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The statistics of quasiparticles entering the quantum Hall effect are deduced from the adia-
batic theoreme These excitations are found to obey fractional statistics, a result closely relat-
ed to their fractional charge.
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Extensive experimental studies have been carried
out' on semiconducting heterostructures in the
quantum limit ct)pr )) 1, where p)p= eBp/m is the
cyclotron frequency and v is the electronic scatter-
ing time. It is found that as the chemical potential

is varied, the Hall conductance (r~ = I„/E»
= 2/e /h shows plateaus at 2/= n/m, where n and m
are integers with m being odd. The ground state
and excitations of a two-dimensional electron gas in
a strong magnetic field 80 have been studied in
relation to these experiments and it has been found
that the free energy shows cusps at filling factors
v = n/m of the Landau levels. These cusps corre-
spond to the existence of an "incompressible quan-
tum fluid" for given n/m and an energy gap for ad-
ding quasiparticles which form an interpenetrating
fluid. This quasiparticle fluid in turn condenses to
make a new incompressible fluid at the next larger
value of n/m, etc.
The charge of the quasiparticles was discussed by

Laughlin2 by using an argument analogous to that
used in deducing the fractional charge of solitons in
one-dimensional conductors. He concluded for
2/= 1/m that quasiholes and quasiparticles have
charges + e"= + e/m. For example, a quasihole is
formed in the incompressible fluid by a two-
dimensional bubble of a size such that 1/m of an
electron is removed. Less clear, however, is the
statistics which the quasiparticles satisfy; Fermi,
Bose, and fractional statistics having all been pro-
posed. In this Letter, we give a direct method for
determining the charge and statistics of the quasi-
particles.
In the symmetric gauge A( r ) = 2 Bpx r we con-

sider the Laughlin ground state with filling factor
v =1/m,

= ff (z&—zk) exp( ——,X/~zt ~ ),

where zj =xj+iy, . A state having a quasihole local-
ized at zo is given by

(2)

dt

so that

+Zp=W X,.—In[z, —z (t)](I/ (6)

=iN '—,.ln z; —z

Since the one-electron density in the presence of

while a quasiparticle at zo is described by

g, (8/(); —p/a, ' )([/,
where 22rap8p= @p=he/e is the flux quantum and
N+ are normalizing factors.
To determine the quasiparticle charge e', we cal-

+zpculate the change of phase y of ([/ as zp adiabati-
cally moves around a circle of radius R enclosing
flux P. To determine e", y is set equal to the
change of phase,

(e /ee)fe d'( =2ee(e'/e)4/4e, (4)

that a quasiparticle of charge e' would gain in mov-
ing around this loop. As emphasized recently by
Berry6 and by Simon (see also Wilczek and Zees
and Schiff ), given a Hamiltonian H(zp) which
depends on a parameter zo, if zo slowly transverses
a loop, then in addition to the usual phase
fE(t') dt', where E(t') is the adiabatic energy, an
extra phase y occurs in (i/(t) which is independent
of how slowly the path is traversed. y(t) satisfies

dy(t)/dt =i ((I/(t) ~d([/(t)/dt)
From Eq. (2),
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