can
Ihc/2e(N)) carrying a momentum of] per pair, or a total We associate these with the degeneracies assocated, the
momentum(27/L,)(N/2). SettingN=L,L,, we see that the topolog!cal order, rather than with low lying states leading to
momentum of this state is justL,. The projection operator translation symmetry breaking? o _
P, commutes with the translation operator. Thus the trial FirSt consider the system in the cylindrical geometry with
vison state [v)=Pghc/2e(N)) has a momentumsL, in an odo! number of rO\A/e_yodo!,Lxeven in Fig. ;._Then,flux _
agreement with earlier arguments for tﬁfa insulator threading ensures that we will have two low lying states with

d .

With an even number of electrons at each site, the viso rystal_ momentur‘rPx_:Q, PXZW Wh.'Ch are interchanged an
threading 2r flux. This is irrespective of whether the system

wave function carries no crystal momentum. This is consis: . . .
tent with our earlier result for” is heading towards translation symmetry breaking or towards
wen X 4 SR
a Z, topologically ordered state in the thermodynamic limit.
Therefore this setup is not particularly useful for discussing
for distinguishing the two states. One may also consider the
toroidal geometry for an ever odd system, however, this
can potentially frustrate certain patterns of translation sym-
Numerical investigation of microscopic models, for ex- metry breaking in a half filled system and hence we do not
ample, exact diagonalization studifesare an important tool consider it further here.
in finding new states of matter such as states withiopo- Now consider the system in a toroidal geometry, but with
logical order. In this context it is important that reliable di- both L,, L, even Now, we have shown earlier that 2
agnostics be available for the identification of these states itopologically ordered state will have four low lying excita-
the system sizes that can currently be solved on the contions, all with zero crystal momentum in this geometry. A
puter. This question may seem straightforward in principleconventional translation symmetry breaking state, on the
the fourfold topological degeneracy of tt® states on a other hand, will invariably have at least one state in the low
torus that are indistinguishable by any local operator seem tenergy manifold that carries nonzero crystal momentum, in
provide a unigue prescription. However, in practice there araddition to a zero crystal momentum state. This follows al-
several potential problems. First, since the numerical simumost by definition, in order to build up a translation symme-

A. Z, Topological order versus translation symmetry breaking

VI. IDENTIFYING Z, FRACTIONALIZED STATES IN
NUMERICAL EXPERIMENTS
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try breaking state one needs to make a linear combination dbpologically “degenerate” states that arises from the pres-
states with different crystal momenta. This then is a precisence ofZ, charged matter fields. While in the thermody-
way to tell apart &, topological state from a more conven- namic limit, aZ, fractionalized system, must possess a four-
tional translation symmetry breaking state, which just re-fold ground state degeneracy on the torus and a twofold
quires a correct identification of the low energy manifold andground state degeneracy on the cylinder, in a finite system
the crystal momenta of these states. The translationally synthis spiltting may be so large that it makes the identification
metric topologically ordered state is present if there are founf the low energy manifold problematic. In this subsection
low lying states with zero crystal momenta. If topological we will utilize the flux threading proceedure to find a way of
order coexists with translation symmetry breaking, then toceliminating the part of the splitting between these states that
this quadruplet of zero momentum states persist, althoughrises from the presence @j charged matter fields.
other quadrupled states with different crystal momenta will In order to study the problem in more detail consider a
be present in the low energy manifold. This is true for bothfinite sized system in the cylindrical geometry that is heading
Topen @NAZo 4 towards aZ, fractionalized insulating state. Consider first the

Recent exact diagonalization studies of a multiple spirsituation on an evexeven lattice. The low energy manifold
exchange model on a triangular lattice have found signaturesonsists of a pair of states that eventually become degenerate
of an interesting new spin state, which has been proposed o the thermodynamic limit, but at this stage have a finite
be a topologically ordered spin liquid phase in a certain resplitting AE. The spitting arises from two sources: first there
gime of parameter§Let us apply the method of distinguish- is vison tunneling, that mixes the zero and one vison states,
ing topological order from broken translational symmetrywhich acting alone, would lead to a splitting &, Since
discussed above, to these states. this involves a gapped visqwith gap €) hopping across the

In the parameter regime of interest, the system in Ref. £ntire heightL, of the cylinder, one would expect this to
was argued to be heading, in the thermodynamic limit, toP€ exponentially small in their product, i.e.AEns,
wards a spin gapped phase without long-range magnetic of¢ exp(—cLye), wherec is a constant. The second contribution
der. Furthermore, a set of three spin singlet states which a0 the splitting arises from the presence of matter fields that
pear to become degenerate with the ground state witRarry gauge charge. Clearly, the presence or absence of a
increasing system size were identified. The authors were ur¥ison will affect the propagation of these particles and in the
able to find simple valence bong.g., nearest neighbor absence of vison tunneling will give rise to an energy split-
crystal states that would lead to degenerate ground staté§g AEyq With gappedZ, gauge charged matter fieldsith
with the quantum numberg&rystal momenta, rotations, re- a gape), clearly this splitting will require virtual processes
flectiong of these low lying states. Hence they identified thiswhere the gapped particle goes once around the cylinder
apparent fourfold degeneracy with the degeneracy arising/hich impliesAE,<exp(—c’L,g). The total splitting is eas-
from topological order of &, fractionalized spin liquid, such ily seen to beAE=\s’AEﬁop+AEr2nar Thus, in situations like
as described by Eq19), on a torus. While this would be a the one described above, where both visons and gauge
very interesting result, we can ask if the quantum numbers ofharged matter have a healthy gap, finite sized system studies
these nearly degenerate states are consistent with those ofan in practice isolate the low energy multiplet that leads to
vison in an odd Ising gauge theory, that we have derivedopological degeneracy in the thermodynamic lifnilote
earlier. However, the three excited states which appear tthat the presence of gapless matter fields whichganege
become degenerate with the ground state caoryzerocrys-  neutral do not affect these conclusions. Further, at least in
tal momentum on a 86 lattice? This is in disagreement principle, the topological degeneracies described here, with
with our conclusion regarding vison states irZafraction-  splittings which are exponentially small in system size, can
alized phasé’ namely, that they carry zero crystal momen- be separated from low lying modes of the gauge neutral ex-
tum on everxeven lattices. We therefore conclude that thiscitations whose splitting scales inversely with system size.
interesting identification oZ, topological order in these sys- However, if thegauge chargednatter is gaplesée.g., if
tems does not stand up to detailed scrutiny. The actual natutbere are fermionicZ, gauge charged excitations with a
of the phase being approached by these systems then remaPgac spectrum that often appear in mean field theories of
an open guestion, especially since an extensive search epin liquidg then the splitting of the zero and one vison
conventional broken symmetry states in Ref. 4 did not yieldstates are no longer exponential in the perimeter size of the
a candidate phase. The remaining possibilities are perhapssgstem, but only a power law, i.eAE,4*L,7, where 5
conventional translational symmetry broken valence bond>0, and this dominatedE. This is potentially a serious
crystal phase, involving non-nearest neighbor dimers, somproblem since in a finite sized system the splitting is very
other more exotic fractionalized state, or that the all the lowlikely to be large and also hard to distinguish from the low
lying states associated with the broken symmetry have natnergy states arising from the gapless fermions, which also
been identified as a consequence of finite size effects. Notdave energies that vanish as the inverse size of the system.
the evolution of these states under flux threading which theyelow we will prove that in the presence ef flux (i.e.,
have studied on oddeven and evexeven lattices is also antiperiodic boundary conditions for the unfractionalized

consistent with a conventional broken symmetry state. bosons/magnonghe matter contribution to the vison split-
o ) o ) . ting is switched off! Essentially this arises because Zhe
B. Eliminating the spinon contribution to vison splitting charged particles, which also carry half a unit of charge, see

