
GRADUATE QUANTUM MECHANICS: 501 Fall 2001

Solutions to Assignment 3.

1. (a) Since U |ar〉 = |br〉 =
∑

s |as〉Usr, by writing the transformation as

(U |+〉, U |−〉) = (|+〉, |−〉)
(

cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)
(1)

we can read off the matrix elements of U to be

[Û ]sr =
(

cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)
. (2)

(b) Under this transformation,

|y;±〉 ≡
( 1√

2

± i√
2

)
→
(

cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)( 1√
2

± i√
2

)
= e∓i θ

2

( 1√
2

± i√
2

)
≡ e∓i θ

2 |y;±〉, (3)

so that

|̂y;±〉 = e∓i θ
2 |y;±〉. (4)

(c) Since H = − eB
m Sy, H|y;±〉 = ± h̄ωc

2 |y;±〉, where ωc = |e|B
m , so that the time evolution of these

states is given by

|y;±〉 → e−iĤt/h̄|y;±〉 = e−i ωct
2 |y;±〉, (5)

permitting us to identify θ = ωct.

(d) The precession angle of the spin is given by θ = ωct. If θ = 900 ≡ π/2, then the time to rotate
through 900 is

t =
(
π

2
m

eB

)
=

(
π × 9.1 × 10−31kg

2× 1.6× 10−19C× 1Tesla

)
= 8.9× 10−12s (6)

2. Since ψ(x) = δ(x− x0), it follows that the momentum space wavefunction is

φ(p) = 〈p|ψ〉 =
∫ ∞

−∞
dx〈p|x〉〈x|ψ〉 =

∫ ∞

−∞
dx√
2πh̄

e−i px
h̄ δ(x − x0) =

1√
2πh̄

e−i
px0
h̄ . (7)

(a) The time-dependent momentum space wavefunction is then given by

φ(p, t) = 〈p|e−iHt/h̄|ψ〉 = e−i p2t
2m

1
h̄ 〈p|ψ〉 =

1√
2πh̄

e
−i

(
pxo+ p2t

2m

)
1
h̄ . (8)
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(b) Transforming back to real space, we have

ψ(x, t) =
∫ ∞

−∞
dp〈x|p〉φ(p, t)

=
∫ ∞

−∞
dp

2πh̄
e
i

(
p(x−xo)− p2t

2m

)
1
h̄ (9)

Using the result

∫ ∞

−∞
dpe−

1
2
ap2+bp =

√
2π
a

exp

[
b2

2a

]
, (10)

putting a = it
mh̄ and b = ix−x0

h̄ , we obtain

Amplitude(xo → x,∆t) ≡ ψ(x,∆t) =
√

m

ih∆t
exp

[
iS

h̄

]
(11)

where

S =
m

2

(
x− xo

∆t

)2

∆t (12)

is the classical action S =
∫ t
0 dt

′ K.E.(t′) for a free particle travelling from xo to x.

3. (a) The Hamiltonian of the simple Harmonic oscillator is

H = h̄ω[a†a+
1
2
] (13)

where a and a† satisfy the algebra [a, a†] = 1. Physically, a† creates a single “phonon” of energy
h̄ω. The quantity N̂ = a†a is the number operator, which satisfies [N, a] = [a†, a]a = −a, so
that [a,H] = −h̄ω[N, a] = h̄ωa and the Heisenberg equation of motion for a(t) is

da(t)
dt

=
1
ih̄

[a(t),H] = −iωa(t) (14)

which we can integrate to obtain a(t) = e−iωta .

(b) The n-th excited state |n〉 is obtained by acting on the ground-state n times with the creation
operator a†,

|n〉 =
1√
n!

(a†)n|0〉 (15)

where the pre-factor is introduced to normalize the state.

(c) We can write |ψ〉 = 1√
2
[|0〉 + 〈|a〉]. Now the position operator x can be written as

x = ∆x[a+ a†], ∆x =

√
h̄

2mω
(16)
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In the Heisenberg representation, this becomes

x(t) = ∆x[a(t) + a†(t)]
= ∆x[ae−iωt + a†eiωt] (17)

To calculate the time dependent expectation value of position, we simply calculate the expec-
tation value of x(t) in the state |ψ〉, which is

〈x(t)〉 = 〈ψ|x̂(t)|ψ〉 =
∆x
2

(〈0|+ 〈1|) [ae−iωt + a†eiωt] (|0〉+ |1〉) (18)

Now only the cross-terms 〈0|a|1〉 = 〈1|a†|0〉 = 1 survive, so that

〈x(t)〉 = ∆x cos(ωt) =

√
h̄

2mω
cos(ωt) (19)

so in the mixed state |ψ〉 = 1√
2
[|0〉+ |1〉] the expectation value of the position operator oscillates

like a cosine wave.

(d) The experimentalist’s results are consistent with the absorption of an odd number of photons,
with frequency ω. This will then put the system in the n-th excited state. But if n is odd, the
wavefunction of the system is an odd-function of position, vanishing at the origin, so that in
this excited state, the electron is never found at the origin. We say that this excited state is
“odd-parity” because it is odd under the reflection operator. Physically, the photon is an odd-
parity particle, and this is why the absorption of odd number of photons leads to an odd-parity
electron state.
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