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Physics 228, Lecture 17

Monday, March 28, 2005

Free-Electron Model, Conductivity, Metals, Insulators

and Semiconductors. Ch. 42:4-6
Copyright c©2003 by Joel A. Shapiro

1 Independent Electron Model

We have seen that the quantum states an electron can occupy when in the
presence of a large number of positive ions form energy bands, each arising
from the mixing of one atomic state from each ion. The state of the full
system is then described1 by which electronic states are occupied (have an
electron in them) and which are not. This is just what we did for atoms.

As for atoms, the ground state, or lowest energy state, of the whole sys-
tem is the state for which all the electrons have occupied the lowest energy
available states, and left the higher energy electronic states unoccupied. Un-
like isolated atoms, however, a crystal of metal is so complex, with so many
available states, that it is very unlikely to be in its ground state, and in fact
it is not useful to discuss the system as being in any single state, but rather
to think of it as a thermal system in equilibrium at some temperature. We
will use absolute temperatures T .

At any given temperature, there is a probability that a given electronic
state will be occupied. That probability is given by the Fermi-Dirac dis-
tribution function:

f(E) =
1

e(E−EF )/kBT + 1
,

where E is the energy of the state for which we want the
probability, EF is a parameter called the Fermi energy, and
kB is Boltzmann’s constant, which we have seen before, in

f(E) 42.24
S&B 43.21

1This is an approximation in which we ignore the interactions between electrons, be-
cause we are assuming the state of one electron is independent of which states the other
electrons are in. It also assumes the ions are behaving in a way independent of where the
electrons are. These approximations work surprisingly well.
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thermal physics, is the natural scale for comparing temperatures to energies
on an atomic level. Note the behavior depends on the energy difference
E −EF compared to kBT . If E − EF � kBT , the exponential is very large,
and f(E) is essentially zero, and the state is almost certainly not occupied.
On the other hand, if E is less than EF by an amount much greater than
kBT , the exponent is a large negative number and the exponenial is very
small, so that the state is almost certainly occupied; the probability is near
one. As T → 0 these limits apply to all states; those with energies less than
EF are occupied and those above are empty. This is what determines the
parameter EF , for the number of electrons in a given hunk of metal is fixed2.
For finite temperature, those states with energies close to the Fermi energy
have some probability of being occupied and of not being occupied, while
those further away are almost certainly occupied or not according to which
side of EF the energy lies. Here is a plot of f(E).

2 Free Electron Theory

Knowing the possible electronic states of a substance and knowing which are
occupied is what determines the behavior of the substance. The Fermi-Dirac
distribution tells us the latter, but we need a model to describe the states
of the system. We will first use a surprisingly simple model, treating the
electrons as if they were totally free within the box formed by the crystal.
Free means there are no forces on each electron, which seems very strange,
but in fact we get a quite good first approximation with this assumption.

When we considered a one dimensional box confining a particle to 0 ≤
x ≤ L, we found that the states were given by standing waves

ψ(x) = A sin(nπx/L),

where the sin and the quantization of the wave number came from the ne-
cessity for ψ(x) = 0 at x = 0 and x = L. For simplicity we will consider a
metal cube with each coordinate, x, y, z confined to the interval [0, L]. Then
the wave function is

ψ(x, y, z) = A sin(nxπx/L) sin(nyπy/L) sin(nzπz/L),

2We are not considering letting the metal gain or lose charge. Coulomb forces are so
large that any change in total charge that involved a substantial fraction of the electrons
would cause electric fields that would produce lightening!
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where each of the quantum numbers nx, ny, and nz are positive integers.
Schrödinger’s equation (in three dimensions) then picks up a contribution to
p2 from each direction, and

E =
h̄2π2

2meL2
(n2

x + n2
y + n2

z).

Thus the energy depends on the length of a three dimensional vector of
integers, with

|~n| =
√
n2

x + n2
y + n2

z =
√

2me
L

πh̄

√
E =

√
8me

L

h

√
E.