In this subsection we will utilize the flux threading pro- the antiperiodic boundary conditions as a flux sdy) —/2.
ceedure to find a way of eliminating the splitting between theAdding a vison then implies a flux of/2. However, since
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these two situations are related by time reversal symmetryng the 7 flux will require breaking the S{2) symmetry, this
the energy contribution from the matter fields in these twoonly occurs along one row of the cylind@r.g., changing the
cases is identical—which implies that the splitting arisessign of the exchange constants for &, andS,S, interac-
solely due to vison tunneling, which can be made exponentions), and hence may be viewed as a fairly weak perturba-
tially small. tion away from full SW2). It should also be useful in pro-
In order to show that at a flux af the matter contribution  jected wave function studies, especially in establishing the

to the vison splitting vanishedE,=0, we adopt the fol- eyistence ofz, fractionalized states with excitations that
lowing procedure. We consider the systémeading towards p5ve a Dirac dispersich.

aZ, fractionalized stateon an eveixeven cylinder, and con- Finally we note that while turning on a flux of is effec-

?_iﬁer fitrhst thelltlti.mit V\;ht(;re Ithe vison hotpp;ing is turnedtpffl. tive in canceling the splitting arising from dynamical matter
en, the spiitting ot the low energy states occurs entireliyq g e splitting from vison tunneling can be canceled in a

because of the gauge charged matter contribution. We no S . .

consider introducing a vison through the hole of the cylinde Ike manner py considering a c_yllnder with an odd numbgr of

and argue below that exactly at flux the two states are rows at half filling, where the vison and no vison states differ
by crystal momentumr and hence do not mix. When both

exactly degenerateven in a finite systejn Since the vison . . .
hopping has been tuned to zero, the remaining source cﬂaese processes are active we expect the vison and no-vison

splitting (arising from the gauge charged matter figldgist states to be exactly degenerate. Indeed, this is borne out by

also be zero at this point. We can then reintroduce the visof'® observation that for a cylinder with an odd number of
hopping, and the states at flux will now be Sp“t' but the rows at half f|”|ng, when the threaded flux reachethere is

splitting occurs entirely from vison tunneling. always a level crossing just from momentum balance argu-
Let us now show that in the absence of vison tunnelingments and time reversal symmefsee Fig. 2a)].

an exact degeneracy occursmaflux. We consider for defi-

niteness the model in E¢l9)—although it contains gapped

matter fields withZ, gauge charge, the conclusions simply A. Conventional Fermi liquids

show that all matter field contributions cancel at this special

flux, and hence can be easily extended to the case of gaple sLet us first briefly review the momentum balance argu-
T Y€ o € 0T 9apPIe3Rnt due to Oshikavidor conventional Fermi liquids where
matter fields as well. We consider the limit of vanishing vi-

son tunnelingi.e., h=0 in Eq.(19)]. We start with zero flux it leads to Luttinger's theorem. Consider fermions with

; . ! : . . char and spinT, | at a filling per site ofv;=v,=v. Now
';Ihrou?h the cylinder and consider inserting, adiabatically, %Ons?ggr flux tr?re;dilng in the ?:yFI)indrical gVeTor;l}leU; of Fig. 1
ux of 2. :

Then, as argued in Sec. V, inserting & flux leads to with L, columns and., rows. We imagine threading unit flux

insertion of a vison. Now, at zero flux, the two low lying Do=hc/Q that only couples to thg spin fermions. Via

states can be classified in terms of vison humber, since thtrivial momentum counting this proceedure can be seen to
’ .|?npart a crystal momentum of

vison hopping has been set to zero. The vison number is
measured by the operatwc:l'[caﬁ where the loopC is AP, =2myL,. (37
taken around the cylinddisee Fig. 2. Clearly, sinceh=0,
this operator commutes with the Hamiltonian, and the tw
low lying states can be labeled with the eigenvalueglof
-Wp)/2, i.e., the vison number. The splitting between thes

VIl. MOMENTUM BALANCE FOR FERMI LIQUIDS

goimilarly, one could imagine performing the flux threading
with the cylinder wrapped along the perpendicular direction
éNhiCh would yield a crystal momentum change

levels arises entirely from the gauge charged.matter fields. APy =2mL,. (38)
On flux threading, these two states must then interchange— ) o .
since threading 2 flux inserts a vison in this limit. This Now in the regular Fermi liquid phase, this crystal mo-

means that the two levels have to cross at some oint Mentum imparted during flux threading is accounted for en-
more generally at an odd number of pojnds a function of tirely by quasiparticle excitations that are generated near the
flux. Now, time reversal symmetry tells us that if there is aFermi surface. Using the fact that long lived quasiparticles
crossing point at fluxp, then there must also be one at the exist near the Fermi surface, and the fact that the Fermi
point 2— ¢. Thus, in order to arrange for an odd number ofliquid is adiabatically connected to the free Fermi gas, the
crossing to ensure the levels do interchange, we need thg#@si-particle populatioan, excited during the flux thread-
there is always a crossing at flux Thus, the two states with ing procedure can be worked out. Clearly, flux threading for
vison and no vison are exactly degenerate at this value of th@oninteracting fermions will lead to a uniform shift of the

flux and hence we conclude that the splitting from the gaug&ermi sea byAp,=2w/L, from which the quasiparticle dis-
charged matter fields vanishes at this value of flux. Now/ribution function can be determined. Indeed all of these ex-

turning on the vison hopping# 0 will lead to a finite split- citations are close to Fhe_ Fermi surface, which is required in
ting even atw flux, but this splitting arises entirely from order to apply Fermi liquid theory. The total crystal momen-
vison tunneling and hence at this value of the flux we havdum carried by these excitations can be written as
AE=AE,, and hence vanishes exponentially in the width of -3
the system. These arguments can easily be taken over to the AP=2, ongp. (39
toroidal geometry as well. P

We note that this result is useful even in the study oflt is convenient to first evaluate this expression neglecting
SU(2) symmetric spin liquid stateswhere although intoduc- the discrete nature of allowed momentum states in a finite
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volume system and treating the shift in the Fermi $pa VIII. MOMENTUM BALANCE IN  FL

=2m/Ly as infinitesimal. This yields Here we will consider an exotic variant of the Fermi lig-

op -dS uid, where electron-like quasiparticles coexist wii}
AP, :jg P (40)  fractionalizatiorf This state may be obtained beginning with
Fs L1, a Z, fractionalized insulating state of electrons that breaks no

. ) lattice symmetries. We consider a specific model where the
wheredS, is a vector normal to the Fermi surface, and the y P

