
GRADUATE QUANTUM MECHANICS: 501 Fall 2001

Midterm exam: Solutions.

1. (a) For any two observables, Â and B̂, the Heisenberg uncertainty principle gives

∆A∆B ≥ |−i
2
〈[A,B]〉| (1)

where ∆A =
√〈A2〉 − 〈A〉2, ∆B =

√〈B2〉 − 〈B〉2. In this case, if A = Sx and B = Sy, then
−i
2 [Sx, Sy] = h̄

2Sz so that

∆Sx∆Sy ≥ | h̄
2
〈Sz〉| (2)

Notice how the uncertainties in Sx and Sy are maximal in states that are fully polarized along
the z-axis.

(b) In this problem, if d is the distance over which the virtual particle travels, then the lifetime of
the particle is

∆t ∼ d

c
(3)

The uncertainty in energy is governed by the energy-time uncertainty relation

∆t∆E ≥ h̄

2
(4)

and since ∆E ∼ mc2, where m is the mass of the particle, it follows that

mc2 ∼ ∆E ∼ h̄

2∆t
=
h̄c

2d
(5)

so that

m ∼ h̄

2dc
∼ 10−34

2× 10−6 × 3× 108
≈ 10−37kg (6)

so that the particle is m/me ∼ 10−7 times less massive than an electron.
(c) This problem was identical to our treatment of spatial translation in class. If we compute the

matrix element of the angular translation operator between the state |φ〉 localized at φ and a
general state |ψ〉 we obtain

〈φ|Tdφ|ψ〉 = 〈φ− dφ|ψ〉 = ψ(φ− dφ) = ψ(φ) − dφ
dψ

dφ
, (7)

But since Tdφ = 1− iΛdφ, we can also write

〈φ|Tdφ|ψ〉 = 〈φ|ψ〉 − idφ〈φ|Λ|ψ〉, (8)

Comparing (7) with (8), we obtain

〈φ|Λ|ψ〉 = −idψ(φ)
dφ

. (9)
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(d) The important points are that
i. the amplitude is roughly proportional to 1/

√
p(x), so it is largest where V (x) is smallest!

Thank you for your enlightened discussion on this point.
ii. the wavelength is shortest where V (x) is the smallest.
iii. ψ(x) = 0 for x ≤ 0.
iv. The three lowest states, represented by wavefunctions ψ0(x), ψ1(x) and ψ2(x), have zero,

one and two nodes respectively.
v. The curvature of the wavefunction changes sign as one crosses from the classically allowed,

to the classically forbidden region.
Sketching the key results, we have:
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Figure 1: Sketch diagram of wavefunctions of lowest three states of linear potential.

2. (a) For this problem, Schrödinger’s equation, ih̄ ∂
∂tψ = Hψ becomes

∂

∂t
ψ =

−i
h̄
Hψ = i

[
2eB
h̄

]
Sxψ, (10)

which can be written in the z basis as :
d

dt

(
ψ1

ψ2

)
= iω

(
0 1
1 0

)(
ψ1

ψ2

)
(11)

2



where ω = eB/m. The general solution is then

(
ψ1(t)
ψ2(t)

)
= A

( 1√
2

1√
2

)
eiωt +B

( 1√
2

− 1√
2

)
e−iωt (12)

Now since ψ1(0) = ψ1, ψ2(0) = ψ2, it follows that A = ψ1+ψ2

2 , B = ψ1−ψ2

2 and so

ψ1(t) = ψ1 cosωt+ iψ2 sinωt,
ψ2(t) = ψ2 cosωt+ iψ1 sinωt. (13)

(b) The Heisenberg equations of motion for the components of ~S = (Sx, Sy, Sz) are

d~S(t)
dt

=
i

h̄
[H, ~S(t)] = −i2ω

h̄
[Sx(t), ~S(t)] (14)

so that

d~Sx(t)
dt

= 0

d~Sy(t)
dt

= −i2ω
h̄

[Sx(t), Sy(t)] = 2ωSz(t)

d~Sz(t)
dt

= −i2ω
h̄

[Sx(t), Sz(t)] = −2ωSy(t) (15)

and thus

Sx(t) = Sx(0)
Sy(t) = Sy(0) cos 2ωt+ Sz(0) sin 2ωt
Sz(t) = Sz(0) cos 2ωt− Sy(0) sin 2ωt. (16)

corresponding to a spin precessing about the x axis with angular velocity 2ω.

