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Luttinger’s theorem for Fermi liquids equates the volume enclosed by the Fermi surface in momentum space
to the electron filling, independent of the strength and nature of interactions. Motivated by recent momentum
balance arguments that establish this result in a nonperturbative fashion[M. Oshikawa, Phys. Rev. Lett.84,
3370 (2000)], we present extensions of this momentum balance argument to exotic systems which exhibit
quantum number fractionalization focusing onZ2 fractionalized insulators, superfluids and Fermi liquids.
These lead to nontrivial relations between the particle filling and some intrinsic property of these quantum
phases, and hence may be regarded as natural extensions of Luttinger’s theorem. We find that there is an
important distinction between fractionalized states arising naturally from half filling versus those arising from
integer filling. We also note how these results can be useful for identifying fractionalized states in numerical
experiments.
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I. INTRODUCTION

The last two decades have witnessed the experimental dis-
covery of several strongly correlated materials that show
properties strikingly different from that expected from con-
ventional theories based on Landau’s Fermi liquid picture.
These include the high temperature copper oxide supercon-
ductors, heavy fermion systems near a quantum critical
point, and, more recently, the cobalt oxide materials. Inter-
esting correlated quantum phases are also likely to emerge in
the near future from ongoing experimental efforts in the area
of cold atoms in optical lattices. It has then become impera-
tive to theoretically investigate quantum phases of matter
that differ fundamentally from the standard paradigm. In-
deed, in such a search for new theoretical models, it would
be useful to know if general principles place constraints on
the possible quantum phases. Here, we will explore in detail
the consequences of one such constraint, arising from mo-
mentum balance, which will be applicable to interacting
many body systems on a lattice. This argument was first
applied to the case of one-dimensional Luttinger liquids,1

where it relates the Fermi wave vectorkF to the particle
density. It was later extended to Fermi liquids2 in dimensions
Dù2, where it leads to Luttinger’s theorem,3 relating the
filling fraction to the volume enclosed within the Fermi sur-
face on which the long lived Fermi-liquid quasiparticles are
defined. Here, we will apply the same line of argument to a
variety of different phases in spatial dimensionsD.1, and
the constraint we obtain in this way may be viewed as ana-
logues of Luttinger’s theorem for these phases. In all cases,
the filling fraction (number of particles per unit cell of the
lattice) is fundamentally related to some intrinsic property of
the phase.

The momentum balance argument, introduced by
Oshikawa for Fermi Liquids,2 proceeds as follows. Consider
a system of interacting fermions at some particular filling on
a finite lattice at zero temperature. Periodic boundary condi-

tions implies that the lattice has a torus geometry; imagine
introducing a solenoid of flux in one of the holes of the torus,
and adiabatically changing its strength from zero to 2p. The
crystal momentum imparted to the system can then be calcu-
lated in two different ways. First, in a trivial fashion that
only depends on the filling and is independent of the quan-
tum phase, the system reaches in the thermodynamic limit,
and second, in way that depends essentially on the quantum
phase of the system. Consistency requires the equality of the
these two quantities—which leads to the nontrivial condi-
tions on the quantum phase. Essentially, each consistent
quantum phase has its own way of absorbing the filling de-
pendent crytal momentum that is generated in this
process—as mentioned, in the case of the Fermi liquid this
leads to Luttinger’s theorem.

Here, we begin by applying this argument to the case of
(bosonic) insulators at half filling, where the system in the
thermodynamic limit necessarily acquires an enlarged unit
cell (through broken translational symmetry or a spontaneous
flux) or develops topological order. For the latter case, the
momentum balance argument fixes the crystal momentum of
the degenerate ground states in the different topological sec-
tors. A useful side result of this analysis will be a general
prescription to distinguish between between aZ2 fractional-
ized insulator(or spin liquid) and a more conventional trans-
lation symmetry broken state, which is useful when the the
order parameter for the translation symmetry breaking is not
obvious. This is relevant for numerical studies on finite sized
spin systems that search for fractionalized spin liquid
states.4,5

Next, we apply the same methods to the case of exotic
fermi liquids (FL* phases) proposed recently in Ref. 6. This
is phase which has conventional electron-like excitations
near a fermi surface, but also possesses topological order and
gapped fractionalized excitations. The question of interest
here is whether the Fermi surface in these systems “violates”
Luttinger’s theorem(given that these phases are not continu-
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ously connected to the free electron gas this is of course not
prohibited by Luttinger’s proof3), and if so whether there is a
generalization of Luttinger’s theorem that can accomodate
these cases as well. Indeed, applying the momentum balance
argument to theFL* phases we find that while Luttinger’s
theorem is violated by these Fermi volumes, this violation is
not arbitrary but is constrained to be one of a few possibili-
ties which is determined uniquely by the pattern of fraction-
alization.

Finally, we apply these arguments to the case of neutral
superfluids. For conventional superfluids we argue that this
leads to a constraint on the Berry phase acquired on adiabati-
cally moving a vortex around a closed loop, by relating it to
the boson filling. Loosely speaking this is the quantity that
determined the Magnus “force” on a moving vortex. Since
this relation between the Magnus force and the boson filling
is obtained using the same momentum balance argument that
leads to Luttinger’s theorem when applied to a Fermi liquid,
it may be viewed as a “Luttinger” theorem for superfluids.
Alternatively, since a similar relation between boson density
and Magnus force is known for superfluids with Galilean
invariance,7,8 this may be viewed as an extension of those
results to the case of lattice systems. In contrast, while Gal-
ilean invariance also constrains the zero temperature value of
the superfluid stiffness, that constraint does not survive the
inclusion of the lattice. In order to further bring out the simi-
larity of this relation in superluids to the Luttinger relation,
we consider fractionalized superfluid phasesSF* (related to
the exotic superconductorSC* studied in Ref. 9) or equiva-
lently superfluid analogues of the fractionalized Fermi liquid
phases. We show that they too violate the conventional rela-
tion between vortex Berry phase and boson filling in exactly
the same way that Luttinger’s theorem is violated inFL* . We
discuss caveats in the relation between the vortex Berry
phase and the boson filling in conventional and fractional-
ized superfluids which make the above relation less rigorous
at the present time than the analogous relation for Fermi
liquids and insulators.

The relation between vortex Berry phase and boson filling
in lattice superconductors can lead to surprising conclusions
in some cases. For example, consider a conventional super-
fluid (where the bosons are Cooper pairs of electrons) ob-
tained by doping a band insulator versus another conven-
tional superfluid obtained on doping a proximate Mott
insulator. One may imagine that only the doped charges par-
ticipate in the superfluidity—indeed this is roughly what is
expected for a quantity like the superfluid stiffness(although
it is not strictly constrained in these lattice systems10). How-
ever, a result of the discussion below will be that the Berry
phase acquired by a vortex in this system arises from count-
ing all charges in the system(and not just the charges doped
into the Mott insulator). In this sense at zero temperature all
particles participate in the superfluidity. In contrast, an exotic
superfluid phaseSF* can display a phase where only the
doped charges contribute to the Berry phase.

A recurring theme throughout this paper will be the dis-
tinction between exotic phases obtained from a correlated
“band” insulator, i.e., one that has interger filling per site in
the case of bosons and which could potentially form a con-
ventional translationally invariant insulating state, versus

those obtained from an exotic phase at half filling. For ex-
ample, if we consider featurelessZ2 fractionalized insulators
at integer and half integer filling, then at low energies they
can be described by “even” and “odd”Z2 gauge theories,
respectively(in the terminology of Ref. 11). The different
ground state topological sectors of the odd gauge theory can
in certain geometries carry a finite crystal momentum, while
the crystal momenta associated with the different ground
state sectors of an even gauge theory are always zero. This
distinction persists if these phases are doped to obtain exotic
Fermi liquids and superfluids. The distinction is especially
striking in the case ofFLodd

* where a Fermi volume that
violates Luttinger’s theorem arises. In contrast,FLeven

* obeys
Luttinger’s theorem but, is nevertheless, an exotic phase. A
similar distinction will apply to the exotic superfluids—in
that case the relation between the Magnus force on a vortex
and the filling is the regular one forSFeven

* but is unconven-
tional in the case ofSFodd

* .
An essential ingredient in the following arguments will be

the evolution of a quantum state under flux insertion. While
this recalls the argument of Laughlin12 for the integer quan-
tum Hall effect, there is an important distinction that must be
noted. In the case of Laughlin’s argument and a similar ar-
gument for the forces on superfluid vortices given by
Wexler,13 the conclusions are derived by keeping track of the
change in energy during the process of flux threading. More
recently, rigorous energy counting arguments for charge and
spin insulators have been made by Oshikawa14 and
Hastings.15 In contrast here we will follow Ref. 2 and rather
keep track of the change incrystal momentumduring the flux
threading process, which will allow us to derive a different
set of rather general conclusions that apply to a variety of
phases. We also note that while the subject of Magnus force
on a vortex at finite temperatures, in the presence of quasi-
particle or superfluid phonon excitations, has been the sub-
ject of much lively debate(see, for example Ref. 16), our
arguments will only apply to the case of zero temperature
and hence cannot address any of the issues under debate.

The layout of this paper is as follows. Due to the length of
the paper we give in Sec. II a simplified overview of all
results and a brief indication of the method used. Then, we
pass to the technical details and in Sec. III review the mo-
mentum counting procedure which will be applied to all the
phases. Then, we consider conventional insulators in Sec. IV
andZ2 fractionalized insulators in Sec. V using the momen-
tum balance argument and discuss how they may be unam-
biguously distinguished in numerical experiments in Sec. VI.
We then review the momentum balance argument2 for con-
ventional Fermi liquids in Sec. VII, which leads to Lutting-
er’s theorem, and see how this is modified in a systematic
way when applied toZ2 fractionalized Fermi liquids in Sec.
VIII. Next we apply these arguments to conventional, neutral
superfluids andZ2 fractionalized superfluids, in Secs. IX and
X, respectively. We conclude with some observable conse-
quences that arise directly from these considerations.

II. OVERVIEW OF THE MOMENTUM BALANCE
ARGUMENT

In this section we summarize the results of the momentum
balance argument applied to different phases. While the de-
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tailed arguments leading to these results are contained in the
following sections, the results themselves are easily stated,
which is done below along with some heuristic supporting
arguments.

Consider the system in a cylindrical geometry, as shown
in Fig. 1 with dimensionsLx, Ly (integers), and a total ofN
particles(bosons or spinless fermions). Now imagine adia-
batically threading a flux of 2p through the center of the
cylinder—the particles are assumed to couple minimally to
this flux with a unit charge. The total momentum imparted
to the system can be calculated using Faraday’s law
Fx=−1/Lxdf /dt and integrating this force over time leads to
the change in momentum

DPx =
2p

Lx
N, s1d

which is only defined modulo 2p since the system is on a
lattice. A more rigorous calculation in the following sections
arrives at the same result. A similar procedure performed
along the perpendicular direction(for which it is convenient
to think of the system living on a torus) yields the other
component of the crystal momentum

DPy =
2p

Ly
N. s2d

This is the result of trivial momentum counting—we now
consider how this additional crystal momentum is accomo-
dated in the various different phases. For later purposes, we

will define the “filling” n;N/LxLy, which is the number of
particles per unit cell.

Insulators: Consider the evolution of the ground state of
a many body system under the adiabatic insertion of a 2p
flux. For an insulator, it may be easily verified that the final
state must have an energy equal to that of the ground state, in
the thermodynamic limit. That is, the system ends up either
in the original state, or in a degenerate ground state. This is
just because the change in energy under flux threading is
related to the average currentkJl= dE

df . Since in the insulating
state the current must vanish in the thermodynamic limit, the
energy of the final state must equal that of the initial state.

If the insulator is at integer filling, i.e.,N=nLxLy, with the
filling n such thatn[ integer, then we have(DPx=2pnLy,
DPy=2pnLx), and soDPx;DPy;0 (mod 2p). This is com-
patible with the system having a unique ground state which it
returns to at the end of the 2p flux threading. This is the
conventional featureless insulating state(band insulator for
Fermions, integer filling Mott insulator for bosons)— al-
though in principle more complicated states are possible at
integer filling as well.

The case of insulators at noninteger filling is more inter-
esting. For definiteness, consider bosons at half fillingsn
=1/2d. In order that the total number of particles be an inte-
ger, we need the total number of sitesLx3Ly to be even. If
we first consider the caseLy odd andLx even, under flux
insertion in the geometry of Fig. 1 we will haveDPx
=psmod2pd. Therefore, the initial and final states(which we
have argued to be denenerate in the thermodynamic limit)
must differ in crystal momentum and hence one is forced to
conclude that the ground state is at least doubly degenerate
in this even3odd geometry. Such a degeneracy can result
from one of two different reasons(we assume that time re-
versal symmetry is not spontaneously broken and the special
case ofp flux is discussed in Sec. IV D). First, the system
may be heading towards translation symmetry breaking in
the thermodynamic limit. In this case we can form the sym-
metric and antisymmetric combinations of the two ground
states which clearly transform into each other under a unit
horizontal translation. Translation symmetry breaking im-
plies that there is alocal operator that can distinguish be-
tween these two states. For example, if the system is heading
towards a charge density wave state(e.g., with a stripe pat-
tern with the charge on alternating columns in Fig. 1), then
the relevant local operator is simply the charge density,
which would distinguish these two states as being translated
versions of one another. It may of course happen that the
relevant local operator is less obvious(e.g., bond centered
charge density) but nevertheless in principle this distinction
between the two states can be made with some local opera-
tor. It may, however, happen that there exists no local opera-
tor that can distinguish these two states. Then, the system
will appear perfectly translation symmetric, although it is an
insulator at half filling. Indeed this is precisely the property
of the RVB spin liquid state proposed for spin 1/2 lattice
systems with one spin per unit cell—which can also be cast
in the language of the above discussion on identifying the
spins with hard core bosons. Therefore, these degenerate
ground states can only be distinguished via a nonlocal opera-

FIG. 1. Schematic figure showing flux threading in a cylinder
geometry, with fluxF0=hc/Q.
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tor. This is called topological order, where degeneracies arise
on spaces with nontrivial topology that are related to creating
a topological excitation which is highly nonlocal in the origi-
nal variables. In the following sections we consider one con-
crete theoretical realization of this scenario—the case of a
deconfinedZ2 gauge theory coupled to bosons carrying one
half the elementary unit of charge. The translationally sym-
metric state at half filling may be roughly visualized as a
uniform state with a half charge at each lattice site. The
degenerate ground states correspond to the topological de-
generacy of the theory on a cylinder—which is related to the
presence or absence of an Ising flux(vison) in the hole of a
cylinder. In the following sections we explicitly demonstrate
that threading a 2p flux induces such a topological excitation
and causes the ground state to evolve into this distinct topo-
logical sector. Thus, the way these topologically ordered
states accomodate the crystal momentum imparted to the
system on flux threading, despite being translationally sym-
metric, is by creating a vison excitation in the hole of the
cylinder which then carries the appropriate crystal momen-
tum. Later we will draw a distinction between Ising gauge
theories where the vison carries a crystal momentum(odd
gauge theories) and those where it does not carry momentum
(even gauge theories).