. . ) ) spinons(f,. spin half, charge neutral excitationare fermi-
integral is taken arognd the Fermi surfac_e. Using Gauss dI6nic and the chargon®' spin zero, unit charged excitations
vergence theorem this can be converted into an integral ov

the Fermi vol hich vield %re bosonic. The electron operator is writtenchs bf! and
€ Fermi volume which yields the relevant gauge structure4s which implies that pairing

dv of spinons is present. If one is deep in the insulating phase
AP, = (mxf on (41) then there is a large gap to the chargons; furthermore, if there
FV L L, is also a spin gap, then the low energy effective theory is just

-an Ising gauge theory. For an insulator with an odd number

thus, of electrons per site, in this regime we may set the chargon

=2 Vi numbern,=0 and the spinon numbex=1. The Ising gauge
APX—Wﬁ. charge at each site {s-1)™™, which leads to amdd Ising
LT gauge theory in this situation. For an insulator with even

number of electrons per site, avenlsing gauge theory
A more careful derivation that keeps track of the discretenesg,quid result. We now imagine a situation where the lowest
of the allowed momenta gives the same result. Clearly thenarge carrying excitation in the system is the electron itself.
relevant Fermi volume that enters here is that of the up spinsrhis could arise if the spinon and chargon form a tightly
Below we assume for simplicity that both theand |spins  phound state so that it has a lower net energy than an isolated
are at equal filing and so/=w =v and Vis=Vis=Ves  chargon. Doping would then lead to a “Fermi liquid” of
Equating the results from the trivial momentum counting, electron-like quasiparticles, coexisting with gapped visons,
and the momentum counting above for the Fermi liquid  spinons and chargons, which is tFé* phase we wish to

to reciprocal lattice vectoryields discuss. It already appears that a violation of Luttinger’s re-
om lation may be expected here if we dope an insulator with an
2l = o2 YFS | | 4 27rm, odd number of electrons per unit cell, since only the doped
y 2bxby ' )
Ly (2m) electrons may be expected to enter the Fermi volume. Here

we will see how momentum balance arguments allows for

7 Ves such a violation, but nevertheless constrains the possible

2Ly = L_WLxLy +2mm,, Fermi surface volumes so that a generalization of Luttinger’s
y em theorem to this exotic class of Fermi liquids holds.

wherem, andm, are integers and the two equations above In order to follow in detail the evolution of the system
are obtained from threading flux in theandy directions. ~ under flux threading we study the following model Hamil-

These quations can be rewritten as tonian:
s Hee = Hg + ng—ch+ Hint Hgauge (45
N=LibyG 2 = Lt (42
He=- > tocl.ci,, (46)
v <ij>
FS _
N - LXLy(ZT)2 = Lymy, (43

HO = > tCo?blb - X to?flf

~ ~ 7o lio
where we have introduced the particle numerL,L,v, an == ==
integer. In order to obtain the strongest constraint from these +A, (L] +h.c), (47)
equations we consider a system witpy L, mutually prime i

integers(no common factor apart from unityThen, mL,

=myL, implies that they are multiples of,L,; namely - _ z X
mL,=mL,=pL,L, with p an integer. Thus we obtain the Hoauge Kl;[ iy’ h2 o (48)
result
with the constraint on all physical states
_ Ves i
v= (ZT)Z +p, (44) H g-ﬁ = (— 1)nb Nt (49)

j=nn(i)

which of course is Luttinger’s theoréithat relates the Fermi  and H,,, denotes the interactions between various fields
volume to the filling (modulo filled bands that are repre- which we do not specify here except for assuming that terms
sented by the integep). here do not couple to an externally imposed gauge field that
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is required for flux threading. Note, the spinons and chargonsison dynamicgh=0 in Equation(48)], it may be seen that
are coupled to th&, gauge field, while the electrons are, of a vison is also introduced during the flux threading procee-
courseZ, gauge neutral. We have selected, for simplicity, andure. This is argued as follows. In the absence of vison dy-
on site pairing interaction for the spinons; while such on sitenamics, the vison number through the hole of the cylinder, as
pairing terms are absent in microscopic models that forbigneasured by the operatWC:HCO-izj, whereC is a contour
double occupancy of electrons, here we are concerned wifhat winds around the cylinder, is a good quantum number
universal aspects of quantum phases which are not affectegnce it commutes with the Hamiltonian in this limit. How-

by this simplification. ever, in the course of flux threading and returning to the
original gauge, it changes sign since it may be easily verified
A. Flux threading in FL" that UGWCL{;lz—WC, which implies vison insertion. Thus,

. . the final state has a displaced Fermi sea and a vison.
We now consider the effect of flux threading on the \ya can now combine the results of trivial momentum

ground state_of TthelHamlltqnlaMS). In the presence of a counting and a knowledge of the vison momentum to obtain
vector potentlaA_ (A) co_uplmg to the uggdown) spin ele_c- the volume of electron-like quasiparticles. This is most easily
trons, the hoppmg. matnx elem_ergts for th_el(m)wr?) SPIN " done in the limit of a very large gap to the gauge charged
electrons are modified ttf — tfe(t] — i), while the  particles (spinons and chargopsThen, the phase is de-
chargon hopping amlitude is modifiedﬁpﬂtﬁeli(AiTﬁAﬁ) and  scribed by gauge neutral electrons forming a Fermi liquid
the up (down) spinon hopping amplitude is modified tﬁ) and a pure Ising gauge theory in the deconfined phase. We
_)tﬁe'E(AIj—A#j)(tisj _)tiSje—'E(AiTj—AiLj)). Below we imagine thread- know that the vison excitations of the latter through the hole
ing 2 flux in Al and study the evolution of the ground state of the cylinder with an oo!d number of rows carries crystal
of the system in this process. In addition to the excitation offomentum 0 orr depending on the even or odd nature of
particle-hole pairs of the electron-like Fermi-liquid quasipar-the Ising gauge theory. The gauge constraint in(2§) tells
ticles, we will also see that in some situations a vison exciUs this depends on the parity of+n, at each site. If we set
tation is inserted through the cylinder which gives rise to the,=0 for the gapped chargons amg=1 for the gapped
modified Luttinger relations. We begin by considering flux spinons, where for the latter we assume the system is ob-
threading in the absence of vison dynam[ts=0 in Eq. tained continuously by doping a spin liquid with spin 1/2 per
(48)], where results are easily derived, and then reinstate thenit cell (i.e., a spin version df;dd). In this limit an odd Ising
vison dynamics and show that the central result is unaffectedjauge theory will be obtained, where the vison threading an
The adiabatic insertion of a unit flux quantum that couplesodd width cylinder carries crystal momentui If the gap to
to the up spin electrons is affected by introducing a gaugehe spinons and chargons is now reduced from infinity, this
field on the horizontal links of the cylinder in Fig. 1 and crystal momentum assignment to the vison cannot change
increasing its strength from ze(AiTj:O—>21-r/LX) intime T. continuously(from time reversal symmetyy and is hence
The time evolution of the quantum state can be written aexpected to be invariant for a finite range of gap values.
[A(T))=Us| 4(0)) whereldr=T; exp(-i[{Hg -(t)dt) whereZ;  Thus, the phase is expected to be continuously connected to
is the time-ordering operator, and the time dependence of th&e large gap situation with integer or half integer filling,
Hamiltonian arises from the flux threading. Clearly, sinee 2 Which will determine the momentum assignments.
of flux is invisible to the electrons, the final state must be Thus, we are left with the result that two types of exotic
some excited state of the initigh!=0) Hamiltonian. In or-  Fermi liquid state$L, ., andFL 4 are expected, that differ
der to make this explicit, thez2flux is gauged away, which in the crystal momentum carried by the vison excitations.