We need to know the number of states per unit energy range. It will turn
out proportional to the volume of the crystal, so we define g(E) to be the
number of states per unit volume per unit energy range. Thus the number
of states with energies between E and E + dE is g(E)L3dE. But that is
just twice the number of triplets of positive integers (nx, ny, nz) with |~n| in
a certain range,

√
8me

L

h

√
E ≤ |~n| ≤ √8me

L

h

√
E + dE.

The reason we need to double the number of triplets is that each one gives
one state with spin up and one state with spin down. The triplets of integers
are uniformly spread out in three dimensions, so the number with |~n| in a
range ∆|~n| is just the number in a spherical shell of radius |~n| and thickness
∆|~n|, so as long as we don’t look closely enough to see that these points are
discrete. The number of triplets of positive integers in the right range is

number of triplets = 4π~n 2d|~n| × 1/8 =
1

2
π~n 2d|~n|,

where the factor of 1/8 came because only the octant of all positive values
counts. From

|~n| = √8me
L

h

√
E, ~n 2 =

8meL
2

h2
E, d|~n| = √8me

L

h
× 1

2

dE√
E
,

we have

number of states = 2× 1

2
π × 8meL

2

h2
E ×√8me

L

h
× 1

2

dE√
E

= CL3
√
E dE, with C =

8
√

2πm3/2
e

h3
.
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The function g(E) = C
√
E is the density of states.

With this information, we now know the number of
electrons we can expect to have in every energy range,
N(E)dE, where N(E) = f(E)g(E), the number of states
times the probability for each to be occupied. The total
number of electrons per unit volume is

Show
S&B 43.22
N(E) =
f(E)g(E)
3 3/4” × 3”

ne =
∫ ∞
0

N(E) dE −→
T→0

C
∫ EF

0
E1/2 dE =

2

3
CE

3/2
F ,

so at zero temperature,

EF =
h2

2me

(
3ne

8π

)2/3

.

The model we have just described is best used to describe only the valence
electrons, which are not tightly bound to their individual atoms. For gold,
there is one valence electron per atom, and from the density of gold (19,300
kg/m3) and the atomic mass, 197 u, we can verify there are 5.90× 1028 free
electrons/cubic meter, and EF works out to 5.53 eV, which corresponds to
kBT for T = 64, 000 K. So we see that only a very small fraction of the states
are within kBT of EF for a metal at room temperature.

2.1 Reconciling the two models of electronic states

The free electron model clearly ignores some important effects, such as the
regular arrangement of nuclear charges in which the electrons move, rather
than being in a force-free box. If we think of the free electron model as
describing all of the electrons, including the tightly bound ones in low energy
atomic states, these interactions are clearly important and will surely cause
significant deviations from the free electron model. These states are much
better described by the energy band picture of section 4. A better model is
to think of the free electron model as describing only the valence electrons,
with the tightly bound electrons and the nuclei approximated by the constant
potential of the box. But if we are only considering the 3s electrons in

sodium, for example, then the free electron model can
work as long as we don’t run out of states. There are
only 2N states available from the 3s electrons, while we
have one valence electron from each atom, orN electrons,
and our free electron model should be okay. If, however,

Show
S&B 43.20
Energy Bands
2 3/4” × 4 1/2”
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we are considering magnesium instead of sodium, we would have 2N elec-
trons filling this band of 2N states, and the free electron model would be
misleading, implying there were more available states when these are really
of a different nature, 3p rather than 3s.

3 Metals, Insulators, and Semiconductors

Current flows in a solid in response to an applied electric field when electrons
can move from the states they were in when there was no field to other
states. In the absence of a field, states moving left and states moving right
are equally occupied, but if some electrons can hop from left moving to right
moving states, they can support a net current. This requires there to be
available unoccupied states which don’t require too much extra energy.

There is a Fermi level even when the states occur in bands, as discussed in
the last lecture. The conductivity of the solid depends crucially on whether

that energy level is in the middle of an allowed band or
within an energy gap. For a half-filled band, the Fermi
energy is at a level where the density of states g(EF )
is big, and so there are many occupied and unoccupied

S&B 43.23
EF inside
band
2 3/4” × 1 1/4”

states close together in energy, and the transitions necessary for current to
flow are easily made. Then we have a conductor. If, however, the Fermi

energy lies within a forbidden band with an energy gap
large compared to kBT , there will be almost no occupied
states which can be excited into unoccupied states, no
current will flow, and we have an insulator.