Fermi liquids: The original application of the momentum
balance argument was to the case of Fermi liquids in Ref. 2.
This argument is reviewed in the following sections—here
we just note the main points. If we begin with spinless elec-
trons at a fillingn, then the flux threading excites quasipar-
ticles around the Fermi surface. The total crystal momentum
carried by these excitations can be converted into an integral
over the volume enclosed by the Fermi surface, which leads
to the relation between the filling(which enters the trivial
momentum counting) and the Fermi volume. For an appro-
priately chosen system size, these lead to the relation

n =
VFS

s2pd2 + p, s3d

whereVFS is the Fermi volume, andp is an arbitrary integer
which represents the filled bands. This is just Luttinger’s
theorem—in Ref. 2 it was also applied to Kondo lattice mod-
els where it yields the large Fermi surface expected in the
Kondo screened phase.

One can now ask the reverse question—given a phase
whose low energy exciations are electron like Landau quasi-
particles, does this phase necessarily also satisfy Luttinger’s
theorem? From the above momentum balance argument it is
clear that in order to violate the Luttinger relation there must
exist an alternate sink for the momentum. From our previous
discussion of topologically ordered states, it is clear that if
topological order coexists with Fermi liquid-like excitations,
then the momentum balance can be satisfied with a non-
Luttinger Fermi volume. In fact, the specific case of an ex-
otic Fermi liquid withZ2 topological order(FL* phase) was
proposed in Ref. 6 in the context of the heavy fermion sys-
tems. This phase has low energy excitations identical to that
of a Landau Fermi liquid of electrons, but also a gapped
Ising vortex excitation. The Luttinger relation relating the
filling to the volume enclosed by the Fermi surface of these

quasiparticles can then be violated, but in a very specific
way. Flux threading creates a Ising vortex which carries crys-
tal momentump (in an odd3even system), while the re-
maining momentum is absorbed by the quasiparticle excita-
tions. This leads to the modified Luttinger relation

n =
1

2
+

VFS

s2pd2 + p, s4d

wherep is an arbitrary integer representing filled bands. Note
the crucial difference from Luttinger’s relation in Eq.(3),
that arises from the extra factor of1

2. Clearly, this is related
to the fact that a translationally invariant insulator is possible
at half filling, where the Fermi volume can shrink to zero.
Thus, the difference from the original Luttinger relation is
very specific, i.e., the filling of exactly half a band, for the
case ofZ2 fractionalization. We have commented earlier on
the difference between odd versus evenZ2 gauge theories.
Again this distinction is crucial here and moreover is not
directly set by the filling as it was for the case of the trans-
lationally symmetric insulating states. The above violation of
the Luttinger relation only occurs in the case of the odd
gauge theory,FLodd

* .
Superfluids: Finally, we consider the case of neutral su-

perfluids. Here threading a 2p flux clearly inserts a vortex
through the hole of the cylinder. This can also be visualized
as creating a vortex in the superfluid at the bottom of the
cylinder and dragging it all the way to the top. Clearly such
a vortex will experience a “Magnus force” in the direction
perpendicular to its motion. Let us ignore for a moment the
lattice and calculate the momentum imparted by this force
FM =2paMv3 ẑ, wherev is the velocity andaM a constant
that fixes the Magnus force. The total momentum transferred
to the system is then independent of the details of the vortex
motion and depends only on its net displacement—this
yields DPx=2paMLy. Equating this to the momentum ob-
tained from trivial momentum counting(1) and reintroducing
the lattice heuristically by allowing the the momentum to
change in arbitrary integer multiples of 2p we have

n = aM + p, s5d

wherep is an arbitrary integer. Thus, the fractional part of
aM is completely determined by the boson fillingn. This can
be viewed as the analogue of Luttinger’s theorem for bosonic
system, since it is obtained using the same line of argument.
It can also be viewed as an extension of the well known
equivalent result for Galilean invariant superfluids7 (where
the Magnus coefficient is the boson density) to the case of
lattice superfluids. While we have been interpretingaM
above in terms of the Magnus force clearly this is not a well
defined concept in a lattice system. In fact, the property that
is sharply fixed byaM is the Berry phase acquired by a
vortex on adiabatically taking it around a big loop of sizeN
plaquettes, which will be shown to be 2paMN. This is re-
lated to the well known relation7 in Galilean superfluids be-
tween the Magnus force and the Berry phase acquired by a
vortex.
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Again, one can ask if the relation in Eq.(5) can be vio-
lated in any kind of superfluid. Indeed, topologically ordered
superfluid statesSF* can be defined in complete analogy
with FL* . For the particular case of an exotic superfluid state
SF* with Z2 topological order,9 there exists in addition to the
usual vortex excitation, an Ising vortex excitation as well.
Threading 2p flux then creates both a regular vortex and an
Ising vortex—the latter can carry crystal momentump (in
the phaseSFodd

p )—in which case the remaining momentum is
associated with the Magnus force on the superfluid vortex.
Then, in this case as well, the Magnus coefficientaM, asso-
ciated with the vortex Berry phase, satisfies

n =
1

2
+ aM

p + p, s6d

wherep is an arbitrary integer. Thus, the “Luttinger relation”
for a conventional superfluid in Eq.(5) is violated, in exactly
the same way thatFLodd

* violates the Luttinger relation for
conventional Fermi liquids.

III. TRIVIAL MOMENTUM COUNTING

Consider a system ofN particles, each with chargeQ,
living on anLx3Ly lattice wrapped into the form of a torus
with periodic boundary conditions along both directions. The
main result of this section is that if one adiabatically threads
flux hc/Q through one of the holes of the torus, the crystal
momentum difference between the initial and final state is

Pf − Pi = 2pN/Lxsmod 2pd = 2pnLysmod 2pd, s7d

wheren=N/ sLxLyd is the charge density in units ofQ (the
“filling” ). This result is independent of the eventual quantum
phase of the system in the thermodynamic limit, and we will
refer to it as the “trivial” counting. Although this has been
shown in Ref. 2, we include a derivation here for the sake of
completeness, and to fix notation.

The Hamiltonian for an interacting set of particles(fermi-
ons or bosons) coupled to an external vector potential can be

written down asHA=K̂A+Vfn̂g, with the kinetic energyK̂A,
in the presence of a vector potentialAij , given by

K̂A = −
1

2o
i j

ftije−iQAij /qcBi
†Bj + h.c.g. s8d

Bi
† creates a particle carrying chargeQ at sitei. The interac-

tion termVfn̂g depends only on the density of the particles.
Both tij andVfn̂g are invariant under lattice translations. For
simplicity of presentation, we will assume thattij only con-
nects nearest neighbor sites on a square lattice, with unit
lattice spacing.

To thread a unit fluxF0=hc/Q through the hole of the
torus, say along the −ŷ axis as in Fig. 1, we can choose a
uniform gauge in whichAi,i+x̂=−Fstd /Lx andAij =0 for other
links, and adiabatically increaseFstd :0→hc/Q. The state
we reach on flux insertion can of course be written as
uCsTdl=UTuCs0dl with the unitary time evolution operator
UT=Tt exps−ie0

THAstddtd whereTt is the time-ordering opera-
tor. In the final Hamiltonian, the vector potential corresponds
to flux FsTd=F0.

Clearly, the initial and final wave functions, as well as the
Hamiltonian, transform under gauge transformations. Thus,
since the final Hamiltonian includes a unit flux quantum, we
need to fix a gauge in order to consistently define the crystal
momentum of a state as the eigenvalue of the unit lattice
translation operator acting on the state and to compare it for
the two states. We pick a gauge such thatAij =0 in the initial
as well as the final Hamiltonian—this Hamiltonian is de-
noted asH0. In this case, for a threaded fluxF0, we need to
make a unitary gauge transformation

HAsTd → UGHAsTdUG
−1 = H0 s9d

with the operator

UG = expSi
2p

Lx
o

i

xin̂iD . s10d

The final wave function in this gauge is, in obvious notation,
uC fl=UGUTuCil. To compute the crystal momentum of this

state, we must act on it with the unit translation operatorT̂.
This defines the initial and final crystal momenta,Pi, Pf

through T̂uCil=exps−iPiduCil and T̂uC fl=exps−iPfduC fl.
Translating the final state we find

T̂UGUTuCil = sT̂UGT̂−1dsT̂UTT̂−1dT̂uCil

= sT̂UGT̂−1dUTe−iPiuCil, s11d

since the operatorUT commutes with theT̂ as the time-
dependent Hamiltonian is translationally invariant in the uni-
form gauge. At the same time, it is straightforward to show
that

T̂UGT̂−1 = exps− i2pN/LxdUG. s12d

It is then clear thatPf =Pi +2pN/Lxsmod 2pd, or defining
the filling n=N/ sLxLyd, the change in crystal momentum is
Pf −Pi =DP=2pnLysmod 2pd.

It is essential for this argument to go through that one has
a conservedUs1d charge, this permits us to couple the charge
to an inserted solenoidal flux. One can easily generalize the
argument to cases where the charged particles carry spin and
are coupled to spins fixed to the lattice such as in a Kondo
lattice model.2 In this case, one can thread a flux which
couples to a single component of the spin of the charged
carriers, and eliminate the vector potential using a unitary
transformation which acts on the charged particles as well as
the fixed spins.

As mentioned earlier, the result above has been derived
without any assumption about the thermodynamic phase of
the system. Such an assumption is important for counting the
momentum in a second independent way, which provides
constraints on the various quantum phases of the system and
we turn to this in the remaining sections. For convenience of
notation, we will set"=c=1 in most places.
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IV. CONVENTIONAL INSULATORS

A. No broken symmetry

Consider a conventional insulator with a unique ground
state and a nonzero gap to current carrying excitations. Un-
der adiabatic flux threading, since the Hamiltonian is time
dependent, the rate of change of energy is given by

kdĤ/dtl=−oi jkĴi jstdl]Aijstd /]t where the current operator

Ĵi j =−iQtijsBi
†Bje

−iAij std−h.c.d for the Hamiltonian with ki-
netic energy as in Eq.(8). Let us assume a linear rate of
change ofAijstd (for j = i + x̂) over a time intervalT for
threading one flux quantumF0=2p, i.e., the electric field
Eij =−]Aij /]t=s2p /QLxTdx̂ is a constant over the intervalT.
The total change in energy is thus

dE =E
0

T

dtkdĤ/dtl = 2p"I , s13d

where the average current in units ofQ is

I = 1/s"QLxTdo
i
E

0

T

dtkĴi,i+x̂stdl. s14d

Clearly I =0 in an insulator in the thermodynamic
limit 17—there is no current flow, and thusdE=0!

However, if we thread one flux quantum into the system it
can be eliminated using a gauge transformation which leaves
the spectrum invariant, as is well known and was shown in
the previous section. Since the system has a unique ground
state with a charge gap, anddE=0, this means the final state
and the initial state in theAij =0 gauge must be the same.
Clearly, there is no change in crystal momentum on thread-
ing flux F0, which implies

2pnLy = 0smod 2pd s15d

for any Ly. This is only possibly ifn is an integer. Thus we
arrive at the result: aconventionalinsulator with a unique
ground state(i.e., no broken symmetry) and a nonzero gap to
charged excitations is only possible at integer filling.18,19

B. Conventional insulator with broken translational
symmetry

Imagine tuning the interactionVfn̂g in the above Hamil-
tonian in Eq.(8), such that the ground state of the system in
the thermodynamic limit is an insulator which breaks trans-
lational symmetry. The thermodynamic ground state is

clearly degenerate, the degeneracy reflecting the different
broken symmetry patterns. On a finite lattice, such a system
must thus have eigenstates with different crystal momentum,
which, in the thermodynamic limit, become degenerate and
allow us to construct linear superposition eigenstates which
break the translational symmetry.

Let us consider such a system on a finite lattice, with
aspect ratio such that the thermodynamic broken symmetry
pattern is not frustrated. If the insulator is stabilized at a
density n=p/q (with p, q having no common factors), the
flux threading argument implies the ground state must evolve
underhc/Q flux insertion into a different state which has a
relative crystal momentumDP=2psp/qdLy, with an energy
equal to the ground state energy in the thermodynamic limit.
These states would be “quasi-degenerate” on a large finite
lattice.20

C. Flux threading in the conventional broken symmetry
insulator

The manner in which the set of quasi-degenerate states in
a broken symmetry insulator evolves under adiabatic flux
insertion is fixed by momentum balance. Let us again work
with a system with a twofold broken symmetry in the ther-
modynamic limit.