can be accomplished by the operattg/, with The momentum balance argument then immediately implies
that these two states will have different Fermi volumes at the
same filling—whileFL,, ., will have a Fermi volume that is
identical to that of a conventional Fermi liquid at the same
filling and hence respects Luttinger’s relatidfl,_ ;4 has a
u=1l & (50 Fer'm_i volume that violates Luttinger’s relation in a very
o i definite way.
eedt Since the only situation where the momentum balance

While the first unitary operator eliminates the gauge fieldargument will give a result distinct from that of a conven-
for the electrons, it changes the sign of the hopping matritional Fermi liquid is for the case dfL_,,on an evexodd
element on a single column of horizontal links for the char-lattice, where the vison carries a nontrivial crystal momen-
gons and spinons which behave like half charges. This moditum, we discuss that below. Consider flux threading in such a
fication to the hopping can be absorbed in e gauge phase on a cylinder with an odd number of rows. This will
fields, which is accomplished by the unitary operatfy, introduce a vison through the hole of a cylinder which car-
which returns us to the initial Hamiltonian. ries crystal momentumr. This needs to be subtracted from

The action of the time evolution operatbf is to excite  the usual momentum balance relations for a Fermi liquid
electron-like quasiparticles about the Fermi surface in thalisplayed in Eq.(43). This leads to a modified Luttinger
usual manner, while the gapped spinons and chargons are nefation between the Fermi volume m;dd and the electron
excited during this adiabatic flux threading. In the absence ofilling »

2 1. i i
U,=ex IL—WE x(nf + 5(”‘f¢ -+ nlb))}’
X i
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1 V;s below that it is the Berry phase acquired by a vortex on
{v- 5} “PE o2 (51)  adiabatically going around a closed loop that is fixed by the
particle densityr, independent of the strength and nature of
wherep is an integer that represents filled bands. We reiterinteractions between bosons in the superfluid.
ate thatv is the number of electrons of each spin per unit
cell. The crucial difference from the usual Luttinger relation
in EQ.(44) is the fact that the Fermi volume is determined by _ _ _
v—3, which is related to the fact that it is obtained by doping ~We may describe a conventional superfluid most conve-
the fractionalized spin model which is translationally sym-hiently in a rotor representation for the bosons—tHgjs
metric at half filling. —e¢, BIB,—N, with [expli¢,),N, ]=expli¢) s, and
Finally, we argue that reintroducing the vison hoppingthe Hamiltonian for interacting bosons in these variables
(h+# 0) does not affect these conclusions. In the cases whefi@kes the form
the vison threading the cylinder carries zero crystal momen- A
tum, introducing vison hopping leads to a mixing of the vi- HA(SF) = ‘tbz cod i — ¢ + QAj) +Vindn],  (52)
son and no vison states in a finite system. This implies that @
we are no longer guaranteed to have a vison on flux threadvhere the interactions may be of the general fo/m[n]
ing. However, for the case &L ,4q0n a cylinder withan odd =3 ,U,, N;N,,. The Bose condensed superfluid, which re-
number of rows, where the vison carries crystal momentungults in dimension® =2 whent, is the largest scale in the
7, the nontrivial crystal momentum blocks the tunneling of Hamiltonian, supports linearly dispersing phonons, which
visons even on a finite sized system. This implies that fluxare the Goldstone mode of the broken symmetry. Vortices
threading does indeed introduce a vison which finally leadsippear as topological defects in the phase field in the ordered
to the modified Luttinger relation. We can see that the state, and there is a nonzero gap to creating vortices in the
crystal momentum carried by the vison cannot be transferregulk of the superfluid.
to the only other gapless excitations in the problem, the |n the above discussion, we have assumed that the phase
electron-like quasiparticles, since they are gauge neutral. variable has periodic boundary conditions, namegy,,
Our argument is an expanded version of the basic ideas,, o, =¢,. However, on cylinders/torii the superfiuid
aboutFL,yynoted in Ref. 6. However, our proof of the modi- a5 additional excited states corresponding to creating vorti-
fied Luttinger relation foiFL ;4 is more comprehensive, and qq through holes of the cylinders/torii. A state with,,

\ll_ve also identify theFL,,q, phase which is an exotic Fermi =, +2mm, corresponds to a strength, vortex through ‘a
iquid but nevertheless obeys the conventional Luttinger "®hole in the cylinder

lation.

A. Effective Hamiltonian for SF

B. Flux threading in SF

] , o ConsiderN bosons each with charg@ condensed into a
Luttinger’s theorem was formulated for Fermi liquids, and -gnventional superfluid ground state onlay L, lattice in
we have extended Oshikawa’'s argument to show how thgye form of a torus. Trivial momentum counting tells us that
theorem must be modified to account for the existence ofy eading fluxd,=hc/Q into the cylinder on which the sys-
gapped spin liquid insulatorevhich may be equivalently e jives changes the crystal momentum bRy, wherev
viewed as fractionalized bosonic insulatoas well as frac- s the filling andL, is the number of rows of the cylinder. We
tionalized Fermi liquids. In both cases, the presence of topogpow below, using a low energy description of the superfluid,

logical order was crucial. Let us next turn to conventionaliat adiabatic flux threading introduces a vortex into the hole
superfluids and ask: What property of the superfluid phase igf the cylinder/torus. We do this in two steps. First, we turn

captured by ,thi Oshikawa argument, and gets fixed by thgf the hoson interactions which allows us to directly con-
particle density? While we focus on the case of bosonic sugiyct the final state and see that it corresponds to introducing
perfluids, we expect our results to also be applicable Qe yortex. Next, we turn back on the boson interactions and

s-wave superconductors with a large gap, so that the resulfyq e that this does not affect the state or change the mo-
ing Cooper pairs may be effectively viewed as bosons. AlsOyantum carried by the vortex.

we consider the case of neutral bos@ns internal electro-
magnetic gauge fie)dAgain, these results could be applied
approximately to the case of charged superfluids if the pen-
etration depth is sufficiently large. Let us adiabatically thread flutkic/Q in the -y direction
Conventional superfluids in two or more dimensigis ~ for the above system on a cylinder as in Fig. 1 such that
>2) are Bose condensed at zero temperature, and haveSirting from the initial eigenstate’(0)) in the absence of
unique ground statéon both cylinders and tojii It is clear ~ flux, the final state reached |{&(T)). The final state can,
that the Oshikawa argument must then capture some proper@f course, be written agW(T))=U|¥(0)) with Ur=T;
of the excitations in the superfluid. A conventional superfluidXeXp(-ingA(S]-',t)dt) where7; is the time-ordering opera-
supports two kinds of excitations: the gapless linearly distor. We can go to théy;=0 gauge by making a unitary trans-
persing Goldstone mode of the broken symmetry gtpleo- ~ formation Ha(SF,T) —UgHA(SF, U =Ho(SF) (corre-
non”), and topological defects, namely vortices. We showsponding to zero vector potentiaHerel{z=U, with

IX. CONVENTIONAL SUPERFLUID SF

1. Threading flux @, introduces a vortex
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around an elementary plaquette of the lattice. We will now
show that using the momentum balance argument fixes this
Berry phase to bg=2mv.