S&B 43.24
EF in big gap
3 1/8” × 3 3/4”

In semiconductors, the Fermi energy is in the forbid-
den region between two bands, but the gap is smaller
than in an insulator. While the probability of any level
in the valence band (below the gap) being empty, or any
in the conduction band (above the gap) being occupied,

S&B 43.25
EF in semi-
conductor
3 1/4” × 2 1/2”

is small, as there are a large number of states there are enough transitions to
make for a small conductivity. Conduction can take place due to occupied
states in the conduction band, because they can easily move to nearby empty
states. It can also occur due to holes in the valence band — that is, empty
states in the valence band can cause current flow because electrons in nearby
occupied states can make a transition into the unoccupied hole. It leaves a
new hole behind, so a succession of transitions can cause a current.
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In a pure semiconductor in which the Fermi energy lies between bands,
each hole in the valence band must have contributed an electron to the con-
duction band, and both will conduct. These are called intrinsic semicon-
ductors. But of great technological importance are doped semiconductors.
An impurity in the semiconductor which has one more electron will create one
state in the middle of the gap, and one extra the electron, but the electron

is very likely to be in a valence band state rather than the
one extra state, and can carry current. Semiconductors
doped in this way are called n-type, because the extra
carrier is the negatively charged electron.

42.27,
S&B 43.27
donor level
7” × 4 1/4”

Another form of doped semiconductor contains in impurity with one fewer

electrons than the bulk material. There is a single state
within the gap due to his atom, without an electron to
match, but it is very likely that an electron will fill this
state and the unoccupied state will be one of those in

42.28,
S&B 43.28
acceptor level
7” × 4 1/4”

the bulk valence band. Again this causes current. This kind of semiconduc-
tor is called p-type because the charge carrier is a positive hole relative to
the sea of electrons. Doped devices are called extrinsic semiconductors,
while conduction due to spontaneous electron-hole pairs is called intrinsic
semiconductivity.

4 Semiconductor Devices
Semiconductors play a crucial role in electronics technol-
ogy. Most of the semiconducting devices available to-
day are based on silicon (Si), but germanium (Ge) and
gallium arsenide (GaAs) are also used. Semiconductor

Display
silicon boule

devices typically contain junctions between regions with opposite doping. For
example, consider a piece of p-type joined to a piece of n-type semiconductor.
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In the region of the interface the carriers will flow
into the opposite region, leaving a region depleted
of carries. If a voltage is applied which tries to
push electrons from the n region and holes from
the p region towards the depletion region, current
can flow, from p to n. But if a voltage tries to
cause current in the opposite direction, nothing
causes carriers to be in the depletion region, and
there is very little flow of current. Thus we have
a diode, which permits flow of current in one di-
rection but not in the other.

p-type n-type

hole
electron 

depletion

direction of easy
current flow.

Transitions can be caused by photoabsorption or photoemission as well
as by thermal excitations. If the energy gap between the conduction band

and the valence band is the energy of a visible or infrared
photon, we can produce light emitting diodes and pho-
tovoltaic cells, which convert electric current and power
into light, and vice-versa.

Display solar
energy
windmill

A very large part of the technological advance of the last half century
has been due to semiconducting devices. Transistors can be built from three
regions of doped semiconductor, and they are able to amplify electrical signals
as well as rectify them. These transistors fairly quickly took the place of
the much larger, less durable, and far less efficient vacuum tubes which did
the amplifying earlier. A huge advance came with the idea that transistors

could be laid down photographically in large numbers on
the surface of a semiconducting wafer, giving birth to the
integrated circuit. We can now purchase for a few dollars
a “chip” with hundreds of thousands of transistors laid
out in a functional circuit.

Display
integrated
circuit wafer

5 Superconductivity

We discussed superconductivity slightly last term, and we will skip this sec-
tion now.