If the filling n and Ly are such that 2pnLy=psmod 2pd,
flux insertion causes a momentum change ofDPx=p. This
implies we must have two quasi-degenerate states differ in
x̂-crystal momentum byp, and flux threading must lead to an
interchange of these two states. This is depicted schemati-
cally in Fig. 2(a) where the two states on a finite size system,
denoted byu0l, upl, begin with some splitting(which must
vanish in the thermodynamic limit) and then evolve as the
inserted fluxF changes. They are degenerate and cross at
F=p since the Hamiltonian is invariant under time reversal,
but they cannot mix since thex̂-crystal momenta of the two
states differ byp even at this point. If the geometry is chosen
such that 2pnLy=0smod 2pd these two states will no longer
exchange places on threadingF=2p [see Fig. 2(b)]. They no
longer cross atF=p though they still carry relativep
momentum.21

D. Local operators to detect broken symmetry states

In the presence of spontaneous translational symmetry
breaking, there are local operators which can distinguish the
different insulating ground states obtained in the thermody-

FIG. 2. Evolution of energy levels upon flux
threading in a conventional insulator with two-
fold broken translational symmetry on a cylinder.
The two levels which become degenerate ground
states in the thermodynamic limit carry momenta
0, p. (a) The two levels cross upon threading flux
alongŷ in a geometry withLx=even,Ly=odd.(b)
The two levels return to themselves upon thread-
ing flux along ŷ in a geometry withLx=even,
Ly=even.
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namic limit by taking linear combinations of the degenerate
momentum eigenstates asu1l=su0l+ upld /Î2 and u2l=su0l
− upld /Î2. For example, broken translational symmetry along
say thex̂ direction means it can be detected by some local

Hermitian operatorÔi, sincek1usÔi −Ôi+x̂du1lÞ0, and simi-
larly for stateu2l. How does this manifest itself on a finite
size system where such linear combinationsu1l, u2l are not
eigenstates of the Hamiltonian?

To answer this, consider the matrix elementk0uÔiupl of
the local operator between the eigenstates on the finite sys-

tem. SinceÔi is defined locally, it is not translationally in-
variant and such matrix elements will be nonzero in general

on a finite system. However, knowing thatT̂u0l= u0l and

T̂upl=−upl we can rewrite this matrix element in the ther-
modynamic limit as

2sk0uÔiupld = k1uÔiu1l − k2uÔiu2l = k1usÔi − T̂ÔiT̂
−1du1l

= k1usÔi − Ôi+x̂du1l Þ 0. s16d

Thus, the matrix element of this local operatorÔi between
states of the quasi-degenerate ground state manifold,u0l and
upl, survives in the thermodynamic limit and implies trans-
lational symmetry breaking. The local operator could be, for
instance, the energy(or charge or current) density.

This is the crucial difference between broken symmetry
insulators and translationally invariant fractionalized insula-
tors dealt with in the next section. In the latter case, matrix
elements of all local operators between states forming the
quasi-degenerate ground state manifold vanish in the thermo-
dynamic limit. The system size dependence of the matrix
element of local operators between states forming the quasi-
degenerate ground state manifold thus distinguishes an insu-
lator with translational symmetry breaking from a uniform
fractionalized insulator. However, constructing such local
operators needs some knowledge of the kind of broken sym-
metry, in contrast to our general conclusions in the earlier
section regarding the momenta and evolution of the quasi-
degenerate manifold of ground states which does not rely on
such information. We return to this issue in Sec. VI.

In this section we have focused on conventional insulating
states of a half filled system, and argued that they necessarily
break a lattice symmetry. One case, however, needs to be
looked at separately, and that is the case of exactlyp flux
through every elementary plaquette, which could be self-
generated in the thermodynamic limit. Note, this situation
can preserve time reversal symmetry, and hence should be
admitted in our discussion. It is possible for such a system to
be essentially an insulator at half filling, although it appears
to possess translation symmetry, in that all unit cells appear
identical. This issue is resolved by studying more carefully
the meaning of translation invariance—it turns out that the
operators that generate unit translations do not commute due
to the presence ofp flux in the elementary plaquette. Hence,
the smallest mutually commuting translations necessarily en-
close an area equal to two unit cells, and in this sense we
obtain unit cell doubling. Note, the emergence ofp flux per

plaquette is a property that can be checked with local opera-
tors, and hence also corresponds to a conventional(nonfrac-
tionalized) state.

V. Z2 FRACTIONALIZED INSULATOR I*

In the context of the insulating phase of the high tempera-
ture superconductors the question has been raised of whether
a Mott insulator that breaks no symmetries could be obtained
at half filling. The analogous question for our bosonic system
is whether a translationally invariant insulating state can be
realized at half filling. Since the hard-core boson state at half
filling may be viewed as a spinS=1/2 system withSz

total

=0 andUs1d spin rotation invariance, this is equivalent to
asking whether aS=1/2 magnet may be in a spin liquid
state. The answer, after several years of work, isyes, and one
specific route to realizing such an insulator is viaZ2 fraction-
alization. The properties of such a phase9 as well as some
microscopic models which realize them are now known.22

The Z2 fractionalized insulator,I* , is a translationally in-
variant insulator. It isunconventionalin that supports gapped
fractionally chargedexcitations, chargons, which carry elec-
tromagnetic chargeQ/2 as well as aZ2 Ising charge. These
chargons interact with aZ2 Ising gauge field in its deconfin-
ing phase. The deconfinement is reflected in the presence of
yet another exotic gapped neutral excitation, the Ising vortex
or “vison,” which acts as a bundle ofp flux as seen by the
chargons which carry Ising charge.9

It is known that theI* phase can be realized at half odd-
integer or integer fillings.Why doesn’t the existence of a
translationally invariantI* insulator at half integer filling
contradict the earlier theorem for (conventional) insulators?
The resolution of this apparent paradox is that although these
insulators do not break translational invariance, the ground
state of these fractionalized insulators is not unique in a mul-
tiply connected geometry(in which the flux-threading ex-
periment is carried out). The presence of theZ2 vortex, the
vison, directly leads to a twofold degeneracy of the ground
state of the system on a cylinder(fourfold on a torus). This
degeneracy may be viewed as a result of having or not hav-
ing a vison threading each hole of the cylinder(torus). Since
the vison is a gapped excitation in the bulk of the system,
there is an infinite barrier for the tunneling of the vison
“string” out of the hole of the cylinder(torus) in the thermo-
dynamic limit. Thus the vison/no-vison states do not mix in
the thermodynamic limit which is crucial to obtaining lead-
ing a “topological degeneracy”—i.e., degeneracy which de-
pends on the number of holes in the system.

At this point we introduce the following terminology for
the Z2 fractionalized insulators. The translationally symmet-
ric Z2 fractionalized insulator at half odd-integer filling(in-
teger filling) will be denoted asIodd

* sIeven
* d. While in the

former case, translation symmetry of a half filled insulator
implies that the state must be exotic, it is of course possible
to have a completely conventional insulator at integer filling.
Nevertheless, aZ2 fractionalized insulator may also exist at
integer filling and we refer to this assIeven

* d. We will see
below that these two classes of exotic insulators are in fact
closely related to two classes ofZ2 gauge theories,Z2

odd, Z2
even

in the terminology of Ref. 11.

EXTENDING LUTTINGER’s THEOREM TOZ2 … PHYSICAL REVIEW B 70, 245118(2004)

245118-7



The presence of topologically degenerate states and their
evolution under flux threading allows us to satisfy the mo-
mentum balance condition. The relevant case to consider is
the translationally symmetric insulator at half filling, on a
cylinder with an odd number of rows. In this case, trivial
momentum counting tells us that 2p flux threading leads to a
degenerate state with crystal momentump. We will argue
below, this momentum is accounted for inIodd

* since flux
threading effectively adds a vison into the hole of the cylin-
der, which carries crystal momentump.

A. Effective Hamiltonian for I*

The effective description ofI* is via a set of gapped
charge-Q/2 bosons(chargons) also carrying an Ising charge,
interacting with each other and minimally coupled to an
Ising gauge field in its deconfining phase. In order to place
the following discussion on a more concrete footing we con-
sider a definite Hamiltonian that can describe such a system,
and use it to derive properties of the states. Since we will be
interested in universal properties that characte rize the state,
the results themselves are more general than the particular
effective Hamiltonian used. The simplest Hamiltonian which
can describe aZ2 fractionalized insulator is

HAsI*d = Hg + Hm, s17d

where

Hg = − Ko
h

p
h

si j
z − ho

ki j l
si j

x , s18d

Hm = − tbo
ki j l

si j
z sbi

†bje
−iQAij /2 + h.c.d + Uo

i

sni − 2Nd2,

s19d

where sx,z are Pauli matrices describing the Ising gauge
fields, andh denotes the elementary plaquette on a square
lattice. The chargons, created bybi

†, are minimally coupled
to the Ising gauge field, as well as to the external vector
potentialAij with electromagnetic chargeQ/2. The second
term inHm describes repulsion between chargons at the same
site.

The Hamiltonian(19) has a localZ2 invariance under the
transformationbi →aibi and si j

z →aisi j
z a j where ai = ±1.

Such gauge rotations are generated by unitary transforma-

tions using the operatorĜ=piĜi with

Ĝi = expFi
p

4
s1 − aidS o

j=nnsid
si j

x + 2niDG . s20d

Local Z2 invariance implies thatfĜi ,HAsI*dg=0. Since we
wish to work with eigenstates ofHAsI*d which are invariant
under such gauge transformations, translationally invariant
physical states have to satisfy

Ĝiuphysl = s±1duphysl. s21d

Let us chooseĜi = +1 everywhere.
It is instructive to first consider the limith, U@K, tb. In

this case, sinceh@K, the gauge theory is confining. Depend-

ing on the filling, it is then possible to show that one recovers
conventional insulating phases such as a uniform band insu-
lator (for N=even integer), or broken symmetry states such
as bond-centered(with N=odd integer, andU@h) or site-
centered(with N=odd integer andh@U) charge density
wave states. Thus, the above effective Hamiltonian in this
limit is capable of describing well understood conventional
insulators.

However, this Hamiltonian has a richer phase diagram.
The parameter regime where an exotic fractionalized insula-
tor is expected for the above Hamiltonian is easily deter-
mined. ForK@h, the Ising gauge field will be in its decon-
fining phase, so we can pick23 si j

z <1. Similarly, since we are
interested in the insulating phase, let us work in the limit of
large chargon repulsionU / t@1 with 2N, which is twice the
filling fraction of the chargeQ bosons, being an integer. In
this limit, it is clear that it is energetically favorable to also
set the chargon numberni =2N at each site(which is possible
since 2N is an integer) as a starting point to understand the
insulator. The density of charge-Q bosons in the insulator is
just n=N, andn could thus either be an integer or a half odd
integer in theI* phase corresponding to even/odd integer
values of 2N.

In the above regime of parameters, the system clearly has
a charge gapOsUd for adding anni particle(chargon) which
is a charge-Q/2 and Ising-charged excitation that can propa-
gate freely(since the gauge field is deconfined). It also has
an energy gapOsKd to changingsi j

z →−1 on a bond which
changesphsi j

z → s−1d on adjacent plaquettes corresponding
to creating gapped visons. It thus describes an exotic insula-
tor.

B. Flux threading in I*

Below, we will consider the effect of threading 2p flux on
the Z2 fractionalized insulators in the cylindrical geometry,
using the effective Hamiltonian(19). This will be done in
two steps. We first consider the limit of being deep in the
fractionalized phase[i.e., set the vison hopping to zero;h
=0 in Eq. (19)] where it can be easily argued that 2p flux
threading leads to the insertion of a vison through the hole of
the cylinder. The momentum balance argument then allows
us to read off the crytal momenta of the visons in the differ-
ent situations. Then, we turn back on a finite vison hopping
hÞ0, and use continuity arguments to conclude that these
crystal momenta assignments remain unchanged.

1. Flux threading with static visons

Consider at first the limit of being deep in the fractional-
ized phaseh/K→0 by settingh=0 identically(i.e., no vison
hopping), so that we can choosesi j

z =1 everywhere.23 Let us
adiabatically thread flux 2p in the ŷ direction for the above
system on a cylinder such that the starting from the initial
eigenstateuCs0dl in the absence of flux, the final state

uCsTdl = UTuCs0dl, s22d

ARUN PARAMEKANTI AND ASHVIN VISHWANATH PHYSICAL REVIEW B 70, 245118(2004)

245118-8



UT = Tt expS− iE
0

T

HAsI* ,tddtD , s23d

where Tt is the time-ordering operator. We can go to the
Aij =0 gauge by making a unitary transformationHAsI* ,Td
→UGHAsI* ,TdUG

−1;H0sI*d (corresponding to zero flux).
Since the chargons carry a chargeQ/2, the hc/Q flux

quantum threading the cylinder appears as an Aharonov-
Bohm flux of p for the chargons. The gauge transformation
which returns the Hamiltonian to its original form thus also
acts on the Ising gauge fields to remove this extrap flux.
Hence we have

UG = UfUs, with s24d

Uf = expSi
p

Lx
o

i

xin̂iD , s25d

Us = p
i j [cut

si j
x s26d

and “cut” refers to the set of links for whichxi =Lx, xj =1
(shown in Fig. 3). Thus, the final state in theAij =0 gauge is
uC fl=UfUsUTuCil. Since the system is an insulator, the final
state on threading fluxF0 must be one of the states which
forms part of the degenerate ground state manifold in the
thermodynamic limit.