Consider a single vortex on an infinite plane. Since the
vortex sees a “flux’y per plaquette of the lattice, the unit
translation operators for the vortex satisfif,T,=T,T,
xexp(-iy). Let |[Kx,Y) represent the state with one vortex
with x-crystal momentuniKy located aty=Y. When this vor-
tex is translated by one unit along th§ direction, i.e., to
y=Y+1 it is straightforward to show that the new state has
x-crystal momentum given bi,+ y. For an antivortex, the
translation operators satistyT, =T, T, expix), and translat-
ing the antivorton along #-changes the crystal momentum to
Ky—x-

FIG. 4. Threading a vortex through the hole of a tor(a.A xV\%th this in mind, let us thread a vortex through the torus
vortex (arrow coming out — antivortex (arrow going in pair is jn the manner shown in Fig. 4. Start with a state with well-
created, and separated by the translation opeflgtaio) When the  efined crystal momentum along tixedirection, say zero.
vortex is tak_en all the way ar_ound the torus and t_hen a_nn'h”"’_‘te‘treate a vortex-antivortex pair on some plaquette and make
‘;Vt')tguihtieaﬂg}’:g?);eth;rze:;g'r;%osvtvite has one unit of circulation, g\ \hernosition withzero net crystal momentum along.

' Next drag them apart by translating the vortex alogus-
ing the translation operatdf, until they areL lattice spac-
_ 2w N ings apart along the torus. This state then has additional crys-
Uy =ex IL_XE,: Xini)' (53 gy momentumyL. If we drag the pair all the way around the
torus and annihilate the vortex-antivortex pair, this would be
Thus, the final state in tha; =0 gauge i§W)=U 1| V). equivalent to threading a vortex through the torus as in Fig.

Let us consider the extreme limit achievedVjy;—0. In  4(b). The net momentum change is thgh,. On the other
this case, the system is initially in the full Bose condensechand, we have shown th&—P;=2mL, for threading the
state|exp(i¢) =1), which is unaffected by the time develop- vortex through the hole of the torus. This fixes 27v.
ment operatot/r, and the final state after acting with, has We have confirmed this result by using the well known
lexp(i ) =expi2mx;/L,)), namely it corresponds to having a duality mapping® between bosons and vortices in 2+1 di-
single vortex threading the hole of the cylinder. Trivial mo- mensions. The dual theory treats vortices as point particles
mentum counting then tells us that this vortex carries mominimally coupled to a noncompact(l) gauge field. In the

mentum:P . ex= 2L, dual theory, the flux of the gauge field on an elementary
plaguette as seen by the vortex emerges naturallyy as
2. Flux threading in the presence of boson interactions =2, i.e., the vortices see each boson as a sourcenof 2

. . magnetic flux. The noncompactness of the gauge field, or the
In the presence of boson interactions, the phast each conservation of the magnetic flux piercing the lattice, is a

i'(t)f éir?w%wlgtgg?rr\tgr:\g{i?) zir.inst:gglige]e E:;nebﬁﬂgzgtﬂmisesﬂgﬂmple consequence of total boson number conservation.
’ P : To summarize, vortices in a uniform superfluid pick up a

fluctuations may permit the vortex to escape from the hole OEerry phasey\ on adiabatically going around a loop enclos-

the cylinder. Clearly, this is only possible if the initial and ing A" plaguettes. The Berry phase per plaquette is com-

nE)'Ietely determinted by the particle density as The Berry
. : . phase per plaguette is completely determined by the particle
the vortex will remain trapped except at special values of density asy=2mv. Writing y=2may, which defines the

aggel})gl Vg\]/?arneiFr:V?ﬁgx brgcs:grr:"c(?aso?er)];l)t:1F)ilﬁt(;)rfaftic-)rnhsust’hrltra]adi Magnus coefficient’ay, leads to the Luttinger relation for
g ' P ' rg@]perfluids, namely

flux @4 introduces one vortex, carrying the above crystal
momentum, into the hole of the cylinder. v=ay +p. (59

ber. Since the vortex state carriBg,x=2mrLy, we expect

This relation follows from using the momentum balance ar-
guments of Oshikawa, applied to a conventional superfluid.
It is well known that moving vortices in a stationary Gal- In this sense, the Berry phase relation above may be viewed
ilean invariant superfluid experience the so-called Magnuss the analogue of the Luttinger relation for Fermi liquids.
force, a force which acts transverse to the velocity of the There is a concern which we have not addressed so far—
vortex. A superfluid vortex thus behaves as a charged particlhe vortex may have a modified density near its core, and this
in a magnetic field, the Magnus force being analogous to thé turn could modify the Berry phase accumulated by the
transverse Lorentz force. In a lattice system, this “magnetizortex when it is adiabatically taken around a loop. However,
field” seen by the vortex is encapsulated through vector pothis term does not change with the area of the loop, so we
tentials living on the links of the lattice, and the vortices pick can still use the above result to deduce a precise difference of
up a Berry phasg (of the Aharonov-Bohm kindon going  the Berry phase between two loops enclosing different areas.

3. Flux threading and the Berry phase for a vortex
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We need to define2ay=A®/AN, whereAd is the differ-  case of translationally symmetrig, insulatorsZ”, a knowl-
ence in Berry phase between two loops which differ in areaedge of the filling alone was enough to determine the odd/
by AN plaquettes. Defined in this mannerz@, obeys the even nature of the phase, this is no longer true in the case of
precise relation in Eq54). Another caveat is the very defi- Z, fractionalized superfluidsSF (or F£"), where additional
nition of adiabaticity in the presence of gapless superfluidnformation regarding the odd/even nature of the phase is
phonon excitations—to be completely rigorous, we need tmeeded.

work with a finite-sized system such that the phonons have a

nonzero gap, and demand that the vortex motion be adiabatic A. Effective Hamiltonian for SF*

with respect to this energy scale. ) o )
A simple description of theéSF phase may be obtained

by using a Hamiltonian which describes chargons minimally

X. Z, FRACTIONALIZED SUPERFLUID SF coupled to aZ, gauge field. This takes the form

We now discuss an exotic variant of the superflic;’, R
and see how the relatiafb4) is modified in this phase. The H(SF) =T+ V+Hy (59
SF phase is &, fractionalized superfluid which was first with
discussed by Senthil and FisHelt supports three distinct
gapped excitationgi) an elementarjc/ Q vortex(called the ~_ z o )
“vorton” in Ref. 9), (i) Z, gauge fluxthe “vison”), and(iii ) T= tb% ajj cosd i — ¢+ QA;/2)
an electromagnetically neutral particle carryidg gauge
charge(the “ison”). 'I_'here are various_ ways in. which tise" —tg>, COY2¢ — 2¢; + QAy),
phase may be realized; we shall briefly outline one of them. (i)