(c) The two quantities entering into ∆Sz(t)2 = 〈Sz(t)2〉 − 〈Sz(t)〉2 are

〈ψ|S2
z (t)|ψ〉 =

h̄2

4
(|ψ+|2 + |ψ−|2) =

h̄2

4
(17)

and

〈ψ|Sz(t)|ψ〉 = cos 2ωt〈ψ|Sz(0)|ψ〉 − sin 2ωt〈ψ|Sy(0)|ψ〉 =
h̄

2
cos(2ωt) (18)

so that

∆S2
z (t) = 〈ψ|S2

z (t)|ψ〉 − 〈ψ|Sz(t)|ψ〉2 =
h̄2

4
sin2 2ωt. (19)

3. There was a small misprint in this question, with the definition of the creation and annihilation
operators, which should have read a† =

√
mω
2h̄ (x− i 1

mωp) and a =
√

mω
2h̄ (x+ i 1

mωp).
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(a) Writing x
∆x = (a+a†)/

√
2, where ∆x =

√
h̄
mω , we may replace the two terms in the Hamiltonian

as follows

H =

h̄ω(a†a+ 1
2
)︷ ︸︸ ︷[

p̂2

2m
+
mω2x̂2

2

]
−
F∆x(a+a†)/

√
2︷︸︸︷

Fx̂

= h̄ω(a†a+
1
2
)− F∆x√

2
(a+ a†) (20)

(b) If we write b̂ = â− c, b̂† = â†− c∗, then since the numbers c and c∗ commute with the operators
b and b†,

[b, b†] = [a− c, a† − c∗] = [a, a†]− [c, a†]− [a, c∗] + [c.c∗] = [a, a†] = 1 (21)

satisifes the canonical commutation relations.
(c) Substituting a = b+ c, a† = b† + c∗ into the Hamiltonian, we obtain

H = h̄ω[(b† + c∗)(b+ c) +
1
2
]− F∆x√

2
(b+ b† + c+ c∗)

= h̄ω(b†b+
1
2
) +

[(
h̄ωc∗ − F∆x√

2

)
b+ H.c.

]
+ h̄ωc∗c− F∆x√

2
(c+ c∗) (22)

Choosing

c∗h̄ω = ch̄ω =
F∆x√

2
(23)

then

H = h̄ω(b†b+
1
2
)− F 2

2mω2
(24)

so that the Hamiltonian can be cast in the canonical form H = Ab†b+B, where

A = h̄ω, B =
h̄ω

2
− F 2

2mω2
(25)

(d) The ground-state is clearly the state which is annihilated by b, b|0〉 = 0. In this state, the energy
is given by Eg = B, or

Eg =
h̄ω

2
− F 2

2mω2
(26)

The expectation value of position is given by

〈x〉 =
∆x√

2
〈0|
[ →0︷ ︸︸ ︷
(b+ b†) +(c+ c∗)

]
|0〉 =

∆x√
2
(c+ c∗) =

F

mω2
(27)

Classically, we would expect that a displacement ∆x = F/k = F/(mω2), so the classical and
quantum results coincide in this case. The classical ground-state energy would be Ecl = −F∆x

2 =
− F 2

2mω2 . The quantum ground-state energy h̄ω/2 larger than the classical energy Ecl, due to the
quantum zero-point motion.
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(e) The eigenket of the n-th excited state of the system is given by

|n〉 =
(b†)n√
n!
|0〉 =

(a† − c)n√
n!

|0〉 (28)

where |0〉 is the vacuum that is annihilated by the b operator. The corresponding energy is

En = h̄ω(n+
1
2
)− F 2

2mω2
(29)
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