Let us define the loop operatorWC=pCsi j
z where the loop

C is taken around the cylinder(see Fig. 3). Clearly, sinceh
=0, this operator commutes with the Hamiltonian(19). We
can use this operator to check whether there is a vison
through the hole of the cylinder. Namely, if we are in a
(reference) state withsi j

z =1 everywhere, thenWC=1 and this
is the no-vison stateuv=0l. If on the other handWC=−1 for

each loopC around the cylinder, we conclude that there must
be a vison threading the hole, and we shall refer to this as
uv=1l. Let us evaluateWC for the two statesuCi,fl above. We
easily find WC

i =1 in the initial state. In order to find the
eigenvalue ofWC in the final state, we note that sinceh=0,
the initial assignment ofsi j

z does not time evolve, and we
only need to evaluate the effect of the unitary transformation
UG on WC. This yields the result that the eigenvalue in the
final state is:WC

f =−1.
Thus, for h=0, threading a 2p flux adds a vison to the

hole of the cylinder and interchanges the two ground states
on the cylinder,uv=0l↔ uv=1l. (In fact, in the absence of
dynamical matter fields, i.e.,tb=0, the operator Us

;pi j [cutsi j
x commutes with the Hamiltonian and can be

viewed as the “vison creation operator” introducing a vison
into the hole of the cylinder and changing the sign ofWC.)

Momentum balance then tells us that adding a vison into
the hole of the cylinder must change the momentum of the
system by 2pnLy. The only situation where this is a non-
trivial crystal momentum is for the case ofIodd

* on a cylinder
with an odd number of rows(Ly odd). Then we expect the
two statesuv=0l and uv=1l to differ by crystal momentum
p. In all other cases, i.e., forLy even, or ofIeven

* , the vison
carries no momentum.

As we shall see in the next subsection, this is consistent
with a direct computation of the vison momentum in the pure
Ising gauge theory. We now switch back on the vison hop-
ping hÞ0 and ask how these conclusions might be affected.

2. Vison state in the presence of dynamical gauge fields

Turning on a nonzeroh, gives dynamics to the gauge
field. In this case the loop productWC no longer commutes
with the Hamiltonian; we cannot use its eigenvalues to label
the states. Let us first see what effect this has onIeven

* . The
two statesuv=0l and uv=1l both carry zero crystal momen-
tum, and will now mix to give eigenstates of the Hamil-
tonian. Thus, on flux threading there is no level crossing—
threading aF0 flux returns us to the original ground state.
For Iodd

* on a cylinder with evenLy, the two low lying states
carry zero crystal momentum, and a similar conclusion ap-
plies.

The situation is more interesting forIodd
* on a cylinder

with anodd Ly. Now, the statesuv=0l anduv=1l cannot mix
since they carry different momenta. Thus, even in the pres-
ence ofhÞ0 (so long as we remain in the same phase), we
can continue to distinguish them and we can continue to
label them as no-vison/vison states by their momentum, al-
though they are not eigenstates of theWC operator any
longer. In this case, the crossing of the two states on thread-
ing aF0 flux continues to occur, since the crystal momentum
must change byp in order to satisfy momentum balance.
Thus we may conclude that for the case ofIodd

* on an odd
length cylinder, the two degenerate ground states(no-vison
and vison through the hole of the cylinder) differ by crystal
momentump. This is the result of the momentum balance
argument applied toZ2 fractionalized insulators. We will
sometimes simply refer to this result forIodd

* as “the vison
carrying momentump per row of the cylinder,” omitting to

FIG. 3. (a) Schematic figure showing a vison threading the hole
of a cylinder in the absence of vison tunneling terms. The dark
(light) bonds correspond tosi j

z =−1ssi j
z = +1d. We can detect the

presence of the vison by evaluating the Wilson loop operatorPCsi j
z

along the contourC taken around the cylinder.(b) The translation
operator along thex̂ direction moves the darkssi j

z =−1d bonds by
one lattice spacing from(Lx, 1) to (1, 2) at eachy. This is accom-
plished equivalently by acting with the gauge transformation opera-
tor Gi (which changes the sign ofsi j

z on all bonds emanating from
i) acting on each of the circled sites.
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point out each time that the vison in question lives in the
hole of the cylinder.

The above result is consistent with the vison momentum
computed using:(i) the pure Ising gauge theory(as shown in
the next subsection), (ii ) variational wave functions forZ2
spin liquids (as shown in Sec. V D), and, (iii ) arguments
presented for short-range dimer models24 for Iodd

* .
A side result of this analysis of identifying the vison crys-

tal momenta in various situations is an unambiguous way of
distinguishing fractionalized states from states with transla-
tion symmetry breaking for the half filled insulator. This is
described in detail in Sec. VI.

C. Vison momentum computed directly in the pure Ising
gauge theory

In order to check our deduction about the vison momen-
tum, let us directly compute this quantity in a pureZ2 Ising
gauge theory without dynamical matter fields. If the charge
gap in the insulator is large, this is the effective description
of the insulatorI* . Namely, in the limitU@ tb in the Hamil-
tonian(19) and for integer values of 2N, a good caricature of
the insulating state is to setni =N at each site and only con-
sider fluctuations of the Ising gauge fields. This reduces the
constraint on the physical Hilbert space to

Ĝi
reduphysl = s− 1d2N expFi

p

4
s1 − aid o

j=nnsid
si j

xGuphysl = uphysl

s27d

or equivalently, focusing only on the nontrivial case of
ai =−1

p
j=nnsid

si j
x = s− 1d2N s28d

in the subspace of physical states.
Again, if we begin withh=0, one ground stateuv=0l of

the gauge theory on a cylinder may be obtained as the refer-
ence statesi

z=1 projected into the physical subspace, and for
this one has the loop operatorWC=1. A second(degenerate)
state may be obtained by acting on this ground state with

VLx,1
† = p

i j [cut
si j

x s29d

which commutes with theHg for h=0. The subscripts(Lx, 1)
on V† are a mnemonic for the column on which thesx op-
erators act as shown in Fig. 3(a). The resulting state has
WC=−1. Let us compute the momentum of these two states.
Clearly, the stateuv=0l has zero momentum since it is trans-
lationally invariant by construction. To compute the momen-
tum of the second state, we first note[see Fig. 3(b)] that

T̂VLx,1
† T̂−1 = V1,2

† s30d

=Fp
i

s p
j[nnsid

si,i+x̂
x dGVLx,1

† , s31d

where the sitesi havexi =Lx and correspond to the circled
sites in Fig. 3(b). Using the constraint in Eq.(28), this re-
duces to

T̂VLx,1
† T̂−1 = Sp

i

s− 1d2NDVLx,1
† = expsi2pNLydVLx,1

† .

s32d

Thus, for the second state,uv=1l=VLx,1
† uv=0l, acting with

the translation operator leads to

T̂uv = 1l = sT̂VLx,1
† T̂−1dT̂uv = 0l, s33d

=expsi2pNLydV1,2
† uv = 0l, s34d

=expsi2pNLyduv = 1l. s35d

In other words,(i) for even 2N, namely inIeven
* , the stateuv

=1l carries zero crystal momentum and ,(ii ) for odd 2N,
namely inIodd

* , the vison stateuv=1l carries momentumpLy.
As before, we can now turn on a nonzero fieldh. In Ieven

* ,
the two ground states will mix and split in a finite system,
since they carry the same momentum quantum number. The
same is true forIodd

* with evenLy. However, forIodd
* with

odd Ly, the two ground states carry relative momentump,
thus they cannot mix even on a finite system with nonzeroh
and can be distinguished by their momentum.

Finally, we may introduce dynamical matter fields. Al-
though the operator in Eq.(29) no longer can be identified as
a vison creation operator, the low energy structure of the
system, i.e., topological degeneracies, will not change as
long as we are in the same phase. Also, since the crystal
momenta of these low lying states on the cylinder can only
be one of 0,p (from time reversal invariance), continuity
requires that the crystal momentum assignments made before
for the low lying states continue to hold in the presence of
dynamical matter fields. This constitutes a direct check of the
results deduced above using momentum balance arguments.

D. Momentum computation from variational wave functions
for the vison

So far, we have discussed bosonic models for the insula-
torsI* . However, as mentioned earlier, we can view a hard-
core boson as aS=1/2 spin, and the insulating stateIodd

*

with 2N̄ an odd integer as aZ2 fractionalized spin liquid
insulator. Such spin liquid insulators have long been of in-
terest in connection with frustrated magnets and the high
temperature superconductors. TheQ=1/2 chargon excita-
tions in the bosonic language correspond toS=1/2 excita-
tions (called spinons) in the spin liquid. What do the visons
in Iodd

* correspond to?
To answer this, we note, following Anderson,25 that one

can represent of the ground state wave function for spin liq-
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uids with short-range antiferromagnetic correlations by
“Gutzwiller projecting” a superconducting wave function,
i.e., restricting to configurations with a fixed number of elec-
trons per site. Such a picture also emerges from mean-field
studies of frustrated magnets using a fermionic representa-
tion for the spins. This suggests that perhaps excitations of
the spin liquid may also be related to excitations in the su-
perconductor. Following this line of thought, theS=1/2
spinon in the spin liquid may be viewed as a projected Bo-
goliubov quasiparticle of the superconductor. Similarly it is
natural to expect that thehc/2e vortex in the superconductor
becomes the vison.26

We can check this possibility by computing the momen-
tum of a projectedhc/2e Bardeen-Cooper-Schrieffer(BCS)
vortex threading the cylinder, with odd/even number of elec-
trons at each site, and seeing if it agrees with the results for
Iodd

* /Ieven
* obtained above. To do this, we write the BCS state

(with total electron numberNe) as

uBCSsNedl = So
k

fkck↑
† c−k,↓

† DNe/2, s36d

wherefk denotes the internal pair state of the Cooper pair
formed by sk , ↑ d and s−k , ↓ d, which carries zero center of
mass momentum.

To get the spin liquid state at half filling, we have to
chooseNe=N, the number of lattice sites, and Gutzwiller
project this state by acting with the operatorPG=pis1
−ni↑ni↓d which eliminates configurations in which two elec-
trons occupy the same site. The variational ansatz for the
spin liquid ground state is thenPGuBCSsNdl, and it is a trans-
lationally invariant state with zero momentum. To construct a
BCS hc/2e vortex threading the cylinder, we need to pair
states withsk +q /2 ,↑ d and s−k +q /2 ,↓ d with q=s2p /Lxdx̂
and amplitudefk; this leads to theN-particle vortex state
uhc/2esNdl carrying a momentum ofq per pair, or a total
momentums2p /LxdsN/2d. SettingN=LxLy, we see that the
momentum of this state is justpLy. The projection operator
PG commutes with the translation operator. Thus the trial
vison state uvl=PGuhc/2esNdl has a momentumpLy in
agreement with earlier arguments for theIodd

* insulator.
With an even number of electrons at each site, the vison

wave function carries no crystal momentum. This is consis-
tent with our earlier result forIeven

* .

VI. IDENTIFYING Z2 FRACTIONALIZED STATES IN
NUMERICAL EXPERIMENTS

Numerical investigation of microscopic models, for ex-
ample, exact diagonalization studies,4,5 are an important tool
in finding new states of matter such as states withZ2 topo-
logical order. In this context it is important that reliable di-
agnostics be available for the identification of these states in
the system sizes that can currently be solved on the com-
puter. This question may seem straightforward in principle,
the fourfold topological degeneracy of theZ2 states on a
torus that are indistinguishable by any local operator seem to
provide a unique prescription. However, in practice there are
several potential problems. First, since the numerical simu-

lations are performed on finite sized systems, states that are
degenerate in the thermodynamic limit are only approxi-
mately so in these systems. The problem is particularly se-
vere when gaplessZ2 charged matter fields are present, in
which case the splitting between topological sectors that dif-
fer by the presence of a vison can be large and go down to
zero only algebraically with system size(in contrast to the
exponentially small splitting in the absence of such gapless
gauge charged matter fields). Second, if degeneracies arise as
a result of broken translation symmetry, rather than topologi-
cal order, the relevant order parameter for this translation
symmetry breaking may be hard to identify, and hence we
would like to have available a prescription for distinguishing
such states even if the order parameter is not known. Below
we use insights from the momentum balance arguments to
resolve both of these issues. Indeed we will see that the
analysis of the previous sections, with their focus on finite
sized systems and crystal momentum quantum numbers, are
ideally suited to addressing these questions. We begin by
addressing the second of these two questions first—i.e.,
given a set of states comprising the low energy manifold of
the system as the thermodynamic limit is approached, how
does one distinguish topologically ordered states from a con-
ventional translation symmetry broken state?

A. Z2 Topological order versus translation symmetry breaking

Consider a system of bosons on a lattice at half filling(or
equivalently a spin 1/2 system with one spin per unit cell).
As discussed previously, a translationally invariant insulating
phase implies the presence of topological order(although it
is possible to have topologically ordered phases that also
break translation symmetry). Assume that a group of low
lying states have been identified—under what conditions can
we associate these with the degeneracies assocated theZ2
topological order, rather than with low lying states leading to
translation symmetry breaking?

First consider the system in the cylindrical geometry with
an odd number of rows(Ly odd,Lx even in Fig. 1). Then, flux
threading ensures that we will have two low lying states with
crystal momentumPx=0, Px=p which are interchanged on
threading 2p flux. This is irrespective of whether the system
is heading towards translation symmetry breaking or towards
a Z2 topologically ordered state in the thermodynamic limit.
Therefore this setup is not particularly useful for discussing
for distinguishing the two states. One may also consider the
toroidal geometry for an even3 odd system, however, this
can potentially frustrate certain patterns of translation sym-
metry breaking in a half filled system and hence we do not
consider it further here.

Now consider the system in a toroidal geometry, but with
both Ly, Lx even. Now, we have shown earlier that aZ2
topologically ordered state will have four low lying excita-
tions, all with zero crystal momentum in this geometry. A
conventional translation symmetry breaking state, on the
other hand, will invariably have at least one state in the low
energy manifold that carries nonzero crystal momentum, in
addition to a zero crystal momentum state. This follows al-
most by definition, in order to build up a translation symme-
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try breaking state one needs to make a linear combination of
states with different crystal momenta. This then is a precise
way to tell apart aZ2 topological state from a more conven-
tional translation symmetry breaking state, which just re-
quires a correct identification of the low energy manifold and
the crystal momenta of these states. The translationally sym-
metric topologically ordered state is present if there are four
low lying states with zero crystal momenta. If topological
order coexists with translation symmetry breaking, then too
this quadruplet of zero momentum states persist, although
other quadrupled states with different crystal momenta will
be present in the low energy manifold. This is true for both
Ieven

* andIodd
* .