Let us start with a fractionalized insulatdr which can be
realized at integer or half odd integer density of bosons. This
supports two gapped excitations: cha@€2 chargons that
also carryZ, gauge charge and Ising vorticégsons. On
doping this insulator, the additional char@ebosons can de- Hy=-KX [l of -hX o (56)
confine into pairs of chargons since in the fractionalized 0o (i)
phase Bose condensing the doped chargons would destr
deconfinement of th&, gauge field by the Anderson-Higgs . .
mechanism, since the condensate cardggauge charge (21). Here exg-ig) creat(_as a ghargon carrying chaiQé2
and lead to & conventional superfluid. andZ, gaugg charge at site n; is the ch_arg(_)n number, gnd

The other possibility is that doped chargquesr and Bose  the terms inT represent the chargon kinetic energy. Single
condense resulting in a superfluid phase. Since the condefbargons hop with an amplitudg, and are coupled mini-
sate isZ, gauge neutral, deconfinement is preserved and thig'ally to theZ, gauge field and for simplicity of discussion,
exotic superfluid phase is calle¥". It supports elementary W€ have included explicitly a chargon-pair hopping term
hc/Q vortices, and the visons still survive in the superfluid. With amplitude tg. Clearly a chargon-pair created by
There is, however, another excitation, analogous to a Bogd#XP(~2i#) has no net Ising charge and does not couple to
liubov quasiparticle of a superconductor, present in thdhe Z, gauge field.V,{n] is an interaction term involving
system—this gapped quasipartﬂ:l's the ison. It may be chargon densities which we do not spell out here. The exotic
viewed as a descendant of the chargon in the insulatoguperfluid phas&F requires being in the deconfined phase
whose electric charge has been screened by the Bose cond@fithe gauge theorgwhich is guaranteed by a large h) and
sate of pairs so that it only carriesZ Ising charge® In ~ with chargon pairs condensgahich can be achieved with
addition to these gapped excitations, there is, of course, th@rge chargon pair hoppintg, while single chargon hopping
gapless superfluid phonon in an electrically neutral systenfeémains smajl
The relative statistics of the gapped excitations are as fol- Let us now write down the effective Hamiltonian in the
lows: the wave function changes sign if an ison is adiabatiSF phase. Condensation of chargon pairs implies that we
cally taken around the vison or the vorton. can replace the operator éxf2i¢;) by ac number. Then, the

We have seen how, fractionalized Bose Mott insulators magnitude of the chargon creation operator is determined,
with full lattice translation symmetry fall into two classes, but its sign can fluctuate which gives rise to the ison field,
depending on whether the boson filling is an integgy,,) i-e., we can write ex-i¢y) = If, wherel is a Pauli matrix
or half odd integeZ,,,) as described in Sec. V. Similarly, with eigenvalues-1. Similarly, since chargon pairs are con-
fractionalized Fermi liquidsF£™ also come in two varieties densed, the parity of the chargon number operator chargon
as shown before, with different relations between fermionhumbern; must be changed by the ison creation oper#tor
filling and Fermi volumes. It is not surprising, therefore, thathence we identifyn; =~ (1+1{)/2; againl* is a Pauli matrix
we will find below two kinds ofZ, fractionalized superfluids, and(1+1%)/2, with eigenvalueg0,1}, counts the number of
SF'. Using momentum counting arguments as done earliernpaired Ising charged particles.
we will also see how the distinction between the two types of In new variables, the Hamiltoniamvith A;;=0) reduces to
SF' phases, namel§F, ., and SF,, is reflected in differ-

even ~ ~
ent dynamics for the vorton in these two cases. While in the Hied= Tred+ Viedt Hg + Heondensate (57)

V=uvidn],

%hd physical states of the theory satisfy the constraint in Eq.
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T =- 'S 121202 use continuity to argue that this does not affect the momen-
red= ~ lp ilj%ijs t ;
i um assignments.
-~ 1. Threading flux®, introduces a vison and vorton:
Vred: - 92 ”(, (58) 9 0
I

Consider at first the limih=0 andtg=c identically, so
where we have introduced a “chemical potentiglfor the  that before introducing flux we can everywhere st 1 (as
isons, antHegngensardescribes the dynamics of the conden-@ reference state which we can then project into the subspace
sate. Physical states of this theory need to satisfy the corff physical statesand exii2¢;)=1.

straint Let us adiabatically thread flukc/Q in the - direction
for the above system on a cylinder as in Fig. 1 such that
11 ol == 1% (59)  starting from the initial eigenstate’(0)) in the absence of
j=nn(i) flux, the final state reached [ (T)). The final state can, of

This is simply an Ising model coupled to an Ising gauge®ourseé. Tbe written a5|q’(T)>:UT|\P(O)_> with - Ur=T;
field—the SF~ phase is realized when both the isaegci-  <€XP-1/oHA(SF ,)dt) where 7; is the time-ordering op-
tations of the Ising modglvisions (excitations of the Ising €rator. We can go to th&;=0 gauge by making a unitary
gauge theory are gapped. This will occur whek/h and  transformation Ha(SF",T) —UgHA(ST , TIUg =H(SF)
lg/t;| are large, when the gauge theory is in the deconfinedicorresponding to zero vector potenfiaHere Ug=U4A,,
phase and the Ising model is “disordered.” Let us now brieflywith

consider the special limiting cases whége— « in order to

expose the underlying reason for the two kindsZg¢ffrac- T N

tionalized S phases. Clearly, ifj— %, we would have Uy =ex '|__2 Xi”i)’

I¥=+1 corresponding to the ison numbét+1})/2=0 re- !

spectively. The physical states of the gauge theory then sat-

isfy the constraint U, = 1 & (61)

ijEcut
g— Ioc:_H_ o)i}: +1. (60) o
j=nn() and cut refers to the vertical column of links for whigh

These constraints on the gauge theory, as we know fromL,, x;=1 [shown in Fig. 8b)]. Thus, the final state in the
the discussion on insulators, correspond to even and odd; =0 gauge igW¢)=U 4, U+|'V)). Since the system is a su-
Ising gauge theories, respectively, which correspond to havperfluid initially in the stateexp(2i¢;)=1), which is unaf-
ing zero or one Ising charged partialison) fixed at each fected by the time development operatéy since we are in
site. Thus, forg— +o and forg——o we will obtain two  the tg= limit, the final state after acting witli{, has
distinct superfluid phases, which we lalsf, ., andSF oy, |exp(2i¢)=expi2mx/L,)), namely it corresponds to having
respectively, which persist to finite valuesgés well. These a single vorton threading the hole of the cylinder.
are separated by an intermediate phase wigtret, where At the same time, following arguments similar to the in-
the I* Ising field orders; this is the conventional superfluid sulatorZ", acting withi/, introduces a vison in the hole, the

phase. Below, we will see how thes¥F phases can be vison number being defined yL-Wc)/2 with Wc:HcoiZ,—

distinguished from each other. where the loofC is taken around the cylind¢see Fig. 8)].
Thus, forh=0, tg=«, threading a 2 flux adds a vison
B. Flux threading in SF" and a vorton into the hole of the cylinder. Thus, when

the effective description of the gauge fields is an even
(odd) Ising gauge theory(which are connected to the
g— —x(+) limits, respectively, as we have seen abopve
momentum counting arguments already showed us that the
vison carries momentum zeftor the even gauge theorpr

aL, (for the odd gauge theoyyThe remaining momentum

Trivial momentum counting tells us that threading flux
d®y=hc/Q into the cylinder on which the system lives
changes the crystal momentum byrid.,, where v is the
filling and L is the number of rows of the cylinder. Where is
this momentum soaked up in ti&F phase? We will show
below that flux threading introduces both a vison and a vor )
ton into the hole of the cylinder. The crystal momentum jismust clea_rly be carried by the vorton! . .
then divided up between these two excitations, in a way that T.hus, in the case of evel, gauge theories the vison
depends on whether we are dealing WlIF, ., OF Sy carries zero crystal momentum, and we deduce that the vor-
This will be argued below in two stages. First, we consider®" through the h(.)le. of the cylinder carries crystal momen-
freezing the Ising gauge field dynamics by setting the visorgJm 2mily, and. this is thg%;e“ case. For the case of odd
hopping to zerdt=0). There it can easily be argued thh zéqa#ge theories, _the wsonl carries cryst;l r1r1/02mLen 4
flux threading leads to both a vison and a vorton. Then, usin%n the vorton carries crystal momentum(2-1/2)L,, an

our earlier knowledge of vison momenta in the even/dgd is is the SFqq case. To summarize, momentum balance
gauge theories, and the total momentum imparted to the Syé_rguments suggest

tem, we can read off the crystal momentum carried by the even
vorton. Finally, we reinstate the vison hoppifig>0) and Ploron= 2mmvLy[mod 2], (62)
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1 - - .
podd = 2m(v— )L, [mod 2], (63) Syauge™ ~eK L1 oy =K 1 o5,
2 Og Or
We now show that these momentum assignments are no
9 éc: - Stvz cos(é’i - 6i+x

- [N I i
affected on reinstating the vison hoppiffg# 0) and the con- ,~ 2mA, ~ T8, ngi: lo

densate dynamicg# ). h
r ; . X
+His 2 11 -0y,) + 2+eU -n)2.
2. Flux threading with dynamical gauge fields 2% w1 = ijr) “iyglvz(jﬂ) © 2 (Jo=1)
Here, starting from the case witih=0, tz=20, let us ask (64)
what happens if we turn on a nonzér@nd finitetg, giving . _
dynamics to the gauge field and to the condensate. Here expg—-if) creates a vorton, and the first termS$prep-

In this case the loop produt¥ no longer commutes with F€Sents vorton hopping. The vortons appear as charged par-
the Hamiltonian, and we cannot use its eigenvalues to labd|cles minimally coupled to the gauge fields, anda,. The
the eigenstates. Thus, in a finite system as argued previousiiy/x of the (noncompaqgtU(1) gauge field4, and the gauge
for the case of inulators, the vison can tunnel out in the casfield a, are tied to the charge currey,) and the ison
of even gauge theories for any cylinder dimension, or in thecurrent(l,,), respectively
odd gauge theories, if the cylinder has an even number of i i
rows (L,). However, for the case of odd gauge theories on a ‘TM/Z = €undrAy, (65)
cylinder with odd number of rowsL,), the vison carried i i
momentumar, and hence vison tunneling is blocked even in I = €unddy - (66)

finite systems. Slmllarly, when there is dynamics to the CONThe isons have a chemical potent'@] and a Berry phase
densate(ts # =), the vorticity is also not necessarily con- term associated with the fact that they couple toZhgauge

served in a finite system, namef{2¢ around the cylinder field o;;. The remaining terms represent local interactions
is not a constangnot a classical variabje More precisely, between the charge density/currents.

this statement can be made in terms of an order of limits; if On the spatial link§x=1, 2), (I' }=0 and(.7 )=0. On the
the time scale for flux threading is taken to infinity before thetemporal links, for the chargonﬂdensity Weﬂha\(\@pzzu

thermodynamic limit is taken, then the system can remain i pare is the average charge density in units@f{equiva-

the zero vorticity state at the end of the ﬂux.threadipg. This1em|y, vis the density of chargopairs). For the ison density,
occurs if the two states, namely the state with no vison and,. nave two possibilitieg) for g— -, we havel} =0 and

no vorton and the state with 1 vison and 1 vorton, each carmyare are no isons in the ground staiéy for g— +, there
zero crystal momentum, and can then mix to give eigenstatqg one ison nailed down to each lattice siﬂ%:i For
of the Hamiltonian. This happens if7aL,=0(mod 2m). g——» (or Sf;en)y when the vortons go anticlockwise

Otherwise, even in the presencefpand condensate dynam- o.4nq an elementary plaquette of the square lattice, they see

ics, the vorton acquires a nonzero crystal momentum a”BnIy the flux produced by the vector potentia+.2, and the

therefore its tunneling is blocked even in a finite size system ; ; I
. : . wave function acquires a factor dkp.7,). On average, the
(in the sense described abgva&hus, in all cases where a d exp o) g

. o phase picked up is thus#2. This is identical to the Berry
nontrivial c.rystal momentum is imparted to the system from hase picked up by a vortex in a conventional superfluid
flux threading, th'? IS 6_‘000“”‘?" for by the_presen_ce of ith boson density. Forg— +o (orSf’;dd), the vorton sees
vorton Qnd/or a vison in the final state which carries thean additional flux produced by one ison charggzl nailed
appropriate momentum.

. - down to each site, and the total flux seen by the vorton is
The two superfluidsSFg,ey SFoqq Can then be distin- thus 2r(v—1/2)—this deviates byr from the Berry phase

gwsh_ed depending on the momentum carried separately t} r SF.,_and the conventional superfluid.
the vison and the vorton though the total momentum carrie even . :
o . . Applying the picture of vortex threading presented for
by these excitations is the same. We shall later see that this . . : L
: . conventional superfluids to this case of vorton threading, it is
may be reflected in the measured Hall effect in the vorton

liquid phase in these systems through the Berry phase inc_Iear that this Berry phase is consistent with the momentum

duced Magnus force on the vorton. In the next subsectior}c,nountmg_ argument. Namely, the vorton threading suggests
we shall directly verify the momentum assigments for the AtxLy=Pyoron ON the other hand, momentum balance tells
y 9 us Pi=P;=2m1L, for threadinga vison and a vortorthrough

vorton by going to a dual theory where vortices are repre—the hole of the torus. Since we know that the vison carries
sented as particles.

crystal momentunPf,?’ng:::O in an even gauge theotgs in
_ _ SFer) OF P99 =71 in an odd gauge theoras inSFyyy.
C. Berry phase for vorton and consistency with momentum This fixes Pyoron in the two casegin agreement with Egs.
counting (62) and (63)] and thus x®®"=27v, SF, ) and x(°
The dual theory for theSF phase, where the Chargons =27T(V—1/2) (In S]::)dd)' This is consistent with the result
are traded for vortex variables, is derived in Appendix A.derived from the dual theory above. Defining as before the
The action takes the form Magnus coefficienty,=x/2m, we obtain