Recent exact diagonalization studies of a multiple spin
exchange model on a triangular lattice have found signatures
of an interesting new spin state, which has been proposed to
be a topologically ordered spin liquid phase in a certain re-
gime of parameters.4 Let us apply the method of distinguish-
ing topological order from broken translational symmetry
discussed above, to these states.

In the parameter regime of interest, the system in Ref. 4
was argued to be heading, in the thermodynamic limit, to-
wards a spin gapped phase without long-range magnetic or-
der. Furthermore, a set of three spin singlet states which ap-
pear to become degenerate with the ground state with
increasing system size were identified. The authors were un-
able to find simple valence bond(e.g., nearest neighbor)
crystal states that would lead to degenerate ground states
with the quantum numbers(crystal momenta, rotations, re-
flections) of these low lying states. Hence they identified this
apparent fourfold degeneracy with the degeneracy arising
from topological order of aZ2 fractionalized spin liquid, such
as described by Eq.(19), on a torus. While this would be a
very interesting result, we can ask if the quantum numbers of
these nearly degenerate states are consistent with those of a
vison in an odd Ising gauge theory, that we have derived
earlier. However, the three excited states which appear to
become degenerate with the ground state carrynonzerocrys-
tal momentum on a 636 lattice.4 This is in disagreement
with our conclusion regarding vison states in aZ2 fraction-
alized phase,27 namely, that they carry zero crystal momen-
tum on even3even lattices. We therefore conclude that this
interesting identification ofZ2 topological order in these sys-
tems does not stand up to detailed scrutiny. The actual nature
of the phase being approached by these systems then remains
an open question, especially since an extensive search of
conventional broken symmetry states in Ref. 4 did not yield
a candidate phase. The remaining possibilities are perhaps a
conventional translational symmetry broken valence bond
crystal phase, involving non-nearest neighbor dimers, some
other more exotic fractionalized state, or that the all the low
lying states associated with the broken symmetry have not
been identified as a consequence of finite size effects. Note,
the evolution of these states under flux threading which they
have studied on odd3even and even3even lattices is also
consistent with a conventional broken symmetry state.

B. Eliminating the spinon contribution to vison splitting

In this subsection we will utilize the flux threading pro-
ceedure to find a way of eliminating the splitting between the

topologically “degenerate” states that arises from the pres-
ence ofZ2 charged matter fields. While in the thermody-
namic limit, aZ2 fractionalized system, must possess a four-
fold ground state degeneracy on the torus and a twofold
ground state degeneracy on the cylinder, in a finite system
this spiltting may be so large that it makes the identification
of the low energy manifold problematic. In this subsection
we will utilize the flux threading proceedure to find a way of
eliminating the part of the splitting between these states that
arises from the presence ofZ2 charged matter fields.

In order to study the problem in more detail consider a
finite sized system in the cylindrical geometry that is heading
towards aZ2 fractionalized insulating state. Consider first the
situation on an even3even lattice. The low energy manifold
consists of a pair of states that eventually become degenerate
in the thermodynamic limit, but at this stage have a finite
splitting DE. The spitting arises from two sources: first there
is vison tunneling, that mixes the zero and one vison states,
which acting alone, would lead to a splitting ofDEhop. Since
this involves a gapped vison(with gape) hopping across the
entire heightLy of the cylinder, one would expect this to
be exponentially small in their product, i.e.,DEhop
~exps−cLyed, wherec is a constant. The second contribution
to the splitting arises from the presence of matter fields that
carry gauge charge. Clearly, the presence or absence of a
vison will affect the propagation of these particles and in the
absence of vison tunneling will give rise to an energy split-
ting DEmat. With gappedZ2 gauge charged matter fields(with
a gape), clearly this splitting will require virtual processes
where the gapped particle goes once around the cylinder
which impliesDEmat~exps−c8Lxed. The total splitting is eas-
ily seen to be:DE=ÎDEhop

2 +DEmat
2 . Thus, in situations like

the one described above, where both visons and gauge
charged matter have a healthy gap, finite sized system studies
can in practice isolate the low energy multiplet that leads to
topological degeneracy in the thermodynamic limit.9 Note
that the presence of gapless matter fields which aregauge
neutral do not affect these conclusions. Further, at least in
principle, the topological degeneracies described here, with
splittings which are exponentially small in system size, can
be separated from low lying modes of the gauge neutral ex-
citations whose splitting scales inversely with system size.

However, if thegauge chargedmatter is gapless(e.g., if
there are fermionicZ2 gauge charged excitations with a
Dirac spectrum that often appear in mean field theories of
spin liquids) then the splitting of the zero and one vison
states are no longer exponential in the perimeter size of the
system, but only a power law, i.e.,DEmat~Lx

−h, where h
.0, and this dominatesDE. This is potentially a serious
problem since in a finite sized system the splitting is very
likely to be large and also hard to distinguish from the low
energy states arising from the gapless fermions, which also
have energies that vanish as the inverse size of the system.
Below we will prove that in the presence ofp flux (i.e.,
antiperiodic boundary conditions for the unfractionalized
bosons/magnons) the matter contribution to the vison split-
ting is switched off! Essentially this arises because theZ2
charged particles, which also carry half a unit of charge, see
the antiperiodic boundary conditions as a flux of(say) −p /2.
Adding a vison then implies a flux ofp /2. However, since
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these two situations are related by time reversal symmetry,
the energy contribution from the matter fields in these two
cases is identical—which implies that the splitting arises
solely due to vison tunneling, which can be made exponen-
tially small.

In order to show that at a flux ofp the matter contribution
to the vison splitting vanishesDEmat=0, we adopt the fol-
lowing procedure. We consider the system(heading towards
a Z2 fractionalized state) on an even3even cylinder, and con-
sider first the limit where the vison hopping is turned off.
Then, the splitting of the low energy states occurs entirely
because of the gauge charged matter contribution. We now
consider introducing a vison through the hole of the cylinder
and argue below that exactly at fluxp the two states are
exactly degenerate(even in a finite system). Since the vison
hopping has been tuned to zero, the remaining source of
splitting (arising from the gauge charged matter fields) must
also be zero at this point. We can then reintroduce the vison
hopping, and the states at fluxp will now be split, but the
splitting occurs entirely from vison tunneling.

Let us now show that in the absence of vison tunneling,
an exact degeneracy occurs atp flux. We consider for defi-
niteness the model in Eq.(19)—although it contains gapped
matter fields withZ2 gauge charge, the conclusions simply
show that all matter field contributions cancel at this special
flux, and hence can be easily extended to the case of gapless
matter fields as well. We consider the limit of vanishing vi-
son tunneling[i.e., h=0 in Eq.(19)]. We start with zero flux
through the cylinder and consider inserting, adiabatically, a
flux of 2p.

Then, as argued in Sec. V, inserting a 2p flux leads to
insertion of a vison. Now, at zero flux, the two low lying
states can be classified in terms of vison number, since the
vison hopping has been set to zero. The vison number is
measured by the operatorWC=pCsi j

z where the loopC is
taken around the cylinder(see Fig. 2). Clearly, sinceh=0,
this operator commutes with the Hamiltonian, and the two
low lying states can be labeled with the eigenvalues ofs1
−WCd /2, i.e., the vison number. The splitting between these
levels arises entirely from the gauge charged matter fields.
On flux threading, these two states must then interchange—
since threading 2p flux inserts a vison in this limit. This
means that the two levels have to cross at some point(or
more generally at an odd number of points) as a function of
flux. Now, time reversal symmetry tells us that if there is a
crossing point at fluxf, then there must also be one at the
point 2p−f. Thus, in order to arrange for an odd number of
crossing to ensure the levels do interchange, we need that
there is always a crossing at fluxp. Thus, the two states with
vison and no vison are exactly degenerate at this value of the
flux and hence we conclude that the splitting from the gauge
charged matter fields vanishes at this value of flux. Now,
turning on the vison hoppinghÞ0 will lead to a finite split-
ting even atp flux, but this splitting arises entirely from
vison tunneling and hence at this value of the flux we have
DE=DEhop and hence vanishes exponentially in the width of
the system. These arguments can easily be taken over to the
toroidal geometry as well.

We note that this result is useful even in the study of
SU(2) symmetric spin liquid states,4 where although intoduc-

ing thep flux will require breaking the SU(2) symmetry, this
only occurs along one row of the cylinder(e.g., changing the
sign of the exchange constants for theSxSx andSySy interac-
tions), and hence may be viewed as a fairly weak perturba-
tion away from full SU(2). It should also be useful in pro-
jected wave function studies, especially in establishing the
existence ofZ2 fractionalized states with excitations that
have a Dirac dispersion.26

Finally we note that while turning on a flux ofp is effec-
tive in canceling the splitting arising from dynamical matter
fields, the splitting from vison tunneling can be canceled in a
like manner by considering a cylinder with an odd number of
rows at half filling, where the vison and no vison states differ
by crystal momentump and hence do not mix. When both
these processes are active we expect the vison and no-vison
states to be exactly degenerate. Indeed, this is borne out by
the observation that for a cylinder with an odd number of
rows at half filling, when the threaded flux reachesp there is
always a level crossing just from momentum balance argu-
ments and time reversal symmetry[see Fig. 2(a)].

VII. MOMENTUM BALANCE FOR FERMI LIQUIDS

A. Conventional Fermi liquids

Let us first briefly review the momentum balance argu-
ment due to Oshikawa2 for conventional Fermi liquids where
it leads to Luttinger’s theorem. Consider fermions with
chargeQ and spin↑, ↓ at a filling per site ofn↑=n↓=n. Now
consider flux threading in the cylindrical geometry of Fig. 1
with Lx columns andLy rows. We imagine threading unit flux
F0=hc/Q that only couples to the↑ spin fermions. Via
trivial momentum counting this proceedure can be seen to
impart a crystal momentum of

DPx = 2pn↑Ly. s37d

Similarly, one could imagine performing the flux threading
with the cylinder wrapped along the perpendicular direction
which would yield a crystal momentum change

DPy = 2pn↑Lx. s38d

Now in the regular Fermi liquid phase, this crystal mo-
mentum imparted during flux threading is accounted for en-
tirely by quasiparticle excitations that are generated near the
Fermi surface. Using the fact that long lived quasiparticles
exist near the Fermi surface, and the fact that the Fermi
liquid is adiabatically connected to the free Fermi gas, the
quasi-particle populationdnp excited during the flux thread-
ing procedure can be worked out. Clearly, flux threading for
noninteracting fermions will lead to a uniform shift of the
Fermi sea byDpx=2p /Lx from which the quasiparticle dis-
tribution function can be determined. Indeed all of these ex-
citations are close to the Fermi surface, which is required in
order to apply Fermi liquid theory. The total crystal momen-
tum carried by these excitations can be written as

DP = o
p

dnpp. s39d

It is convenient to first evaluate this expression neglecting
the discrete nature of allowed momentum states in a finite
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volume system and treating the shift in the Fermi seadpx
=2p /Lx as infinitesimal. This yields

DPx =R
FS

px
dp ·dSp

2p
Lx

2p
Ly

, s40d

wheredSp is a vector normal to the Fermi surface, and the
integral is taken around the Fermi surface. Using Gauss di-
vergence theorem this can be converted into an integral over
the Fermi volume which yields

DPx = dpxE
FV

dV
2p
Lx

2p
Ly

s41d

thus,

DPx
2p

Lx

VFS
↑

2p
Lx

2p
Ly

.

A more careful derivation that keeps track of the discreteness
of the allowed momenta gives the same result. Clearly the
relevant Fermi volume that enters here is that of the up spins.
Below we assume for simplicity that both the↑ and↓spins
are at equal filling and son↑=n↓=n and VFS

↑ =VFS
↓ =VFS.

Equating the results from the trivial momentum counting,
and the momentum counting above for the Fermi liquid(up
to reciprocal lattice vector) yields

2pnLy =
2p

Lx

VFS

s2pd2LxLy + 2pmx,

2pnLx =
2p

Ly

VFS

s2pd2LxLy + 2pmy,

wheremx and my are integers and the two equations above
are obtained from threading flux in thex and y directions.
These quations can be rewritten as

N − LxLy
VFS

s2pd2 = Lxmx, s42d

N − LxLy
VFS

s2pd2 = Lymy, s43d

where we have introduced the particle numberN=LxLyn, an
integer. In order to obtain the strongest constraint from these
equations we consider a system withLx, Ly mutually prime
integers(no common factor apart from unity). Then, mxLx
=myLy implies that they are multiples ofLxLy; namely
mxLx=myLy=pLxLy with p an integer. Thus we obtain the
result

n =
VFS

s2pd2 + p, s44d

which of course is Luttinger’s theorem3 that relates the Fermi
volume to the filling (modulo filled bands that are repre-
sented by the integerp).