S= SJauge"’ S a%)en: v=p, (67)
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R 3 tinger theorem may thus be reflected in an anomalous sign of
the Hall conductivity as depicted schematically in Fig. 5. A
T similar change in the sign of the Hall effect in a vortex liquid
G ".‘ phase is expected for odd fractionalized superfluids relative

H : Y to conventional superfluids, due to a shift of the Berry phase
; 5 by 7 at a given density of bosons. Clearly, the sign of the
\ Hall effect is not universal and in real systems is affected by
band structure and interactions. Thus an anomalous sign of
the Hall response is suggestive but is not a rigorous diagnos-
tic. Experimental tools such as angle resolved photoemission
spectroscopy which measure the Fermi surface can more di-
: rectly detect violations of the conventional Luttinger theorem

expected in odd Fermi liquids and thus serve to identify such
systems.

v=0¢ : ‘1

FIG. 5. Schematic figure showing the filling dependepee0

(1) is the empty(full) band of the Hall conductivity in a conven-

tional Fermi liquid or 7L, (solid line), for electrons within a ACKNOWLEDGMENTS

simple Drude-like picture, contrasted with the behavior expected in . N
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a&""={v—5} -p, (69)

APPENDIX A: DUALITY AND VORTONS IN  SF
wherep is an arbitrary integer. Thus the momentum counting

provides a prescription to fix the Berry phase for the vorton i rll_et l;S bﬁg:n inth the p?tg inttegr:ZI for the par::ticladn f;nc-

and allows us to distinguish the odd and even exotic supellllo ot chargons couple N 0 2 gauge Tield,

fluid phases. =[DPZZmexp—9), with S=Sy,,4et S The gauge field
and chargon actions are given by

XI. CONCLUSIONS Spauge™ ~ SKSID_[ gij ~ SKTID_[ Jij,
S T

Extending a nonperturbative argument, made by

Oshikawa for the Fermi liquid, we have constructed ana- S.=-sty >, aij cos ¢ — &) +eU> (n—)?
logues of Luttinger’s theorem for systems other than the con- (ijra i
ventional Fermi liquid in dimensior3 = 2. This has allowed

us to derive constraints which must be satisfied by quantum
phases of matter on a lattice, such as superfluids and the
more exoticZ, fractionalized phases which are topologically ere,(ij) denotes nearest neighbor sites in spacep de-
ordered. We have discussed ways in which these constrain'f's Al g Paty :
may be useful in identifying fractionalized phases in numeri-nOte the_ chargon number and phase. _The chargons hgp with
cal experiments. an amplitude, and have a local repuls_lon of strengﬂh un

A recurring theme has been the important distinction bePlays the role of the chargo_n chemical potential. The

tween even and odd deconfined Ising gauge theories, whicjauge fields are deno.ted loy; =+1 andLl,, U, denote el- .
correspond to states that are most naturally associated Wiﬁ.rnenta.ry spat'laI/ spgtlo—tempor al pIaquetFes on the cubic
integer and half integer filled systems, respectively. For ex_spac_e-tlme Iattlce with respectlv_e gauge field co_upllK_g,s

otic insulators, the even or odd character of the phase &~ Fm_ally,_a is the Trotter discretization along the imaginary
completely determined by the filling in this manner. For ex- Ime direction. . . . .

otic Fermi liquids and superfluids, a knowledge of the filling W(_a can rewrite the chargon hopping term in the partition
by itself is insufficient to determine the odd or even nature OFUI’ICIIOI’I as

the emergen¥, gauge field—precise violations of the Lut- S e—a2<u>Lﬁ+i2<u>Lu(¢i—¢j+§[1—m;]> (A2)
tinger relation or its analogue for these systems provides a = '

way to distinguish them from each other. Y

Within a simple Drude-like picture, one associates thewherel;=-L; is an integer-valued field. For large with

size of the Fermi surface with the sign of the Hall @=In(2/ety), this reduces to the original chargon hopping
conductivity—a Fermi surface corresponding to a few electerm. For generad, this modified form allows terms such as
trons would exhibit an electron-like response, while a FermicoS2¢;—2¢;) which correspond to chargon-pair hopping.
surface of a nearly filled band would show a hole-like re-We therefore do not need to keep an explicit pair-hopping
sponse. A Fermi surface which violates the conventional Luttermtg unlike in our discussion in Sec. X.

HIZ (= gt (101, (A1)
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Integrating out the phase fielgl leads to a constraint

z Ljj + (nj—ni,) =0, (A3)

i

which is juct the continuity equatiori,; representing the
chargon current on bondi —j). Writing the numbern;
=L+, We can recast this in the form

M:%l 2['—i,i+xM + I—i,i—x#] =0,

(A4)

wherexy,=7, X;=X, X,=Y. This sets the divergence of the 3
current to zero. Below, the sum overwill be understood to

PHYSICAL REVIEW B 70, 245118(2004)

+i2 D11 =010 (A8)

-9, (€"9,a,)[mod 2,

where we have now included a chemical potengidbr the
Z, charges whose density i§=€""*d,a,[mod 2.

We can convert the sum ovArto an integral by softening
the constraint by introducing termg,>; ,cog2mA,) in the
action (this can be formally accomplished by using Poisson
resummatiop which prefersA'M to be an integer. Every-

(A9)

run over 0,1,2 unless stated, we will also use the notatiofivhere else in the action, only the transverse paA pfays a

L}, =L -

role (since only its lattice-curl appearsExtracting the lon-

We go to dual vortex variables in 2+1 dimensions in theditudinal part of 2rA; as 6 - 6;, we identify the dual vorton
standard manné® the only difference is in the presence of Creation operator eXpi6). The vortons are seen to be mini-
Z, gauge fields in the action but we do not dualize these. Théally coupled to the transverse part of thewhich we de-
constraint is solved by equating the conserved current to theote.A, exactly as a charged particle coupled t0@) gauge
curl of a dual vector such that its divergence is automaticallyfield. Thus, in the softened theory

zero. We decompose the chargon current into two parts, the

current of pairsJ (an even integgrand the current of un-
paired particlesl (=0,1). Note thatl is only conserved

modulo-2—two unpaired particles can combine to form a

pair which is accommodated by increasihgy one unit, and
| thus is the current of particles carrying onlyZa charge.
The constraint is thus solved by choosing

J,= 2" 9,A,, (A5)

I, = (e*"9,a,)[mod 2, (AB)

whereA (an integay anda (=0, 1) are fields on links of the

dual space-time lattice, and the right hand sides above are
just the lattice curls on the dual lattice, taken around the

original link (i,i+x,).
The chargon action then takes the form

S=a X (I, +1)%+eU(Jp+1p-1)?
i,u=1,2

(A7)

2, = (Bhax, = 0) + 27 A, (A10)

Making this substitution, and absorbiray by shifting Aiﬂ
—A,-a,/2 find

S=a X (J)2+eUX (J-N?  (ALD)
i,u=1,2 i
+Ho D Lo —eg2 Ty (AL2)

-t,> coq 6 - 0, = 2mA, — ma,)
iy

(A13)

with the total current7,=J, +1\ =2¢,,,3,A}. This is the
result used in Sec. X C.
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