VIII. MOMENTUM BALANCE IN FL *

Here we will consider an exotic variant of the Fermi liq-
uid, where electron-like quasiparticles coexist withZ2
fractionalization.6 This state may be obtained beginning with
a Z2 fractionalized insulating state of electrons that breaks no
lattice symmetries. We consider a specific model where the
spinons(fs

† spin half, charge neutral excitations) are fermi-
onic and the chargons(b† spin zero, unit charged excitations)
are bosonic. The electron operator is written ascs

† =bfs
† and

the relevant gauge structure isZ2 which implies that pairing
of spinons is present. If one is deep in the insulating phase
then there is a large gap to the chargons; furthermore, if there
is also a spin gap, then the low energy effective theory is just
an Ising gauge theory. For an insulator with an odd number
of electrons per site, in this regime we may set the chargon
numbernb=0 and the spinon numbernf =1. The Ising gauge
charge at each site iss−1dnb+nf, which leads to anodd Ising
gauge theory in this situation. For an insulator with even
number of electrons per site, aneven Ising gauge theory
would result. We now imagine a situation where the lowest
charge carrying excitation in the system is the electron itself.
This could arise if the spinon and chargon form a tightly
bound state so that it has a lower net energy than an isolated
chargon. Doping would then lead to a “Fermi liquid” of
electron-like quasiparticles, coexisting with gapped visons,
spinons and chargons, which is theFL* phase we wish to
discuss. It already appears that a violation of Luttinger’s re-
lation may be expected here if we dope an insulator with an
odd number of electrons per unit cell, since only the doped
electrons may be expected to enter the Fermi volume. Here
we will see how momentum balance arguments allows for
such a violation, but nevertheless constrains the possible
Fermi surface volumes so that a generalization of Luttinger’s
theorem to this exotic class of Fermi liquids holds.

In order to follow in detail the evolution of the system
under flux threading we study the following model Hamil-
tonian:

HFL* = He
0 + Hsp−ch

0 + Hint + Hgauge, s45d

He
0 = − o

,i j .

tij
ecis

† cjs, s46d

Hsp−ch
0 = − o

,i j .

tij
c si j

zbi
†bj − o

,i j .

tij
s si j

z f is
† f is

+ Dso
i

sf i↑
† f i↓

† + h.c.d, s47d

Hgauge= − Kp
h

si j 8
z + ho si j

x s48d

with the constraint on all physical states

p
j=nnsid

si j
x = s− 1dnb

i +nf
i

s49d

and Hint denotes the interactions between various fields
which we do not specify here except for assuming that terms
here do not couple to an externally imposed gauge field that
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is required for flux threading. Note, the spinons and chargons
are coupled to theZ2 gauge field, while the electrons are, of
course,Z2 gauge neutral. We have selected, for simplicity, an
on site pairing interaction for the spinons; while such on site
pairing terms are absent in microscopic models that forbid
double occupancy of electrons, here we are concerned with
universal aspects of quantum phases which are not affected
by this simplification.

A. Flux threading in FL *

We now consider the effect of flux threading on the
ground state of the Hamiltonian(48). In the presence of a
vector potentialA↑ sA↓d coupling to the up(down) spin elec-
trons, the hopping matrix elements for the up(down) spin

electrons are modified totij
e → tij

eeiAij
↑
stij

e → tij
eeiAij

↓
d, while the

chargon hopping amlitude is modified totij
c → tij

ce
i
2

sAij
↑ +Aij

↓ d and
the up (down) spinon hopping amplitude is modified totij

s

→ tij
se

i
2

sAij
↑ −Aij

↓ dstij
s → tij

se− i
2

sAij
↑ −Aij

↓ dd. Below we imagine thread-
ing 2p flux in A↑ and study the evolution of the ground state
of the system in this process. In addition to the excitation of
particle-hole pairs of the electron-like Fermi-liquid quasipar-
ticles, we will also see that in some situations a vison exci-
tation is inserted through the cylinder which gives rise to the
modified Luttinger relations. We begin by considering flux
threading in the absence of vison dynamics[h=0 in Eq.
(48)], where results are easily derived, and then reinstate the
vison dynamics and show that the central result is unaffected.

The adiabatic insertion of a unit flux quantum that couples
to the up spin electrons is affected by introducing a gauge
field on the horizontal links of the cylinder in Fig. 1 and
increasing its strength from zerosAij

↑ =0→2p /Lxd in time T.
The time evolution of the quantum state can be written as
ucsTdl=UTucs0dl whereUT=Tt exps−ie0

THFL*stddtd whereTt

is the time-ordering operator, and the time dependence of the
Hamiltonian arises from the flux threading. Clearly, since 2p
of flux is invisible to the electrons, the final state must be
some excited state of the initialsA↑=0d Hamiltonian. In or-
der to make this explicit, the 2p flux is gauged away, which
can be accomplished by the operatorsUsUf with

Uf = expHi
2p

Lx
o

i

xisn↑i
e +

1

2
(nf↑

i − nf↓
i + nb

i )dJ ,

Us = p
i j [cut

si j
x . s50d

While the first unitary operator eliminates the gauge field
for the electrons, it changes the sign of the hopping matrix
element on a single column of horizontal links for the char-
gons and spinons which behave like half charges. This modi-
fication to the hopping can be absorbed in theZ2 gauge
fields, which is accomplished by the unitary operatorUs,
which returns us to the initial Hamiltonian.

The action of the time evolution operatorUT is to excite
electron-like quasiparticles about the Fermi surface in the
usual manner, while the gapped spinons and chargons are not
excited during this adiabatic flux threading. In the absence of

vison dynamics[h=0 in Equation(48)], it may be seen that
a vison is also introduced during the flux threading procee-
dure. This is argued as follows. In the absence of vison dy-
namics, the vison number through the hole of the cylinder, as
measured by the operatorWC=pCsi j

z , whereC is a contour
that winds around the cylinder, is a good quantum number
since it commutes with the Hamiltonian in this limit. How-
ever, in the course of flux threading and returning to the
original gauge, it changes sign since it may be easily verified
that UsWCUs

−1=−WC, which implies vison insertion. Thus,
the final state has a displaced Fermi sea and a vison.

We can now combine the results of trivial momentum
counting and a knowledge of the vison momentum to obtain
the volume of electron-like quasiparticles. This is most easily
done in the limit of a very large gap to the gauge charged
particles (spinons and chargons). Then, the phase is de-
scribed by gauge neutral electrons forming a Fermi liquid
and a pure Ising gauge theory in the deconfined phase. We
know that the vison excitations of the latter through the hole
of the cylinder with an odd number of rows carries crystal
momentum 0 orp depending on the even or odd nature of
the Ising gauge theory. The gauge constraint in Eq.(49) tells
us this depends on the parity ofnf +nb at each site. If we set
nb=0 for the gapped chargons andnf =1 for the gapped
spinons, where for the latter we assume the system is ob-
tained continuously by doping a spin liquid with spin 1/2 per
unit cell (i.e., a spin version ofIodd

* ). In this limit an odd Ising
gauge theory will be obtained, where the vison threading an
odd width cylinder carries crystal momentump. If the gap to
the spinons and chargons is now reduced from infinity, this
crystal momentum assignment to the vison cannot change
continuously(from time reversal symmetry), and is hence
expected to be invariant for a finite range of gap values.
Thus, the phase is expected to be continuously connected to
the large gap situation with integer or half integer filling,
which will determine the momentum assignments.

Thus, we are left with the result that two types of exotic
Fermi liquid statesFLeven

* andFLodd
* are expected, that differ

in the crystal momentum carried by the vison excitations.
The momentum balance argument then immediately implies
that these two states will have different Fermi volumes at the
same filling—whileFLeven

* will have a Fermi volume that is
identical to that of a conventional Fermi liquid at the same
filling and hence respects Luttinger’s relation,FLodd

* has a
Fermi volume that violates Luttinger’s relation in a very
definite way.

Since the only situation where the momentum balance
argument will give a result distinct from that of a conven-
tional Fermi liquid is for the case ofFLodd

* on an even3odd
lattice, where the vison carries a nontrivial crystal momen-
tum, we discuss that below. Consider flux threading in such a
phase on a cylinder with an odd number of rows. This will
introduce a vison through the hole of a cylinder which car-
ries crystal momentump. This needs to be subtracted from
the usual momentum balance relations for a Fermi liquid
displayed in Eq.(43). This leads to a modified Luttinger
relation between the Fermi volume inFLodd

* and the electron
filling n
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hn −
1

2
j − p =

VFS
*

s2pd2 , s51d

wherep is an integer that represents filled bands. We reiter-
ate thatn is the number of electrons of each spin per unit
cell. The crucial difference from the usual Luttinger relation
in Eq. (44) is the fact that the Fermi volume is determined by
n− 1

2, which is related to the fact that it is obtained by doping
the fractionalized spin model which is translationally sym-
metric at half filling.

Finally, we argue that reintroducing the vison hopping
shÞ0d does not affect these conclusions. In the cases where
the vison threading the cylinder carries zero crystal momen-
tum, introducing vison hopping leads to a mixing of the vi-
son and no vison states in a finite system. This implies that
we are no longer guaranteed to have a vison on flux thread-
ing. However, for the case ofFLodd

* on a cylinder with an odd
number of rows, where the vison carries crystal momentum
p, the nontrivial crystal momentum blocks the tunneling of
visons even on a finite sized system. This implies that flux
threading does indeed introduce a vison which finally leads
to the modified Luttinger relation. We can see that thep
crystal momentum carried by the vison cannot be transferred
to the only other gapless excitations in the problem, the
electron-like quasiparticles, since they are gauge neutral.

Our argument is an expanded version of the basic ideas
aboutFLodd

* noted in Ref. 6. However, our proof of the modi-
fied Luttinger relation forFLodd

* is more comprehensive, and
we also identify theFLeven

* phase which is an exotic Fermi
liquid but nevertheless obeys the conventional Luttinger re-
lation.

IX. CONVENTIONAL SUPERFLUID SF
Luttinger’s theorem was formulated for Fermi liquids, and

we have extended Oshikawa’s argument to show how the
theorem must be modified to account for the existence of
gapped spin liquid insulators(which may be equivalently
viewed as fractionalized bosonic insulators) as well as frac-
tionalized Fermi liquids. In both cases, the presence of topo-
logical order was crucial. Let us next turn to conventional
superfluids and ask: What property of the superfluid phase is
captured by the Oshikawa argument, and gets fixed by the
particle density? While we focus on the case of bosonic su-
perfluids, we expect our results to also be applicable to
s-wave superconductors with a large gap, so that the result-
ing Cooper pairs may be effectively viewed as bosons. Also,
we consider the case of neutral bosons(no internal electro-
magnetic gauge field). Again, these results could be applied
approximately to the case of charged superfluids if the pen-
etration depth is sufficiently large.

Conventional superfluids in two or more dimensionssD
ù2d are Bose condensed at zero temperature, and have a
unique ground state(on both cylinders and torii). It is clear
that the Oshikawa argument must then capture some property
of the excitations in the superfluid. A conventional superfluid
supports two kinds of excitations: the gapless linearly dis-
persing Goldstone mode of the broken symmetry state(“pho-
non”), and topological defects, namely vortices. We show

below that it is the Berry phase acquired by a vortex on
adiabatically going around a closed loop that is fixed by the
particle densityn, independent of the strength and nature of
interactions between bosons in the superfluid.

A. Effective Hamiltonian for SF
We may describe a conventional superfluid most conve-

niently in a rotor representation for the bosons—thusBr
†

→e−ifr, Br
†Br →Nr with fexpsifrd ,Nr8g=expsifrddrr 8, and

the Hamiltonian for interacting bosons in these variables
takes the form

ĤAsSFd = − tbo
ki j l

cossfi − f j + QAijd + Vintfng, s52d

where the interactions may be of the general formVintfng
=orr 8Urr 8NrNr8. The Bose condensed superfluid, which re-
sults in dimensionsDù2 whentb is the largest scale in the
Hamiltonian, supports linearly dispersing phonons, which
are the Goldstone mode of the broken symmetry. Vortices
appear as topological defects in the phase field in the ordered
state, and there is a nonzero gap to creating vortices in the
bulk of the superfluid.

In the above discussion, we have assumed that the phase
variable has periodic boundary conditions, namely,wr+Lx
=wr , wr+Ly

=wr . However, on cylinders/torii the superfluid
has additional excited states corresponding to creating vorti-
ces through holes of the cylinders/torii. A state withwr+Lx
=wr +2pmx corresponds to a strengthmx vortex through a
hole in the cylinder.

B. Flux threading in SF
ConsiderN bosons each with chargeQ condensed into a

conventional superfluid ground state on anLx3Ly lattice in
the form of a torus. Trivial momentum counting tells us that
threading fluxF0=hc/Q into the cylinder on which the sys-
tem lives changes the crystal momentum by 2pnLy, wheren
is the filling andLy is the number of rows of the cylinder. We
show below, using a low energy description of the superfluid,
that adiabatic flux threading introduces a vortex into the hole
of the cylinder/torus. We do this in two steps. First, we turn
off the boson interactions which allows us to directly con-
struct the final state and see that it corresponds to introducing
one vortex. Next, we turn back on the boson interactions and
argue that this does not affect the state or change the mo-
mentum carried by the vortex.

1. Threading flux F0 introduces a vortex

Let us adiabatically thread fluxhc/Q in the −ŷ direction
for the above system on a cylinder as in Fig. 1 such that
starting from the initial eigenstateuCs0dl in the absence of
flux, the final state reached isuCsTdl. The final state can,
of course, be written asuCsTdl=UTuCs0dl with UT=Tt

3exps−ie0
THAsSF ,tddtd whereTt is the time-ordering opera-

tor. We can go to theAij =0 gauge by making a unitary trans-
formation HAsSF ,Td→UGHAsSF ,TdUG

−1;H0sSFd (corre-
sponding to zero vector potential). HereUG=Uf, with
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Uf = expSi
2p

Lx
o

i

xin̂iD . s53d

Thus, the final state in theAij =0 gauge isuC fl=UfUTuCil.
Let us consider the extreme limit achieved byVint→0. In

this case, the system is initially in the full Bose condensed
stateuexpsifid=1l, which is unaffected by the time develop-
ment operatorUT, and the final state after acting withUf has
uexpsifid=expsi2pxi /Lxdl, namely it corresponds to having a
single vortex threading the hole of the cylinder. Trivial mo-
mentum counting then tells us that this vortex carries mo-
mentum:Pvortex=2pnLy.

2. Flux threading in the presence of boson interactions

In the presence of boson interactions, the phasew at each
site is no longer ac number. Since the number and phase do
not commute, interactions introduce phase fluctuations. Such
fluctuations may permit the vortex to escape from the hole of
the cylinder. Clearly, this is only possible if the initial and
final state have the same crystal momentum quantum num-
ber. Since the vortex state carriesPvortex=2pnLy, we expect
the vortex will remain trapped except at special values ofn
and Ly, where Pvortex becomes a multiple of 2p. Thus, in
general, even in the presence of boson interactions, threading
flux F0 introduces one vortex, carrying the above crystal
momentum, into the hole of the cylinder.

3. Flux threading and the Berry phase for a vortex

It is well known that moving vortices in a stationary Gal-
ilean invariant superfluid experience the so-called Magnus
force, a force which acts transverse to the velocity of the
vortex. A superfluid vortex thus behaves as a charged particle
in a magnetic field, the Magnus force being analogous to the
transverse Lorentz force. In a lattice system, this “magnetic
field” seen by the vortex is encapsulated through vector po-
tentials living on the links of the lattice, and the vortices pick
up a Berry phasex (of the Aharonov-Bohm kind) on going

around an elementary plaquette of the lattice. We will now
show that using the momentum balance argument fixes this
Berry phase to bex=2pn.

Consider a single vortex on an infinite plane. Since the
vortex sees a “flux”x per plaquette of the lattice, the unit
translation operators for the vortex satisfy:TxTy=TyTx
3exps−ixd. Let uKX,Yl represent the state with one vortex
with x-crystal momentumKX located aty=Y. When this vor-
tex is translated by one unit along the +ŷ direction, i.e., to
y=Y+1 it is straightforward to show that the new state has
x-crystal momentum given byKx+x. For an antivortex, the
translation operators satisfyTxTy=TyTx expsixd, and translat-
ing the antivorton along +ŷ changes the crystal momentum to
Kx−x.

With this in mind, let us thread a vortex through the torus
in the manner shown in Fig. 4. Start with a state with well-
defined crystal momentum along thex direction, say zero.
Create a vortex-antivortex pair on some plaquette and make
a superposition withzero net crystal momentum alongx̂.
Next drag them apart by translating the vortex along +ŷ us-
ing the translation operatorTy until they areL lattice spac-
ings apart along the torus. This state then has additional crys-
tal momentumxL. If we drag the pair all the way around the
torus and annihilate the vortex-antivortex pair, this would be
equivalent to threading a vortex through the torus as in Fig.
4(b). The net momentum change is thenxLy. On the other
hand, we have shown thatPf −Pi =2pnLy for threading the
vortex through the hole of the torus. This fixesx=2pn.

We have confirmed this result by using the well known
duality mapping28 between bosons and vortices in 2+1 di-
mensions. The dual theory treats vortices as point particles
minimally coupled to a noncompact U(1) gauge field. In the
dual theory, the flux of the gauge field on an elementary
plaquette as seen by the vortex emerges naturally asx
=2pn, i.e., the vortices see each boson as a source of 2p
magnetic flux. The noncompactness of the gauge field, or the
conservation of the magnetic flux piercing the lattice, is a
simple consequence of total boson number conservation.

To summarize, vortices in a uniform superfluid pick up a
Berry phasexN on adiabatically going around a loop enclos-
ing N plaquettes. The Berry phase per plaquette is com-
pletely determinted by the particle density as The Berry
phase per plaquette is completely determined by the particle
density asx=2pn. Writing x=2paM, which defines the
“Magnus coefficient”aM, leads to the Luttinger relation for
superfluids, namely

n = aM + p. s54d

This relation follows from using the momentum balance ar-
guments of Oshikawa, applied to a conventional superfluid.
In this sense, the Berry phase relation above may be viewed
as the analogue of the Luttinger relation for Fermi liquids.

There is a concern which we have not addressed so far—
the vortex may have a modified density near its core, and this
in turn could modify the Berry phase accumulated by the
vortex when it is adiabatically taken around a loop. However,
this term does not change with the area of the loop, so we
can still use the above result to deduce a precise difference of
the Berry phase between two loops enclosing different areas.

FIG. 4. Threading a vortex through the hole of a torus.(a) A
vortex (arrow coming out) – antivortex (arrow going in) pair is
created, and separated by the translation operatorTy. (b) When the
vortex is taken all the way around the torus and then annihilated
with the antivortex, the resulting state has one unit of circulation
about the hole of the torus as shown.
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We need to define 2paM ;DF /DN, whereDF is the differ-
ence in Berry phase between two loops which differ in area
by DN plaquettes. Defined in this manner, 2paM obeys the
precise relation in Eq.(54). Another caveat is the very defi-
nition of adiabaticity in the presence of gapless superfluid
phonon excitations—to be completely rigorous, we need to
work with a finite-sized system such that the phonons have a
nonzero gap, and demand that the vortex motion be adiabatic
with respect to this energy scale.

X. Z2 FRACTIONALIZED SUPERFLUID SF*

We now discuss an exotic variant of the superfluid,SF* ,
and see how the relation(54) is modified in this phase. The
SF* phase is aZ2 fractionalized superfluid which was first
discussed by Senthil and Fisher.9 It supports three distinct
gapped excitations:(i) an elementaryhc/Q vortex(called the
“vorton” in Ref. 9), (ii ) Z2 gauge flux(the “vison”), and(iii )
an electromagnetically neutral particle carryingZ2 gauge
charge(the “ison”). There are various ways in which theSF*

phase may be realized; we shall briefly outline one of them.
Let us start with a fractionalized insulatorI* which can be

realized at integer or half odd integer density of bosons. This
supports two gapped excitations: chargeQ/2 chargons that
also carryZ2 gauge charge and Ising vortices(visons). On
doping this insulator, the additional charge-Q bosons can de-
confine into pairs of chargons since in the fractionalized
phase Bose condensing the doped chargons would destroy
deconfinement of theZ2 gauge field(by the Anderson-Higgs
mechanism, since the condensate carriesZ2 gauge charge)
and lead to á conventional superfluid.

The other possibility is that doped chargonspair and Bose
condense resulting in a superfluid phase. Since the conden-
sate isZ2 gauge neutral, deconfinement is preserved and this
exotic superfluid phase is calledSF* . It supports elementary
hc/Q vortices, and the visons still survive in the superfluid.
There is, however, another excitation, analogous to a Bogo-
liubov quasiparticle of a superconductor, present in the
system—this gapped quasiparticle9 is the ison. It may be
viewed as a descendant of the chargon in the insulator,
whose electric charge has been screened by the Bose conden-
sate of pairs so that it only carries aZ2 Ising charge.29 In
addition to these gapped excitations, there is, of course, the
gapless superfluid phonon in an electrically neutral system.
The relative statistics of the gapped excitations are as fol-
lows: the wave function changes sign if an ison is adiabati-
cally taken around the vison or the vorton.

We have seen howZ2 fractionalized Bose Mott insulators
with full lattice translation symmetry fall into two classes,
depending on whether the boson filling is an integersIeven

* d
or half odd integersIodd

* d as described in Sec. V. Similarly,
fractionalized Fermi liquidsFL* also come in two varieties
as shown before, with different relations between fermion
filling and Fermi volumes. It is not surprising, therefore, that
we will find below two kinds ofZ2 fractionalized superfluids,
SF* . Using momentum counting arguments as done earlier,
we will also see how the distinction between the two types of
SF* phases, namelySFeven

* andSFodd
* , is reflected in differ-

ent dynamics for the vorton in these two cases. While in the

case of translationally symmetricZ2 insulatorsI* , a knowl-
edge of the filling alone was enough to determine the odd/
even nature of the phase, this is no longer true in the case of
Z2 fractionalized superfluids,SF* (or FL*), where additional
information regarding the odd/even nature of the phase is
needed.

A. Effective Hamiltonian for SF*

A simple description of theSF* phase may be obtained
by using a Hamiltonian which describes chargons minimally
coupled to aZ2 gauge field. This takes the form

HsSF*d = T̂ + V̂ + Hg s55d

with

T̂ = − tbo
ki j l

si j
z cossfi − f j + QAij /2d

− tBo
ki j l

coss2fi − 2f j + QAijd,

V̂ = vintfng,

Hg = − Ko
h

p
h

si j
z − ho

ki j l
si j

x s56d

and physical states of the theory satisfy the constraint in Eq.
(21). Here exps−ifid creates a chargon carrying chargeQ/2
andZ2 gauge charge at sitei, ni is the chargon number, and

the terms inT̂ represent the chargon kinetic energy. Single
chargons hop with an amplitudetb, and are coupled mini-
mally to theZ2 gauge field and for simplicity of discussion,
we have included explicitly a chargon-pair hopping term
with amplitude tB. Clearly a chargon-pair created by
exps−2ifid has no net Ising charge and does not couple to
the Z2 gauge field.Vintfng is an interaction term involving
chargon densities which we do not spell out here. The exotic
superfluid phaseSF* requires being in the deconfined phase
of the gauge theory(which is guaranteed by a largeK /h) and
with chargon pairs condensed(which can be achieved with
large chargon pair hoppingtB, while single chargon hopping
remains small).

Let us now write down the effective Hamiltonian in the
SF* phase. Condensation of chargon pairs implies that we
can replace the operator exps−2ifid by ac number. Then, the
magnitude of the chargon creation operator is determined,
but its sign can fluctuate which gives rise to the ison field,
i.e., we can write exps−ifid~ I i

z, where I i
z is a Pauli matrix

with eigenvalues61. Similarly, since chargon pairs are con-
densed, the parity of the chargon number operator chargon
numberni must be changed by the ison creation operatorI i

z,
hence we identifyni <s1+I i

xd /2; againIx is a Pauli matrix
ands1+Ixd /2, with eigenvalues{0,1}, counts the number of
unpaired Ising charged particles.

In new variables, the Hamiltonian(with Aij =0) reduces to

Hred= T̂red+ V̂red+ Hg + Hcondensate, s57d
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T̂red= − tb8o
ki j l

I i
zI j

zsi j
z ,

V̂red= − go
i

I i
x, s58d

where we have introduced a “chemical potential”g for the
isons, andHcondensatedescribes the dynamics of the conden-
sate. Physical states of this theory need to satisfy the con-
straint

p
j=nnsid

si j
x = − I i

x. s59d

This is simply an Ising model coupled to an Ising gauge
field—theSF* phase is realized when both the isons(exci-
tations of the Ising model) visions (excitations of the Ising
gauge theory) are gapped. This will occur whenK /h and
ug/ tb8u are large, when the gauge theory is in the deconfined
phase and the Ising model is “disordered.” Let us now briefly
consider the special limiting cases whereugu→` in order to
expose the underlying reason for the two kinds ofZ2 frac-
tionalizedSF* phases. Clearly, ifg→ ±`, we would have
I i
x= ±1 corresponding to the ison numbers1+I i

xd /2=0 re-
spectively. The physical states of the gauge theory then sat-
isfy the constraint

g → 7 `:I p
j=nnsid

si j
x = ± 1. s60d

These constraints on the gauge theory, as we know from
the discussion on insulators, correspond to even and odd
Ising gauge theories, respectively, which correspond to hav-
ing zero or one Ising charged particle(ison) fixed at each
site. Thus, forg→ +` and for g→−` we will obtain two
distinct superfluid phases, which we labelSFeven

* andSFodd
* ,

respectively, which persist to finite values ofg as well. These
are separated by an intermediate phase whereugu! tb where
the Iz Ising field orders; this is the conventional superfluid
phase. Below, we will see how theseSF* phases can be
distinguished from each other.

B. Flux threading in SF*

Trivial momentum counting tells us that threading flux
F0=hc/Q into the cylinder on which the system lives
changes the crystal momentum by 2pnLy, where n is the
filling and Ly is the number of rows of the cylinder. Where is
this momentum soaked up in theSF* phase? We will show
below that flux threading introduces both a vison and a vor-
ton into the hole of the cylinder. The crystal momentum is
then divided up between these two excitations, in a way that
depends on whether we are dealing withSFeven

* or SFodd
* .

This will be argued below in two stages. First, we consider
freezing the Ising gauge field dynamics by setting the vison
hopping to zerost=0d. There it can easily be argued thatF0

flux threading leads to both a vison and a vorton. Then, using
our earlier knowledge of vison momenta in the even/oddZ2
gauge theories, and the total momentum imparted to the sys-
tem, we can read off the crystal momentum carried by the
vorton. Finally, we reinstate the vison hoppingst.0d and

use continuity to argue that this does not affect the momen-
tum assignments.

1. Threading flux F0 introduces a vison and vorton:

Consider at first the limith=0 and tB=` identically, so
that before introducing flux we can everywhere setsi j

z =1 (as
a reference state which we can then project into the subspace
of physical states) and expsi2fid=1.

Let us adiabatically thread fluxhc/Q in the −ŷ direction
for the above system on a cylinder as in Fig. 1 such that
starting from the initial eigenstateuCs0dl in the absence of
flux, the final state reached isuCsTdl. The final state can, of
course, be written asuCsTdl=UTuCs0dl with UT=Tt

3exps−ie0
THAsSF* ,tddtd where Tt is the time-ordering op-

erator. We can go to theAij =0 gauge by making a unitary
transformation HAsSF* ,Td→UGHAsSF* ,TdUG

−1;H0sSF*d
(corresponding to zero vector potential). Here UG=UfUs,
with

Uf = expSi
p

Lx
o

i

xin̂iD ,

Us = p
i j [cut

si j
x s61d

and cut refers to the vertical column of links for whichxi
=Lx, xj =1 [shown in Fig. 3(b)]. Thus, the final state in the
Aij =0 gauge isuC fl=UfUsUTuCil. Since the system is a su-
perfluid initially in the stateuexps2ifid=1l, which is unaf-
fected by the time development operatorUT since we are in
the tB=` limit, the final state after acting withUf has
uexps2ifid=expsi2pxi /Lxdl, namely it corresponds to having
a single vorton threading the hole of the cylinder.

At the same time, following arguments similar to the in-
sulatorI* , acting withUs introduces a vison in the hole, the
vison number being defined bys1−WCd /2 with WC=pCsi j

z

where the loopC is taken around the cylinder[see Fig. 3(b)].
Thus, for h=0, tB=`, threading a 2p flux adds a vison

and a vorton into the hole of the cylinder. Thus, when
the effective description of the gauge fields is an even
(odd) Ising gauge theory(which are connected to the
g→−`s+`d limits, respectively, as we have seen above),
momentum counting arguments already showed us that the
vison carries momentum zero(for the even gauge theory) or
pLy (for the odd gauge theory). The remaining momentum
must clearly be carried by the vorton!

Thus, in the case of evenZ2 gauge theories the vison
carries zero crystal momentum, and we deduce that the vor-
ton through the hole of the cylinder carries crystal momen-
tum 2pnLy, and this is theSFeven

* case. For the case of odd
Z2 gauge theories, the vison carries crystal momentumpLy
and the vorton carries crystal momentum 2psn−1/2dLy, and
this is theSFodd

* case. To summarize, momentum balance
arguments suggest

Pvorton
even = 2pnLyfmod 2pg, s62d
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Pvorton
odd = 2psn −

1

2
dLyfmod 2pg. s63d

We now show that these momentum assignments are not
affected on reinstating the vison hoppingshÞ0d and the con-
densate dynamicsstBÞ`d.

2. Flux threading with dynamical gauge fields

Here, starting from the case withh=0, tB=`, let us ask
what happens if we turn on a nonzeroh and finitetB, giving
dynamics to the gauge field and to the condensate.

In this case the loop productWC no longer commutes with
the Hamiltonian, and we cannot use its eigenvalues to label
the eigenstates. Thus, in a finite system as argued previously
for the case of inulators, the vison can tunnel out in the case
of even gauge theories for any cylinder dimension, or in the
odd gauge theories, if the cylinder has an even number of
rows sLyd. However, for the case of odd gauge theories on a
cylinder with odd number of rowssLyd, the vison carried
momentump, and hence vison tunneling is blocked even in
finite systems. Similarly, when there is dynamics to the con-
densatestBÞ`d, the vorticity is also not necessarily con-
served in a finite system, namelye¹2f around the cylinder
is not a constant(not a classical variable). More precisely,
this statement can be made in terms of an order of limits; if
the time scale for flux threading is taken to infinity before the
thermodynamic limit is taken, then the system can remain in
the zero vorticity state at the end of the flux threading. This
occurs if the two states, namely the state with no vison and
no vorton and the state with 1 vison and 1 vorton, each carry
zero crystal momentum, and can then mix to give eigenstates
of the Hamiltonian. This happens if 2pnLy=0smod 2pd.
Otherwise, even in the presence ofh and condensate dynam-
ics, the vorton acquires a nonzero crystal momentum and
therefore its tunneling is blocked even in a finite size system
(in the sense described above). Thus, in all cases where a
nontrivial crystal momentum is imparted to the system from
flux threading, this is accounted for by the presence of a
vorton and/or a vison in the final state which carries the
appropriate momentum.

The two superfluidsSFeven
* , SFodd

* can then be distin-
guished depending on the momentum carried separately by
the vison and the vorton though the total momentum carried
by these excitations is the same. We shall later see that this
may be reflected in the measured Hall effect in the vorton
liquid phase in these systems through the Berry phase in-
duced Magnus force on the vorton. In the next subsection,
we shall directly verify the momentum assigments for the
vorton by going to a dual theory where vortices are repre-
sented as particles.

C. Berry phase for vorton and consistency with momentum
counting

The dual theory for theSF* phase, where the chargons
are traded for vortex variables, is derived in Appendix A.
The action takes the form

S= Sgauge+ Sc,

Sgauge= − «Kp
hs

si j − «Ktp
ht

si j ,

Sc = − «tvo
i,m

cossui − ui+xm
− 2pAm

i − pam
i d − «go

i

I0
i

+ i
p

2o
i,m

Im
i s1 − si,i+td + a o

i,m=1,2
sJm

i d2 + «Uo
i

sJ0
i − nd2.

s64d

Here exps−iud creates a vorton, and the first term inSc rep-
resents vorton hopping. The vortons appear as charged par-
ticles minimally coupled to the gauge fieldsAm andam. The
flux of the (noncompact) Us1d gauge fieldAm and the gauge
field am are tied to the charge currentsJmd and the ison
currentsImd, respectively

Jm
i /2 = emnl]nAl

i , s65d

Im
i = emnl]nal

i . s66d

The isons have a chemical potentialg, and a Berry phase
term associated with the fact that they couple to theZ2 gauge
field si j . The remaining terms represent local interactions
between the charge density/currents.

On the spatial linkssm=1, 2), kIm
i l=0 andkJm

i l=0. On the
temporal links, for the chargon density we havekJ0

i l=2n,
wheren is the average charge density in units ofQ (equiva-
lently, n is the density of chargonpairs). For the ison density,
we have two possibilities:(i) for g→−`, we haveI0

i =0 and
there are no isons in the ground state;(ii ) for g→ +`, there
is one ison nailed down to each lattice site,I0

i =1. For
g→−` (or SFeven

* ), when the vortons go anticlockwise
around an elementary plaquette of the square lattice, they see
only the flux produced by the vector potential 2pA, and the
wave function acquires a factor expsipJ0

i d. On average, the
phase picked up is thus 2pn. This is identical to the Berry
phase picked up by a vortex in a conventional superfluid
with boson densityn. Forg→ +` (or SFodd

* ), the vorton sees
an additional flux produced by one ison chargeI0

i =1 nailed
down to each site, and the total flux seen by the vorton is
thus 2psn−1/2d—this deviates byp from the Berry phase
for SFeven

* and the conventional superfluid.
Applying the picture of vortex threading presented for

conventional superfluids to this case of vorton threading, it is
clear that this Berry phase is consistent with the momentum
counting argument. Namely, the vorton threading suggests
thatxLy=Pvorton. On the other hand, momentum balance tells
usPf −Pi =2pnLy for threadinga vison and a vortonthrough
the hole of the torus. Since we know that the vison carries
crystal momentumPvision

sevend=0 in an even gauge theory(as in
SFeven

* ) or Pvision
soddd =pLy in an odd gauge theory(as inSFodd

* ).
This fixes Pvorton in the two cases[in agreement with Eqs.
(62) and (63)] and thus xsevend=2pn, SFeven

* ) and xsoddd

=2psn−1/2d (in SFodd
* ). This is consistent with the result

derived from the dual theory above. Defining as before the
Magnus coefficientaM =x /2p, we obtain

aM
even= n − p, s67d
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aM
odd= Hn −

1

2
J − p, s68d

wherep is an arbitrary integer. Thus the momentum counting
provides a prescription to fix the Berry phase for the vorton,
and allows us to distinguish the odd and even exotic super-
fluid phases.

XI. CONCLUSIONS

Extending a nonperturbative argument, made by
Oshikawa for the Fermi liquid, we have constructed ana-
logues of Luttinger’s theorem for systems other than the con-
ventional Fermi liquid in dimensionsDù2. This has allowed
us to derive constraints which must be satisfied by quantum
phases of matter on a lattice, such as superfluids and the
more exoticZ2 fractionalized phases which are topologically
ordered. We have discussed ways in which these constraints
may be useful in identifying fractionalized phases in numeri-
cal experiments.

A recurring theme has been the important distinction be-
tween even and odd deconfined Ising gauge theories, which
correspond to states that are most naturally associated with
integer and half integer filled systems, respectively. For ex-
otic insulators, the even or odd character of the phase is
completely determined by the filling in this manner. For ex-
otic Fermi liquids and superfluids, a knowledge of the filling
by itself is insufficient to determine the odd or even nature of
the emergentZ2 gauge field—precise violations of the Lut-
tinger relation or its analogue for these systems provides a
way to distinguish them from each other.

Within a simple Drude-like picture, one associates the
size of the Fermi surface with the sign of the Hall
conductivity—a Fermi surface corresponding to a few elec-
trons would exhibit an electron-like response, while a Fermi
surface of a nearly filled band would show a hole-like re-
sponse. A Fermi surface which violates the conventional Lut-

tinger theorem may thus be reflected in an anomalous sign of
the Hall conductivity as depicted schematically in Fig. 5. A
similar change in the sign of the Hall effect in a vortex liquid
phase is expected for odd fractionalized superfluids relative
to conventional superfluids, due to a shift of the Berry phase
by p at a given density of bosons. Clearly, the sign of the
Hall effect is not universal and in real systems is affected by
band structure and interactions. Thus an anomalous sign of
the Hall response is suggestive but is not a rigorous diagnos-
tic. Experimental tools such as angle resolved photoemission
spectroscopy which measure the Fermi surface can more di-
rectly detect violations of the conventional Luttinger theorem
expected in odd Fermi liquids and thus serve to identify such
systems.
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APPENDIX A: DUALITY AND VORTONS IN SF*

Let us begin with the path integral for the partition func-
tion of chargons coupled to aZ2 gauge field, Z
=eDfohnjohsjexps−Sd, with S=Sgauge+Sc. The gauge field
and chargon actions are given by

Sgauge= − «Ksp
hs

si j − «Ktp
ht

si j ,

Sc = − «tbo
ki jra

si j cossfi − f jd + «Uo
i

sni − nd2

+ io
i

nisfi − fi+t +
p

2
f1 − si,i+tgd. sA1d

Here, ki j l denotes nearest neighbor sites in space,n, f de-
note the chargon number and phase. The chargons hop with
an amplitudetb and have a local repulsion of strengthU. Un
plays the role of the chargon chemical potential. TheZ2
gauge fields are denoted bysi j = ±1 andhs, ht denote el-
ementary spatial/spatio-temporal plaquettes on the cubic
space-time lattice with respective gauge field couplingsKs,
Kt. Finally, « is the Trotter discretization along the imaginary
time direction.

We can rewrite the chargon hopping term in the partition
function as

o
Lij

e−aoki j lLij
2+ioki j lLij sfi−f j+

p
2

f1−si j gd, sA2d

whereLij =−Lji is an integer-valued field. For largea, with
a=lns2/«tbd, this reduces to the original chargon hopping
term. For generala, this modified form allows terms such as
coss2fi −2f jd which correspond to chargon-pair hopping.
We therefore do not need to keep an explicit pair-hopping
term tB unlike in our discussion in Sec. X.

FIG. 5. Schematic figure showing the filling dependence[n=0
(1) is the empty(full ) band] of the Hall conductivity in a conven-
tional Fermi liquid orFLeven

* (solid line), for electrons within a
simple Drude-like picture, contrasted with the behavior expected in
the FLodd

* phase(dashed line). Similar results are expected for the
conventional superfluid orSFeven

* phase compared to theSFodd
*

phase in a vortex liquid phase.
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Integrating out the phase fieldf leads to a constraint

o
j

Lij + sni − ni+td = 0, sA3d

which is juct the continuity equation,Lij representing the
chargon current on bondsi → jd. Writing the numberni

;Li,i+t, we can recast this in the form

o
m=0,1,2

fLi,i+xm
+ Li,i−xm

g = 0, sA4d

wherex0=t, x1=x, x2=y. This sets the divergence of the 3
current to zero. Below, the sum overm will be understood to
run over 0,1,2 unless stated, we will also use the notation
Lm

i ;Li,i+xm
.

We go to dual vortex variables in 2+1 dimensions in the
standard manner,28 the only difference is in the presence of
Z2 gauge fields in the action but we do not dualize these. The
constraint is solved by equating the conserved current to the
curl of a dual vector such that its divergence is automatically
zero. We decompose the chargon current into two parts, the
current of pairsJ (an even integer) and the current of un-
paired particlesI s=0,1d. Note that I is only conserved
modulo-2—two unpaired particles can combine to form a
pair which is accommodated by increasingJ by one unit, and
I thus is the current of particles carrying only aZ2 charge.
The constraint is thus solved by choosing

Jm
i = 2emnl]nAl

i , sA5d

Im
i = semnl]nal

i dfmod 2g, sA6d

whereA (an integar) anda s=0,1d are fields on links of the
dual space-time lattice, and the right hand sides above are
just the lattice curls on the dual lattice, taken around the
original link si , i +xmd.

The chargon action then takes the form

Sc = a o
i,m=1,2

sJm
i + Im

i d2 + «UsJ0
i + I0

i − nd2 sA7d

+ i
p

2o
i

I0
i s1 − si,i+td sA8d

− «go se0nl]naldfmod 2g, sA9d

where we have now included a chemical potentialg for the
Z2 charges whose density isI0

i =e0nl]nalfmod 2g.
We can convert the sum overA to an integral by softening

the constraint by introducing terms«tvoi,mcoss2pAm
i d in the

action (this can be formally accomplished by using Poisson
resummation), which prefersAm

i to be an integer. Every-
where else in the action, only the transverse part ofA plays a
role (since only its lattice-curl appears). Extracting the lon-
gitudinal part of 2pAij asui −u j, we identify the dual vorton
creation operator exps−iuid. The vortons are seen to be mini-
mally coupled to the transverse part of theA, which we de-
noteA, exactly as a charged particle coupled to aUs1d gauge
field. Thus, in the softened theory

2pAm
i = sui+xm

− uid + 2pAm
i . sA10d

Making this substitution, and absorbinga by shifting Am
i

→Am
i −am

i /2 find

Sc = a o
i,m=1,2

sJm
i d2 + «Uo

i

sJ0
i − nd2 sA11d

+ i
p

2o
i

I0
i s1 − si,i+td − «go

i

I0
i sA12d

− tvo
i,m

cossui − ui,+xm
− 2pAm

i − pam
i d

sA13d

with the total currentJm
i =Jm

i + Im
i ;2emnt]nAl

i . This is the
result used in Sec. X C.
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